Behavior of Geogrid-Reinforced Portland Cement Concrete under Static Flexural Loading
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
2.2. Specimen Fabrication
2.3. Instrumentation and Flexural Loading Test
3. Results and Discussion
3.1. Load-Midspan Displacement Behavior and Failure Modes
3.2. Load-CMOD
3.3. Strain Developed in Geogrids
4. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McCormac, J.; Brown, R. Design of Reinforced Concrete, 10th ed.; Wiley: Hoboken, NJ, USA, 2016; ISBN 1118879104. [Google Scholar]
- Clarke, J.L. Alternative Materials for the Reinforcement and Prestressing of Concrete; CRC Press: New York, NY, USA, 1993; ISBN 9780751400076. [Google Scholar]
- Bakis, C.E.; Bank, L.C.; Brown, V.L.; Cosenza, E.; Davalos, J.F.; Lesko, J.J.; Machida, A.; Rizkalla, S.H.; Triantafillou, T.C. Fiber-Reinforced Polymer Composite for Construction—State-of-the-Art Review. J. Compos. Construct. 2002, 6, 73–87. [Google Scholar] [CrossRef]
- Erki, M.A.; Rizkalla, S.H. FRP Reinforcement for Concrete Structures. Concr. Int. 1993, 15, 48–53. [Google Scholar]
- Banthia, N.; Al-Asaly, M.; Ma, S. Behavior of Concrete Slabs Reinforced with Fiber-Reinforced Plastic Grid. J. Mater. Civ. Eng. 1995, 7, 252–257. [Google Scholar] [CrossRef]
- Bentur, A.; Mindess, S. Fibre Reinforced Cementitious Composites; Elsevier Applied Science: New York, NY, USA, 1990. [Google Scholar]
- Zollo, R.F. Fiber-Reinforced Concrete: An Overview after 30 years of Development. Cem. Concr. Compos. 1997, 19, 107–122. [Google Scholar] [CrossRef]
- American Concrete Institute (ACI). State-Of-The-Art Report on Fiber Reinforced Concrete; ACI Committee 544; ACI: Detroit, MI, USA, 2002. [Google Scholar]
- Yin, S.; Tuladhar, R.; Shi, F.; Combe, M.; Collister, T.; Sivakugan, N. Use of Macro Plastic Fibres in Concrete: A Review. Construct. Build. Mater. 2015, 93, 180–188. [Google Scholar] [CrossRef]
- Singh, H. Flexural Modeling of Steel Fiber-Reinforced Concrete Members: Analytical Investigations. Pract. Period. Struct. Des. Construct. 2015, 20. [Google Scholar] [CrossRef]
- Jewell, R.A.; Milligan, G.W.E.; Sarsby, R.W.; Dubois, D. Interaction between Soil and Geogrids. In Proceedings of the Conference on Polymer Grid Reinforcement in Civil Engineering; Thomas Telford Publishing: London, UK, 1984; pp. 18–30. [Google Scholar]
- Tang, X.; Chehab, G.; Palomino, A.M. Evaluation of Geogrids for Stabilizing Weak Pavement Subgrade. Int. J. Pavement Eng. 2008, 9, 413–429. [Google Scholar] [CrossRef]
- Tang, X.; Abu-Farsakh, M.; Shadi Hanandeh, S.; Chen, Q. Performance of Reinforced/Stabilized Unpaved Test Sections Built over Native Soft Soil under Full-Scale Moving Wheel Loads. Transp. Res. Rec. J. Transp. Res. Board 2015, 2511, 81–89. [Google Scholar] [CrossRef]
- Tang, X.; Chehab, G.; Kim, S. Laboratory Study of Geogrid Reinforcement in Portland Cement Concrete. In Proceedings of the 6th RILEM International Conference on Cracking in Pavements 2008, Chicago, IL, USA, 16–18 June 2008; pp. 769–778. [Google Scholar]
- El Meski, F.; Chehab, G.R. Flexural Behavior of Concrete Beams Reinforced with Different Types of Geogrids. J. Mater. Civ. Eng. 2014, 26. [Google Scholar] [CrossRef]
- Itani, H.; Saad, G.; Chehab, G. The Use of Geogrid Reinforcement for Enhancing the Performance of Concrete Overlays: An Experimental and Numerical Assessment. Construct. Build. Mater. 2016, 124, 826–837. [Google Scholar] [CrossRef]
- Al-Hedad, A.S.A.; Hadi, M.N.S. Effects of Geogrid Reinforcement on the Flexural Behavior of Concrete Pavements. Road Mater. Pavement Des. 2018. [Google Scholar] [CrossRef]
- Chidambaram, R.S.; Agarwal, P. The Confining Effect of Geo-Grid on the Mechanical Properties of Concrete Specimens with Steel Fiber under Compression and Flexure. Construct. Build. Mater. 2014, 71, 628–637. [Google Scholar] [CrossRef]
- Chidambaram, R.S.; Agarwal, P. Flexural and Shear Behavior of Geogrid Confined RC Beams with Steel Fiber Reinforced Concrete. Construct. Build. Mater. 2015, 78, 271–280. [Google Scholar] [CrossRef]
- Al-Hedad, A.S.A.; Bambridge, E.; Hadi, M.N.S. Influence of Geogrid on the Drying Shrinkage Performance of Concrete Pavements. Construct. Build. Mater. 2017, 146, 165–174. [Google Scholar] [CrossRef]
- Tang, X.; Palomino, A.M.; Stoffels, S.M. Reinforcement Tensile Behavior Under Cyclic Moving Wheel Loads. Transp. Res. Rec. J. Transp. Res. Board 2013, 2363, 113–121. [Google Scholar] [CrossRef]
- Tang, X.; Stoffels, S.M.; Palomino, A.M. Resilient and Permanent Deformation Characteristics of Unbound Pavement Layers Modified by Geogrids. Transp. Res. Rec. J. Transp. Res. Board 2013, 2369, 3–10. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). SW-846 Test Method 9090A: Compatibility Test for Wastes and Membrane Liners; EPA: Washington, DC, USA, 1992.
- Tensar International. Product Specification—TriAxTM TX160 Geogrid; Tensar International: Atlanta, GA, USA, 2009. [Google Scholar]
- Brandon, T.L.; Al-Qadi, I.L.; Lacina, B.A.; Bhutta, S.A. Construction and Instrumentation of Geosynthetically Stabilized Secondary Road Test Sections. Transp. Res. Rec. J. Transp. Res. Board 1996, 1534, 50–57. [Google Scholar] [CrossRef]
- Maxwell, S.; Kim, W.H.; Edil, T.B.; Benson, C.H. Geosynthetics in Stabilizing Soft Subgrade with Breaker Run; Report No. 0092-45-15; Wisconsin Department of Transportation: Madison, WI, USA, 2005. [Google Scholar]
- Warren, K.A.; Brooks, J.A.; Howard, I.L. Foil Strain Gage Attachment Techniques for Geotextile and Geogrid. In Proceedings of the Geocongress 2006: Geotechnical Engineering in the Information Technology Age, Atlanta, GA, USA, 26 February–1 March 2006; pp. 1–6. [Google Scholar]
- Tang, X. A Study of Permanent Deformation Behavior of Geogrid-Reinforced Flexible Pavements Using Small Scale Accelerated Pavement Testing. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, May 2011. [Google Scholar]
- Shinoda, M.; Bathurst, R.J. Lateral and Axial Deformation of PP, HDPE and PET Geogrids under Tensile Load. Geotext. Geomembr. 2004, 22, 205–222. [Google Scholar] [CrossRef]
- ASTM C 78. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading); Annual Book of ASTM Standards; American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2018; Volume 4.02. [Google Scholar]
- Chalioris, E.C.; Kosmidou, P.-M.; Papadopoulos, N.A. Investigation of a New Strengthening Technique for RC Deep Beams Using Carbon FRP Ropes as Transverse Reinforcements. Fibers 2018, 6, 52. [Google Scholar] [CrossRef]
- Chalioris, E.C. Analytical Approach for the Evaluation of Minimum Fibre Factor Required for Steel Fibrous Concrete Beams under Combined Shear and Flexure. Construct. Build. Mater. 2013, 43, 317–336. [Google Scholar] [CrossRef]
- Swamy, R.N.; Jones, R.; Oldroyd, P.N. The behavior of Tensar Reinforced Cement Composites under Static Loads. In Proceedings of the Conference on Polymer Grid Reinforcement in Civil Engineering; Thomas Telford Publishing: London, UK, 1984; pp. 222–232. [Google Scholar]
- Chalioris, C.E.; Panagiotopoulos, T.A. Flexural Analysis of Steel Fibre Reinforced Concrete Members. Comput. Concr. 2018, 22, 11–25. [Google Scholar]
Component | Material Type | Content (kg/m3) |
---|---|---|
Cement | ASTM Type I | 509 |
Fine Aggregates | River Sand | 857 |
Coarse Aggregates | Crushed Limestone | 1002 |
Properties | Longitudinal | Diagonal | Transverse | General |
---|---|---|---|---|
Index Properties | ||||
Rib Pitch (mm) | 40 | 40 | _ | _ |
Mid-Rib Depth (mm) | _ | 1.8 | 1.5 | _ |
Mid-Rib Width (mm) | _ | 1.1 | 1.3 | _ |
Nodal Thickness (mm) | _ | _ | _ | 3.1 |
Structural Integrity | ||||
Junction Efficiency (%) | _ | _ | _ | 93 |
Aperture Stability (kg-cm/deg. @ 5.0 kg-cm | _ | _ | _ | 3.6 |
Radial Stiffness at Low Strain, kN/m @ 0.5% strain | _ | _ | _ | 300 |
Concrete Specimen | Maximum Load (kN) | Post-Cracking Maximum Load (kN) | Flexural Strength (kPa) | Accumulated Flexural Energy (J) |
---|---|---|---|---|
Plain Concrete | 3.7 | - | 300 | 6.8 |
Geogrid-Reinforced | 3.5 | 0.8 | 284 | 22.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Higgins, I.; N. Jlilati, M. Behavior of Geogrid-Reinforced Portland Cement Concrete under Static Flexural Loading. Infrastructures 2018, 3, 41. https://doi.org/10.3390/infrastructures3040041
Tang X, Higgins I, N. Jlilati M. Behavior of Geogrid-Reinforced Portland Cement Concrete under Static Flexural Loading. Infrastructures. 2018; 3(4):41. https://doi.org/10.3390/infrastructures3040041
Chicago/Turabian StyleTang, Xiaochao, Isaac Higgins, and Mohamad N. Jlilati. 2018. "Behavior of Geogrid-Reinforced Portland Cement Concrete under Static Flexural Loading" Infrastructures 3, no. 4: 41. https://doi.org/10.3390/infrastructures3040041
APA StyleTang, X., Higgins, I., & N. Jlilati, M. (2018). Behavior of Geogrid-Reinforced Portland Cement Concrete under Static Flexural Loading. Infrastructures, 3(4), 41. https://doi.org/10.3390/infrastructures3040041