Research Progress and Hotspots of Steel Slag Application in Road Construction: A Bibliometric Perspective
Abstract
1. Introduction
2. Research Tendencies of Steel Slag Application in Road Construction
3. Application of Steel Slag in Road Construction
3.1. Steel Slag Aggregate
Steel Slag Admixtured | Aggregate Size/mm | The Sand Rate/% | Slump/mm | Stick Degree | Water Retention |
---|---|---|---|---|---|
0% | 5~10 | 36 | 70 | Middle | No |
5% | 5~10 | 38 | 65 | Hight | No |
10% | 5~16 | 36 | 70 | Middle | No |
7.5% | 5~15 | 34 | 85 | Hight | Low |
12.5% | 5~15 | 36 | 75 | Middle | Low |
15% | 5~10 | 38 | 65 | Hight | Low |
20% | 5~25 | 36 | 85 | Hight | middle |
3.2. Steel Slag Asphalt Mixtures
3.3. Steel Slag Concrete
4. Steel Slag Process Technology
4.1. Coarse Processing of Steel Slag
4.2. Fine Processing of Steel Slag
5. The Activity and Stability of Steel Slag
5.1. Activity of Steel Slag
5.2. Stability of Steel Slag
6. Perspectives—Carbonation of Steel Slag
6.1. Reaction Mechanism of Steel Slag Carbonation
6.2. Classification and Research Progress of Steel Slag Carbonation Process
6.3. Comparison of Properties of Steel Slag Before and After Carbonation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Zheng, X.G.; Li, J.Y.; Xu, G.; Tan, L.J. Mechanism of reinforced interfacial adhesion between steel slag and highly devulcanized waste rubber modified asphalt and its influence on the volume stability in steel slag asphalt mixture. Constr. Build. Mater. 2024, 447, 138129. [Google Scholar] [CrossRef]
- Yang, C.; Huang, Z.W.; Wu, S.P.; He, X.Y.; Su, Y.; Zhao, Z.G.; Xu, H.Q.; Wang, F.S.; Zhang, L. Recycling steel slag as aggregate in developing an ultra-thin friction course with high comprehensive road performance. Constr. Build. Mater. 2024, 449, 138539. [Google Scholar] [CrossRef]
- Chen, Y.J.; Chen, Z.B.; Wang, S.Y.; Chen, Y.P.; Chen, G.X. Application of steel slag in road Semi-Rigid subgrade and its volume stability modification progress study. JOM 2024, 77, 400–414. [Google Scholar] [CrossRef]
- Zhao, W.X.; Wen, W.; Li, H.R.; Hu, J. Research on the performance of asphalt mixture with acid-treated steel slag based on microscopic properties. Constr. Build. Mater. 2024, 455, 139134. [Google Scholar] [CrossRef]
- Song, Y.; Xu, H.Q.; Wu, S.P.; Xie, J.; Chen, A.Q.; Lv, Y.; Cheng, Y.X.; Li, Y.Y. High-quality utilization of reclaimed asphalt pavement (RAP) in asphalt mixture with the enhancement of steel slag and epoxy asphalt. Constr. Build. Mater. 2024, 445, 137963. [Google Scholar] [CrossRef]
- Chen, C.; Deng, Q.H.; Li, C.M.; Yi, S.B.; Liu, L.B. Research on the preparation and self-healing performance of microwave-induced functional steel slag asphalt mixture. Case Stud. Constr. Mater. 2024, 20, e03038. [Google Scholar] [CrossRef]
- Puma, G.; Salles, A.; Turk, J.; Ungureanu, V.; Bragança, L. Utilisation of reused steel and slag: Analysing the circular economy benefits through three case studies. Buildings 2024, 14, 979. [Google Scholar] [CrossRef]
- Kamalasekar, A.; Murugasan, R.; Makendran, C.; Francis, M.R. Static and cyclic behaviour of fibre-reinforced pavement concrete with copper slag as fine aggregate. Materia 2024, 29, e20230323. [Google Scholar] [CrossRef]
- Kedar, H.N.; Patel, S.; Shirol, S.S. Bulk utilization of steel slag-fly ash composite: A sustainable alternative for use as road construction materials. Innov. Infrastruct. Solut. 2024, 9, 21. [Google Scholar] [CrossRef]
- Fan, M.M.; Lyu, Z.; Liu, L.; Qin, J.X.; Liang, G.R.; Huang, N.J. Preparation of pavement base material by using steel slag powder and steel slag aggregate. Materia 2024, 29, e20240257. [Google Scholar] [CrossRef]
- Yuan, B.; Zhao, D.N.; Lei, J.L.; Song, S.Q. Preparation and performance testing of steel slag concrete from steel solid waste. Buildings 2024, 14, 2437. [Google Scholar] [CrossRef]
- Wu, H.Y.; Xu, F.; Li, B.Y.; Gao, Q.J. Study on Expansion Rate of Steel Slag Cement-Stabilized Macadam Based on BP Neural Network. Materials 2024, 17, 3558. [Google Scholar] [CrossRef] [PubMed]
- Moura, C.; Silva, H.; Oliveira, J.; Loureiro, C. A life cycle assessment of an asphalt mixture with steel slag and reclaimed asphalt. In Proceedings of the 10th International Conference on Maintenance and Rehabilitation of Pavements, MAIREPAV-10, Guimarães, Portugal, 24–26 July 2024; Pereira, P., Pais, J., Eds.; Springer: Cham, Switzerland, 2024; Volume 1, pp. 605–615. [Google Scholar]
- Kumar, H.; Varma, S. A review on utilization of steel slag in hot mix asphalt. Int. J. Pavement Res. Technol. 2021, 14, 232–242. [Google Scholar] [CrossRef]
- Dondi, G.; Mazzotta, F.; Lantieri, C.; Cuppi, F.; Vignali, V.; Sangiovanni, C. Use of steel slag as an alternative to aggregate and filler in road pavements. Materials 2021, 14, 345. [Google Scholar] [CrossRef]
- Jonczy, I.; Grzesik, B. Polymorphic transformations of dicalcium silicates in steel slags used in the production of road aggregates. Gospod. Surowcami Min. 2021, 37, 97–116. [Google Scholar] [CrossRef]
- Wang, X.Y.; Hui, Y.X.; Xu, X.Q.; Xu, T.F.; Zhao, T.; Li, B.W. Multi-scale study on the whole process adhesion behaviour of steel slag and SBS/CR composite modified asphalt. Int. J. Pavement Eng. 2024, 25, 2419937. [Google Scholar] [CrossRef]
- Korkmaz, B.; Dayioglu, A.Y. Utilization of natural soils as a remediation method for electric arc furnace and ladle slags. Sustainability 2024, 16, 5244. [Google Scholar] [CrossRef]
- Liu, L.; Liu, L.X.; Liu, Z.H.; Yang, C.C.; Li, X.; Huang, Y. Effects of the aging treatment process on the properties of steel slag. J. Mater. Civ. Eng. 2024, 36, 04024019. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Zhang, Y.S.; Wu, X.; Zhang, F.Q.; Zhang, J.L.; Li, X.M. The mechanical strength, microstructure, and transport properties of steel slag reinforced loess soil system. Case Stud. Constr. Mater. 2024, 20, e02702. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, D.; Falchetto, A.C.; Cao, Y.S. Microwave deicing properties and carbon emissions assessment of asphalt mixtures containing steel slag towards resource conservation and waste reuse. Sci. Total Environ. 2024, 912, 169189. [Google Scholar] [CrossRef]
- Yang, J.; Hong, C.; Xing, Y.; Zheng, Z.X.; Li, Z.X.; Zhao, X.M.; Qi, C.H. Research progress and hot spots of hydrothermal liquefaction for bio-oil production based on bibliometric analysis. Environ. Sci. Pollut. Res. 2021, 28, 7621–7635. [Google Scholar] [CrossRef] [PubMed]
- Alnadish, A.M.; Ramu, M.B.; Kasim, N.; Alawag, A.M.; Baarimah, A.O. A bibliometric analysis and review on applications of industrial By-Products in asphalt mixtures for sustainable road construction. Buildings 2024, 14, 3240. [Google Scholar] [CrossRef]
- Hassan, H.F.; Al-Shamsi, K.; Al-Jabri, K. Effect of steel slag on the permanent deformation and life cycle cost of asphalt concrete pavements. Int. J. Pavement Res. Technol. 2024, 17, 1513–1530. [Google Scholar] [CrossRef]
- Yang, X.K.; Wu, S.P.; Chen, B.Y.; Ye, G.; Xu, S. Development of a sustainable stabilized macadam road base using steel slag as supplementary cementitious material. Constr. Build. Mater. 2024, 449, 138566. [Google Scholar] [CrossRef]
- Rahaman, O.; Sarker, A.; Das Hasi, A.; Al Mamun, A. A case study on steel slag as an alternative sustainable material for subbase layer. In Proceedings of the International Conference on Transportation and Development 2024: Pavements and Infrastructure Systems, ICTD 2024, Atlanta, GA, USA, 15–18 June 2024; Wei, H., Ed.; ASCE: Reston, VA, USA, 2024; pp. 93–106. [Google Scholar]
- Mymrin, V.A.; Ponte, H.A.; Yamamoto, C.I. Synthesis of new colloidal formations during the strengthening of different activated hydrated metallurgical slags. Colloids Surf. A Physicochem. Eng. Asp. 2003, 220, 211–221. [Google Scholar] [CrossRef]
- Lin, Z.Z.; Yang, H.; Chen, H.M.; Ouyang, X.Y.; Liu, Z.Q. Comparison of the decontamination performance of three permeable bricks: Adsorption and filtration experiments. Pol. J. Environ. Stud. 2020, 29, 3225–3233. [Google Scholar] [CrossRef] [PubMed]
- Mukiza, E.; Zhang, L.L.; Liu, X.M. Durability and microstructure analysis of the road base material prepared from red mud and flue gas desulfurization fly ash. Int. J. Min. Met. Mater. 2020, 27, 555–568. [Google Scholar] [CrossRef]
- Son, P.; Van Nam, N.; Tran, N.P.; Le-Hoai, L.; Ngo, T.D. Steel slag aggregate low-cement concrete: Engineering performance, microstructure and sustainability. Constr. Build. Mater. 2024, 436, 136827. [Google Scholar] [CrossRef]
- Plati, C.; Tsakoumaki, M.; Loizos, A. Quality assurance of steel slag asphalt mixtures for sustainable pavement surface courses. Recycling 2024, 9, 91. [Google Scholar] [CrossRef]
- Zepper, J.; van der Laan, S.R.; Schollbach, K.; Brouwers, H. A Bogue approach applied to basic oxygen furnace slag. Cement Concrete Res. 2024, 175, 107344. [Google Scholar] [CrossRef]
- Abed, Z.M.; Khalil, W.I.; Ahmed, H.K. Effect of waste tire products on some characteristics of roller-compacted concrete. Open Eng. 2024, 14, 20220559. [Google Scholar] [CrossRef]
- Ji, K.; Tian, Y.G.; Jiang, J.; Yan, X.H.; Tian, J.; Wang, Z.J.; Zhang, J. The void characteristics of cement emulsified bitumen mixture under microwave heating by X-ray computed tomography. Constr. Build. Mater. 2024, 425, 136023. [Google Scholar] [CrossRef]
- Ziari, H.; Zalnezhad, M.; Ziari, M.A. Performance evaluation of colored slurry seal mixture with steel slag as a substituent of natural aggregates. J. Mater. Civ. Eng. 2024, 36, 04024192. [Google Scholar] [CrossRef]
- Xu, S.; Xu, W.; Chen, Y.X.; Li, J.Q.; Li, Y.G. Enhancement of Microwave Heating Technology for Emulsified Asphalt Mixtures Using SiC-Fe3O4 Composite Material. Materials 2024, 17, 4572. [Google Scholar] [CrossRef] [PubMed]
- Sorociak, W.; Grzesik, B.; Szoltysik, J.; Bzówka, J.; Mieczkowski, P.; Klemens, M. Analysis of reclaimed asphalt pavement heating with microwave radiation. Arab. J. Sci. Eng. 2024, 515, 1–14. [Google Scholar] [CrossRef]
- Feng, T.H.; Wang, W.; Li, N.; Luo, J.L.; Li, B.; Jiang, P.; Pu, S.Y. Mechanical properties and microscopic mechanism of steel slag, sodium sulfate and cement stabilized road demolition waste. Results Eng. 2024, 24, 103338. [Google Scholar] [CrossRef]
- Huang, L.Y.; Wei, G.G.; Lan, Z.X.; Chen, Y.L.; Li, T. Preparation and mechanism analysis of stainless steel AOD slag mixture base materials. Materials 2024, 17, 970. [Google Scholar] [CrossRef]
- Deng, B.; Zeng, G.W.; Ge, R. A creep model of steel Slag-Asphalt mixture based on neural networks. Appl. Sci. 2024, 14, 5820. [Google Scholar] [CrossRef]
- Zhang, Q.M.; Lu, Z.Y.; Chen, A.Q.; Wu, S.P.; Feng, J.L.; Xu, H.Q.; Li, Y.Y. Study on the performance of Epoxy-Modified asphalt and steel slag Ultra-Thin friction course. Materials 2024, 17, 4513. [Google Scholar] [CrossRef]
- Lopes, E.C.; Da Silva, T.O.; Pitanga, H.N.; Pedroti, L.G.; de Carvalho, J.; Nalon, G.H.; de Araújo, E.; Rodrigues, K. Chemical, mineralogical, microstructural and engineering properties of tropical soils stabilised with the combined and individual use of different types of steel slag. Road Mater. Pavement 2024, 25, 1507–1527. [Google Scholar] [CrossRef]
- Rodríguez-Alloza, A.M.; Gulisano, F.; Garraín, D. Environmental benefits of microwave-assisted self-healing technology for pavements—A Life Cycle Assessment comparative study. Mater. Constr. 2024, 74, e346. [Google Scholar] [CrossRef]
- Jahanbakhsh, H.; Nejad, F.M.; Khodaii, A.; Karimi, M.M. Induction heating and induced healing evaluation of the asphalt concretes incorporating conductive aggregates exposed to microwave radiation. Constr. Build. Mater. 2024, 416, 135126. [Google Scholar] [CrossRef]
- Moussaoui, R.; El Alami, S.E.; Aouraghe, H. Valorization of the zellidja lead smelter slag (Eastern morocco) in road building. Int. J. Pavement Res. Technol. 2024, 17, 1620–1636. [Google Scholar] [CrossRef]
- Zhao, W.T.; Yang, Q. Life-cycle assessment of sustainable pavement based on the coordinated application of recycled asphalt pavement and solid waste: Environment and economy. J. Clean. Prod. 2024, 434, 140203. [Google Scholar] [CrossRef]
- Sofilic, T.; Mladenovic, A.; Sofilic, U. Defining of eaf steel slag application possibilities in asphalt mixture production. J. Environ. Eng. Landsc. 2011, 19, 148–157. [Google Scholar] [CrossRef]
- Qi, Y.J.; Indraratna, B.; Ngo, T.; Arachchige, C.; Hettiyahandi, S. Sustainable solutions for railway using recycled rubber. Transp. Geotech. 2024, 46, 101256. [Google Scholar] [CrossRef]
- He, Y.Z.; Xiong, K.; Zhang, J.P.; Guo, F.C.; Li, Y.; Hu, Q.S. A state-of-the-art review and prospectives on the self-healing repair technology for asphalt materials. Constr. Build. Mater. 2024, 421, 135660. [Google Scholar] [CrossRef]
- Chien, H.T.; Chang, J.R.; Hsu, H.M. Determining the content of steel furnace slag in asphalt concrete. Case Stud. Constr. Mater. 2023, 19, e02399. [Google Scholar] [CrossRef]
- Guo, X.; Zeng, M.L.; Yu, H.D.; Lin, F.W.; Li, J.W.; Wang, W.L.; Chen, G.Y. Critical review for the potential analysis of material utilization from inorganic industrial solid waste. J. Clean. Prod. 2024, 459, 142457. [Google Scholar] [CrossRef]
- Jakati, S.S.; Kumar, G.S. Novel cold pothole patching mixtures utilizing EAF steel slag and pyro-oil from municipal plastic solid waste. Innov. Infrastruct. Solut. 2024, 9, 55. [Google Scholar] [CrossRef]
- Mittal, L.; Perry, C.S.; Blanchette, A.D.; Proctor, D.M. Probabilistic risk assessment of residential exposure to electric arc furnace steel slag using Bayesian model of relative bioavailability and PBPK modeling of manganese. Risk Anal. 2024, 44, 2169–2186. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.Y.; Xiang, H.; Hu, X.D.; Wu, H.; Gao, B.; Wan, J.M.; Rao, Z.; Fan, Z.W.; Ma, Y. Evaluation of the influence of Phosphogypsum-Based composite filler on performance of the SMA-13 asphalt mixture and its harmless treatment. Sustainability 2024, 16, 6613. [Google Scholar] [CrossRef]
- Coelho, L.M.; Guimaraes, A.; Moreira, C.; Dos Santos, G.; Monteiro, S.N.; Da Silveira, P. Feasibility of using ferronickel slag as a sustainable alternative aggregate in hot mix asphalt. Sustainability 2024, 16, 8642. [Google Scholar] [CrossRef]
- Li, P.F.; Ji, J.; Wen, L.; Chen, H.; Bian, L.B.; Zhou, W.J.; Wu, Y.B. Quantitative characterization and evaluation of key physicochemical characteristics of steel slag. Constr. Build. Mater. 2024, 414, 134959. [Google Scholar] [CrossRef]
- Ou, L.; Zhu, H.Z.; Chen, R.P.; Su, C.L.; Yang, X.S. Effect of industrial solid waste as fillers on the rheology and surface free energy of asphalt mastic. Materials 2024, 17, 1125. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, K.W.; Yun, Y.M.; Le, T. Evaluation of eco-friendly asphalt mixtures incorporating waste plastic aggregates and additives: Magnesium, fly ash, and steel slag. Case Stud. Constr. Mater. 2024, 20, e02756. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, S.K.; Akbar, M.A. A detailed investigation on assessing the introduction of hybrid fibres in Geopolymer composites for pavement application. Int. J. Pavement Eng. 2024, 25, 2403681. [Google Scholar] [CrossRef]
- Chandel, S.S.; Singh, P.K.; Katiyar, P.K.; Randhawa, N.S. A review on environmental concerns and technological innovations for the valorization of steel industry slag. Min. Metall. Explor. 2023, 40, 2059–2086. [Google Scholar] [CrossRef]
- Liu, J.N.; Wang, Z.J.; Jing, H.S.; Zhang, T.H.; Wang, X.F.; Zhou, X.W.; Xu, X. Self-healing properties of steel slag asphalt mixture based on experimental characterization and 3D reconstruction. Mater. Design 2023, 234, 112358. [Google Scholar] [CrossRef]
- Guo, J.; Bao, Y.; Wang, M. Steel slag in China: Treatment, recycling, and management. Waste Manag. 2018, 78, 318–330. [Google Scholar] [CrossRef]
- Dang, D.T.; Nguyen, M.T.; Nguyen, T.P.; Isawa, T.; Ta, Y.; Sato, R. Mechanical properties of steel slag replaced mineral aggregate for road base/sub-base application based Vietnam and Japan standard. Environ. Sci. Pollut. Res. 2022, 29, 42067–42073. [Google Scholar] [CrossRef] [PubMed]
- Gowda, K.; Naveen, G.M. Laboratory performance of asphalt mixtures incorporating electric arc furnace slag and basic oxygen furnace slag as partial replacement for conventional aggregates. Energy Ecol. Environ. 2023, 8, 586–595. [Google Scholar] [CrossRef]
- Liu, J.N.; Yuan, L.J.; Wang, Z.J.; Jing, H.S.; Shao, T.Q.; Chen, H. A new method for evaluating the uniformity of steel slag distribution in steel slag asphalt mixture based on deep learning. Constr. Build. Mater. 2023, 400, 132766. [Google Scholar] [CrossRef]
- Zepper, J.; van der Laan, S.R.; Schollbach, K.; Brouwers, H. Reactivity of BOF slag under autoclaving conditions. Constr. Build. Mater. 2023, 364, 129957. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, W.; Wu, S.P. Analysis on factors affecting moisture stability of steel slag asphalt concrete using grey correlation method. J. Clean. Prod. 2023, 397, 136490. [Google Scholar] [CrossRef]
- Wan, B.C.; Chen, X.Q.; Dong, Q.; Jiang, D.Q. Study on Cracking Behavior of Steel Slag Asphalt Mixture at Different Healing Efficiencies Based on Discrete Element Method. In Proceedings of the 13th International Conference on Road and Airfield Pavement Technology 2023, Beijing, China, 6–8 July 2023; Yao, H., Zhang, J., Fang, F.T., Wang, C., Eds.; ASCE: Reston, VA, USA, 2023; pp. 155–167. [Google Scholar]
- Li, X.Q.; Wu, S.P.; Wang, F.S.; You, L.Y.; Yang, C.; Cui, P.D.; Zhang, X.M. Quantitative assessments of GHG and VOCs emissions of asphalt pavement contained steel slag. Constr. Build. Mater. 2023, 369, 130606. [Google Scholar] [CrossRef]
- Schneider, P.; Ahmed, N.; Mihai, F.C.; Belousova, A.; Kucera, R.; Oswald, K.D.; Lange, T.; Le Hung, A. Life cycle assessment for substitutive building materials using the example of the vietnamese road sector. Appl. Sci. 2023, 13, 6264. [Google Scholar] [CrossRef]
- Kamata, A.; Miura, T.; Katoh, M. Suppression of arsenic leaching from excavated soil and the contribution of soluble and insoluble components in steel slag on arsenic immobilization. Environ. Sci. Pollut. Res. 2023, 30, 19946–19957. [Google Scholar] [CrossRef]
- Neves, J.; Crucho, J. Performance evaluation of steel slag asphalt mixtures for sustainable road pavement rehabilitation. Appl. Sci. 2023, 13, 5716. [Google Scholar] [CrossRef]
- Ma, W.; Wang, N.Q.; Yan, X.S.; Dong, C.X.; Duan, Z.; Li, B. Research on fracture damage characteristics of loess solidified with steel slag, calcium carbide slag and metakaolin. Eng. Fract. Mech. 2023, 289, 109389. [Google Scholar] [CrossRef]
- Sukmak, P.; Sukmak, G.; De Silva, P.; Horpibulsuk, S.; Kassawat, S.; Suddeepong, A. The potential of industrial waste: Electric arc furnace slag (EAF) as recycled road construction materials. Constr. Build. Mater. 2023, 368, 130393. [Google Scholar] [CrossRef]
- Alves, R.; Rios, S.; Fortunato, E.; Da Fonseca, A.V.; Delgado, B.G. Mechanical behaviour of steel Slag-Rubber mixtures: Laboratory assessment. Sustainability 2023, 15, 1563. [Google Scholar] [CrossRef]
- Piemonti, A.; Conforti, A.; Cominoli, L.; Luciano, A.; Plizzari, G.; Sorlini, S. Exploring the potential for steel slags valorisation in an industrial symbiosis perspective at meso-scale level. Waste Biomass Valorization 2023, 14, 3355–3375. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.F.; Hu, X.D.; Wan, J.M.; Wu, S.P.; Gan, W.X.; Zhang, Y.L. Enhanced thermal insulation of steel slag based on ultrathin friction course with ceramic fiber. J. Mater. Civ. Eng. 2023, 35, 04023374. [Google Scholar] [CrossRef]
- Lopes, E.C.; Da Silva, T.O.; Pitanga, H.N.; Pedroti, L.G.; de Carvalho, J.; Nalon, G.H.; de Lima, G.; de Araújo, E. Stabilisation of clayey and sandy soils with ladle furnace slag fines for road construction. Road Mater. Pavement 2023, 24, 247–266. [Google Scholar] [CrossRef]
- Jayaneththi, Y.H.; Robert, D.; Giustozzi, F. A critical review on leaching of contaminants from asphalt pavements. Sci. Total Environ. 2024, 950, 174967. [Google Scholar] [CrossRef] [PubMed]
- Kuttah, D. Recycling of industrial and construction waste materials in roads construction. Int. J. Geotech. Eng. 2024, 18, 346–359. [Google Scholar] [CrossRef]
- Yang, C.; Xie, J.; Wu, S.P.; Amirkhanian, S.; Zhou, X.J.; Kong, D.Z.; Ye, Q.S.; Hu, J. Revelation and characterization of selective absorption behavior of bitumen to basic oxygen furnace slag. Constr. Build. Mater. 2020, 253, 119210. [Google Scholar] [CrossRef]
- Indraratna, B.; Arachchige, C.; Rujikiatkamjorn, C.; Heitor, A.; Qi, Y.J. Utilization of granular wastes in transportation infrastructure. Geotech. Test. J. 2024, 47, 409–424. [Google Scholar] [CrossRef]
- An, R.; Zhang, X.W.; Wang, Y.X.; Chen, C.; Chen, X. Dynamic evolution of cracks in Slag-Modified soil under uniaxial loading using Real-Time X-Ray computed tomography. J. Mater. Civ. Eng. 2023, 35, 04023159. [Google Scholar] [CrossRef]
- Xu, H.; Sun, M.Z.; Luo, G.B. Enhanced induction heating and Self-Healing properties of steel slag powder based asphalt and asphalt mixture under microwave irradiation. Materials 2023, 16, 3312. [Google Scholar] [CrossRef] [PubMed]
- Castillo, D.; Falchetto, A.C.; Korkiala-Tanttu, L. Results of surface hot-in place recycling (remix) of modified and alternative asphalt mixtures in Finland. Part I: Mixture scale. Int. J. Pavement Eng. 2023, 24, 2134568. [Google Scholar] [CrossRef]
- Segui, P.; Safhi, A.E.; Amrani, M.; Benzaazoua, M. Mining wastes as road construction material: A review. Minerals 2023, 13, 90. [Google Scholar] [CrossRef]
- Lu, X.L.; Yu, Q.; Xu, J.Y.; Yue, B.; Sheng, M.Q. Comparative experimental study on strength properties of red clay modified by cement and industrial solid waste powder. Adv. Civ. Eng. 2023, 2023, 6645563. [Google Scholar] [CrossRef]
- Zhang, L.T.; Zhang, Z.H.; Yu, W.X.; Miao, Y.H. Review of the application of microwave heating technology in asphalt pavement Self-Healing and de-icing. Polymers 2023, 15, 1696. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X.D.; Zhang, Z.; Dai, G.J.; Huo, Y.F.; Zhao, Y.F. Performance Analysis of Industrial-Waste-Based Artificial Aggregates: CO2 Uptake and Applications in Bituminous Pavement. Buildings 2023, 13, 2823. [Google Scholar] [CrossRef]
- Luo, H.; Yang, J.; Zhang, W.H.; Yang, M.Y.; Chen, L.M.; He, B.J. Cooling and purification effect of permeable pavements. J. Water Clim. Change 2023, 14, 2626–2641. [Google Scholar] [CrossRef]
- Pazzini, M.; Tarsi, G.; Tataranni, P.; Lantieri, C.; Dondi, G. Mechanical characterization of thin asphalt overlay mixtures with 100% recycled aggregates. Materials 2023, 16, 188. [Google Scholar] [CrossRef]
- Espinosa, A.B.; Revilla-Cuesta, V.; Skaf, M.; Serrano-López, R.; Ortega-López, V. Strength performance of low-bearing-capacity clayey soils stabilized with ladle furnace slag. Environ. Sci. Pollut. Res. 2023, 30, 101317–101342. [Google Scholar] [CrossRef]
- Su, X.T.; Yu, L.C.; Chen, J.; Li, H.F.; Liu, Q.; Zhang, H.G.; Liu, T. Mechanical properties and microstructure of SWGA-BF improved rock muck discharged from slurry shield tunnels. Constr. Build. Mater. 2023, 409, 133969. [Google Scholar] [CrossRef]
- Yang, C.; Wu, S.P.; Cui, P.D.; Amirkhanian, S.; Zhao, Z.G.; Wang, F.S.; Zhang, L.; Wei, M.H.; Zhou, X.X.; Xie, J. Performance characterization and enhancement mechanism of recycled asphalt mixtures involving high RAP content and steel slag. J. Clean. Prod. 2022, 336, 130484. [Google Scholar] [CrossRef]
- Liu, J.N.; Wang, Z.J.; Li, M.; Wang, X.F.; Wang, Z.H.; Zhang, T.H. Microwave heating uniformity, road performance and internal void characteristics of steel slag asphalt mixtures. Constr. Build. Mater. 2022, 353, 129155. [Google Scholar] [CrossRef]
- Cao, Y.S.; Sha, A.M.; Liu, Z.Z.; Zhang, F.; Li, J.R.; Liu, H. Thermal conductivity evaluation and road performance test of steel slag asphalt mixture. Sustainability 2022, 14, 7288. [Google Scholar] [CrossRef]
- Razzaq, W.; Gowida, A.; Samsuri, A.; Elkatatny, S. Application of silicomanganese fume as a novel bridging material for Water-Based drilling fluids. ACS Omega 2023, 8, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.H.; Nguyen, T.D.; Tran, T.; Nguyen, D.L.; Tran, H.S.; Nguyen, T.L.; Nguyen, T.H.; Nguyen, H.G.; Nguyen, T.P.; Nguyen, N.T.; et al. Steel slag quality control for road construction aggregates and its environmental impact: Case study of Vietnamese steel industry-leaching of heavy metals from steel-making slag. Environ. Sci. Pollut. Res. 2022, 29, 41983–41991. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.M.; Yan, F.; Guo, R.X.; He, H. Study on the performance of steel slag and its asphalt mixture with oxalic acid and water erosion. Materials 2022, 15, 6642. [Google Scholar] [CrossRef] [PubMed]
- Bethary, R.T.; Subagio, B.S. Resilient modulus model of asphalt mixture using steel slag. Mag. Civ. Eng. 2022, 115, 11505. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, X.; Zhang, Y.; Adhikari, S. Life cycle assessment of asphalt and cement pavements: Comparative cases in Shanxi Province. Constr. Build. Mater. 2022, 315, 125738. [Google Scholar] [CrossRef]
- Ahirwar, A.D.; Chore, H.S. Strength characterization of steel slag-cement-stabilized marine clay mixes for highway construction. Innov. Infrastruct. Solut. 2022, 7, 254. [Google Scholar] [CrossRef]
- Schumacher, A.G.; Gomes, G.; Schneider, D.; Pires, P.; Gomes, R. Blending Linz-Donawitz and Blast Furnace slags with the Kambara reactor byproduct to improve their reuse in roadworks. J. Mater. Cycles Waste 2022, 24, 2555–2568. [Google Scholar] [CrossRef]
- Mohamad, A.Y.; Jamil, M.; Yusoff, N.; Fadzil, S.M.; Taha, M.R. Physical, microstructure and leaching assessments for pavement road base containing mixed steel slag and cathode ray tube glass. Clean. Technol. Environ. 2022, 24, 919–930. [Google Scholar] [CrossRef]
- Gan, Y.W.; Li, C.M.; Ke, W.; Deng, Q.H.; Yu, T. Study on pavement performance of steel slag asphalt mixture based on surface treatment. Case Stud. Constr. Mater. 2022, 16, e01131. [Google Scholar] [CrossRef]
- Luan, Y.C.; Zhang, W.G.; Zhao, Y.L.; Pan, Z.J.; Niu, Z.; Zeng, K.; Chen, X.B.; Mohammad, L.N. Mechanical property evaluation for steel slag in asphalt mixture with different skeleton structures using modified marshall mix design methodology. J. Mater. Civ. Eng. 2022, 34, 04021382. [Google Scholar] [CrossRef]
- Shu, K.Q.; Sasaki, K. Occurrence of steel converter slag and its high value-added conversion for environmental restoration in China: A review. J. Clean. Prod. 2022, 373, 133876. [Google Scholar] [CrossRef]
- Li, Y.Y.; Li, J.; Li, C.; Chen, A.Q.; Bai, T.; Tang, S.M.; Wu, S.P.; Gao, Y.M.; Zhu, H.B.; Feng, J.L. Strength formation mechanism and performance of steel slag self-compacting epoxy resin concrete. Constr. Build. Mater. 2022, 359, 129525. [Google Scholar] [CrossRef]
- Magalhaes, A.J.; Gomes, G.; Pires, P. Toward improved performance of unpaved roads: Laboratory tests and field investigation of a soil-byproduct base layer. Road Mater. Pavement 2022, 23, 184–198. [Google Scholar] [CrossRef]
- Karadag, H.; Firat, S.; Isik, N.S.; Yilmaz, G. Determination of permanent deformation of flexible pavements using finite element model. Gradevinar 2022, 74, 471–480. [Google Scholar] [CrossRef]
- Goli, A. The study of the feasibility of using recycled steel slag aggregate in hot mix asphalt. Case Stud. Constr. Mater. 2022, 16, e00861. [Google Scholar] [CrossRef]
- Imashuku, S.; Wagatsuma, K. Influence of free lime precipitated in a grain boundary of wustite on volume fraction of free lime in steelmaking slag determined via cathodoluminescence imaging. ISIJ Int. 2022, 62, 941–947. [Google Scholar] [CrossRef]
- Liu, J.Z.; Xu, J.; Liu, Q.; Wang, S.Y.; Yu, B. Steel slag for roadway construction: A review of material characteristics and application mechanisms. J. Mater. Civ. Eng. 2022, 34, 03122001. [Google Scholar] [CrossRef]
- Goli, A.; Emadi, H.; Sadeghi, P. Investigating the effect of using steel slag on abrasion resistance of roller-compacted concrete pavement. Innov. Infrastruct. Solut. 2022, 7, 297. [Google Scholar] [CrossRef]
- Zhu, J.G.; Yue, H.Z.; Ma, L.J.; Li, Z.C.; Bai, R. The synergistic hydration mechanism and environmental safety of multiple solid wastes in red mud-based cementitious materials. Environ. Sci. Pollut. Res. 2023, 30, 79241–79257. [Google Scholar] [CrossRef]
- De Pascale, B.; Tataranni, P.; Lantieri, C.; Bonoli, A.; Vignali, V. Mechanical performance and environmental assessment of porous asphalt mixtures produced with EAF steel slags and RAP aggregates. Constr. Build. Mater. 2023, 400, 132889. [Google Scholar] [CrossRef]
- Sun, Y.H.; Zheng, L.J.; Cheng, Y.D.; Chi, F.X.; Liu, K.; Zhu, T.B. Research on maintenance equipment and maintenance technology of steel fiber modified asphalt pavement with microwave heating. Case Stud. Constr. Mater. 2023, 18, e01965. [Google Scholar] [CrossRef]
- Wang, H.L.; Qian, J.S.; Zhang, H.H.; Nan, X.L.; Chen, G.Z.; Li, X.M. Exploring skid resistance over time: Steel slag as a pavement aggregate-comparative study and morphological analysis. J. Clean. Prod. 2024, 464, 142779. [Google Scholar] [CrossRef]
- Cui, P.D.; Ma, T.; Wu, S.P.; Xu, G.J.; Wang, F.S. Texture characteristic and its enhancement mechanism in stone mastic asphalt incorporating steel slag. Constr. Build. Mater. 2023, 369, 130440. [Google Scholar] [CrossRef]
- Jiao, W.X.; Sha, A.M.; Liu, Z.Z.; Jiang, W.; Hu, L.Q.; Qin, W. Analytic investigations of snow melting efficiency and temperature field of thermal conductive asphalt concrete combined with electrical-thermal system. J. Clean. Prod. 2023, 399, 136622. [Google Scholar] [CrossRef]
- Nicula, L.M.; Manea, D.L.; Simedru, D.; Cadar, O.; Dragomir, M.L.; Ardelean, I.; Corbu, O. Potential role of GGBS and ACBFS blast furnace slag at 90 days for application in rigid concrete pavements. Materials 2023, 16, 5902. [Google Scholar] [CrossRef]
- Pooni, J.; Robert, D.; Giustozzi, F.; Gunasekara, C.; Setunge, S. A review on soil stabilisation of unsealed road pavements from an Australian perspective. Road Mater. Pavement 2023, 24, 1005–1049. [Google Scholar] [CrossRef]
- Pasetto, M.; Baliello, A.; Giacomello, G.; Pasquini, E. Mechanical feasibility of asphalt materials for pavement solar collectors: Small-Scale laboratory characterization. Appl. Sci. 2023, 13, 358. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, X.C.; Fu, P.F.; Lei, B.L.; Shi, J.J.; Xu, M. Synergetic mechanism of multiple industrial solid Waste-Based geopolymer binder for soil stabilization: Optimization using D-Optimal mixture design. Processes 2024, 12, 436. [Google Scholar] [CrossRef]
- Ozsoy, M.; Firat, S. Numerical analysis of road layers made with steel slag. J. Polytech. Politek. Derg. 2023, 26, 1661–1673. [Google Scholar] [CrossRef]
- Deng, Y.Y.; Wang, X.C.; Zhang, Y.; Zhao, J.; Jiang, A.Q. Preparation, mechanism, and application of silica fume-steel slag composite cementitious material based on the D-optimal mixture method. Constr. Build. Mater. 2023, 408, 133638. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Jiang, T.H.; Li, S.Y.; Wang, W.S. Engineering properties and environmental impact of soil mixing with steel slag applied in subgrade. Appl. Sci. 2023, 13, 1574. [Google Scholar] [CrossRef]
- Alex, T.C.; Mucsi, G.; Venugopalan, T.; Kumar, S. BOF steel slag: Critical assessment and integrated approach for utilization. J. Sustain. Metall. 2021, 7, 1407–1424. [Google Scholar] [CrossRef]
- Chen, Z.M.; Li, R.; Zheng, X.M.; Liu, J.X. Carbon sequestration of steel slag and carbonation for activating RO phase. Cement Concrete Res. 2021, 139, 106271. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, W.W. Spectroscopic analysis of activated carbon mixed with steel slag composite material in sintering flue gas of desulfurization and denitration. Spectrosc. Spect. Anal. 2020, 40, 1195–1200. [Google Scholar]
- Wang, C.; Wang, W.Q.; Sardans, J.; Singla, A.; Zeng, C.S.; Lai, D.; Penuelas, J. Effects of steel slag and biochar amendments on CO2, CH4, and N2O flux, and rice productivity in a subtropical Chinese paddy field. Environ. Geochem. Health 2019, 41, 1419–1431. [Google Scholar] [CrossRef]
- Shao, Y.X.; El-Baghdadi, A.; He, Z.; Mucci, A.; Fournier, B. Carbon Dioxide-Activated steel slag for Slag-Bonded wallboard application. J. Mater. Civ. Eng. 2015, 27, 04014119. [Google Scholar] [CrossRef]
- Mahoutian, M.; Chaallal, O.; Shao, Y.X. Pilot production of steel slag masonry blocks. Can. J. Civ. Eng. 2018, 45, 537–546. [Google Scholar] [CrossRef]
- Li, H.W.; Tang, Z.G.; Li, N.; Cui, L.P.; Mao, X.Z. Mechanism and process study on steel slag enhancement for CO2 capture by seawater. Appl. Energy 2020, 276, 115515. [Google Scholar] [CrossRef]
- Zhu, H.J.; Ma, M.Y.; He, X.Y.; Zheng, Z.Q.; Su, Y.; Yang, J.; Zhao, H. Effect of wet-grinding steel slag on the properties of Portland cement: An activated method and rheology analysis. Constr. Build. Mater. 2021, 286, 122823. [Google Scholar] [CrossRef]
- Li, H.W.; Zhang, R.J.; Wang, T.Y.; Wu, Y.; Xu, R.; Wang, Q.; Tang, Z.G. Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2. Energy 2022, 238, 121861. [Google Scholar] [CrossRef]
- Chen, J.; Xing, Y.; Wang, Y.; Zhang, W.B.; Guo, Z.F.; Su, W. Application of iron and steel slags in mitigating greenhouse gas emissions: A review. Sci. Total Environ. 2022, 844, 157041. [Google Scholar] [CrossRef] [PubMed]
- Shibata, E.; Sato, T.; Mori, K. Desiliconization rate of molten high carbon iron by slags containing FeO. Tetsu Hagane 1999, 85, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Di, Z.C.; Cao, Y.; Yang, F.L.; Cheng, F.Q.; Zhang, K. Studies on steel slag as an oxygen carrier for chemical looping combustion. Fuel 2018, 226, 618–626. [Google Scholar] [CrossRef]
- Yao, D.; Yu, H.; Chen, X.; Yu, X.; Yao, J.; Zheng, X.; Zhang, C.; Gong, L. Effect of surface modification on properties of steel slag aggregate and mixture. Constr. Build. Mater. 2023, 402, 133058. [Google Scholar] [CrossRef]
- Zhao, X.R.; Sheng, Y.P.; Lv, H.L.; Jia, H.C.; Liu, Q.L.; Ji, X.; Xiong, R.; Meng, J.D. Laboratory investigation on road performances of asphalt mixtures using steel slag and granite as aggregate. Constr. Build. Mater. 2022, 315, 125655. [Google Scholar] [CrossRef]
- Jonczy, I.; Grzesik, B.; Wieczorek, A.N.; Gerle, A.; Nuckowski, P.; Staszu, M. Characteristics of the phase and chemical composition of blast furnace slag in terms of the possibility of its economic use. Gospod. Surowcami Min. 2022, 38, 153–172. [Google Scholar] [CrossRef]
- Sha, A.M.; Lou, B.W.; Barbieri, D.M.; Hoff, I. Microwave heating as an innovative road maintenance technology: Aging effect on binder and feasibility evaluation. Materials 2022, 15, 316. [Google Scholar] [CrossRef]
- Liu, M.Y.; Wang, X.C.; Deng, Y.Y.; Guo, Y.C.; Zhao, J.; Li, M.X. Study on microwave deicing efficiency of Microwave-Absorbing concrete pavements and its influencing factors. Materials 2022, 15, 8923. [Google Scholar] [CrossRef] [PubMed]
- Azadgoleh, M.A.; Mohammadi, M.M.; Ghodrati, A.; Sharifi, S.S.; Palizban, S.; Ahmadi, A.; Vahidi, E.; Ayar, P. Characterization of contaminant leaching from asphalt pavements: A critical review of measurement methods, reclaimed asphalt pavement, porous asphalt, and waste-modified asphalt mixtures. Water Res. 2022, 219, 118584. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Yang, C.; Zou, Y.X.; Wang, F.S.; Zhou, X.J.; Barbieri, D.M.; Wu, S.P. Compaction procedures and associated environmental impacts analysis for application of steel slag in road base layer. Sustainability 2021, 13, 4396. [Google Scholar] [CrossRef]
- Li, H.B.; Tong, Y.F.; Zhang, H.B.; Zhang, X.S.; Duan, J.K. Study on road performance of cement fly ash stabilized steel Slag-Concrete recycled macadam. Materials 2021, 14, 7530. [Google Scholar] [CrossRef]
- Paul, D.; Suresh, M.; Pal, M. Utilization of fly ash and glass powder as fillers in steel slag asphalt mixtures. Case Stud. Constr. Mater. 2021, 15, e00672. [Google Scholar] [CrossRef]
- Zhou, M.K.; Cheng, X.; Chen, X. Studies on the volumetric stability and mechanical properties of Cement-Fly-Ash-Stabilized steel slag. Materials 2021, 14, 495. [Google Scholar] [CrossRef] [PubMed]
- Sitko, J.; Bialy, W.; Ivanova, T.N. Analysis of impact the refining technology on the mechanical strength cast steel. Mater. Today Proc. 2021, 38, 1279–1283. [Google Scholar] [CrossRef]
- Cui, P.D.; Wu, S.P.; Xiao, Y.; Liu, Q.T.; Wang, F.S. Hazardous characteristics and variation in internal structure by hydrodynamic damage of BOF slag-based thin asphalt overlay. J. Hazard. Mater. 2021, 412, 125344. [Google Scholar] [CrossRef]
- Zhang, H.N.; Wei, C.; Dong, J.P. Inhibition kinetics of chromium leaching by calcite coating on the surface of stainless steel slag via the Gas-Solid accelerated carbonation process. Waste Biomass Valorization 2021, 12, 475–485. [Google Scholar] [CrossRef]
- Yang, T.Y.; Chen, M.Z.; Wu, S.P. Removal effect of basic oxygen furnace slag porous asphalt concrete on copper and zinc in road runoff. Materials 2021, 14, 5327. [Google Scholar] [CrossRef]
- Lee, M.Y.; Kang, J.H.; Hwang, D.G.; Yoon, Y.S.; Yoo, M.S.; Jeon, T.W. Environmental assessment of recycling (EAoR) for safe recycling of steelmaking slag in the republic of korea: Applications, leaching test, and toxicity. Sustainability 2021, 13, 8805. [Google Scholar] [CrossRef]
- Gong, J.S.; Baek, I.W.; Kim, J.G.; Song, Y.S.; Kim, T.H. A pilot test for the utilization of road subsoil of the tertiary mudstone in pohang basin. J. Korean Geosynth. Soc. 2021, 20, 1–10. [Google Scholar] [CrossRef]
- Jing, H.J.; Zhang, J.H.; Gao, M.; Liu, Q.; Wolowiec-Korecka, E. Base performances of Cement-Stabilized magnesium Slag-Aeolian sand mixture. Acta Montan. Slovaca 2021, 26, 427–443. [Google Scholar] [CrossRef]
- Wei, C.Y.; Wang, J.; Li, P.R.; Wu, B.D.; Liu, H.H.; Jiang, Y.B.; Huang, T.Y. A new strategy for sponge city construction of urban roads: Combining the traditional functions with landscape and drainage. Water 2021, 13, 3469. [Google Scholar] [CrossRef]
- Wang, F.S.; Xie, J.; Wu, S.P.; Li, J.S.; Barbieri, D.M.; Zhang, L. Life cycle energy consumption by roads and associated interpretative analysis of sustainable policies. Renew. Sustain. Energy Rev. 2021, 141, 110823. [Google Scholar] [CrossRef]
- Lou, B.W.; Liu, Z.Z.; Sha, A.M.; Jia, M.; Li, Y.P. Microwave absorption ability of steel slag and road performance of asphalt mixtures incorporating steel slag. Materials 2020, 13, 663. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Yang, C.; Zhang, L.L.; Zhou, X.J.; Wu, S.P.; Ye, Q.S. Investigation of the physic-chemical properties and toxic potential of Basic Oxygen Furnace Slag (BOF) in asphalt pavement constructed after 15 years. Constr. Build. Mater. 2020, 238, 117630. [Google Scholar] [CrossRef]
- Kuo, Y.M.; Huang, K.L.; Wang, J.W.; Tsai, C.H.; Lin, S.L. An alternative approach to reclaim spent nickel-metal hydride batteries. Environ. Prog. Sustain. 2020, 39, e13433. [Google Scholar] [CrossRef]
- Patel, S.; Pai, R.R.; Bakare, M.D.; Shahu, J.T. Field evaluation of road pavement constructed with waste materials through nondestructive testing. Mater. Today Proc. 2020, 28, 1254–1260. [Google Scholar] [CrossRef]
- Lind, B.B.; Fällman, A.M.; Larsson, L.B. Environmental impact of ferrochrome slag in road construction. Waste Manag. 2001, 21, 255–264. [Google Scholar] [CrossRef]
- Milad, A.; Ali, A.; Yusoff, N. A review of the utilisation of recycled waste material as an alternative modifier in asphalt mixtures. Civ. Eng. J. 2020, 6, 42–60. [Google Scholar] [CrossRef]
- Bonoli, A.; Degli Esposti, A.; Magrini, C. A case study of industrial symbiosis to reduce GHG emissions: Performance analysis and LCA of asphalt concretes made with RAP aggregates and steel slags. Front. Mater. 2020, 7, 572955. [Google Scholar] [CrossRef]
Author Keyword | R (%) | ||||||
---|---|---|---|---|---|---|---|
1968–2023 | 1968–2023 | 1968–1979 | 1980–1990 | 1991–2001 | 2002–2012 | 2013–2023 | |
Aggregate | 1368 | 0.342 | 0.211 | 0.241 | 0.256 | 0.552 | 0.376 |
Mix Design | 1296 | 0.326 | 0.334 | 0.231 | 0.364 | 0.431 | 0.302 |
Processing Technology | 980 | 0.324 | N | 0.095 | 0.107 | 0.267 | 0.371 |
Cushion | 842 | 0.314 | 0.321 | 0.325 | 0.372 | 0.398 | 0.408 |
Stability | 839 | 0.303 | N | 0.041 | 0.048 | 0.233 | 0.357 |
Resource | 811 | 0.301 | N | 0.571 | 0.482 | 0.364 | 0.261 |
Technical Challenges | 694 | 0.263 | N | 0.245 | 0.233 | 0.171 | 0.278 |
Case Studies | 673 | 0.216 | N | 0.174 | 0.267 | 0.106 | 0.232 |
Reactivity | 597 | 0.106 | N | N | N | 0.018 | 0.127 |
Mineral Composition | 556 | 0.062 | N | 0.241 | 0.297 | 0.071 | N |
Policies | 432 | 0.031 | 0.214 | 0.123 | 0.168 | 0.149 | N |
Construction Techniques | 391 | 0.029 | 0.287 | 0.368 | 0.424 | 0.219 | 0.032 |
Carbonation | 332 | 0.132 | N | N | N | 0.067 | 0.155 |
Performance Evaluation | 291 | 0.022 | N | 0.106 | 0.039 | 0.051 | 0.021 |
Environmental Management | 231 | 0.013 | N | 0.331 | 0.189 | 0.024 | N |
Performances | Steel Slag | Basalt (Geology) | Limestone | Granite | Regulatory Requirement |
---|---|---|---|---|---|
Relative density | 3.1–3.5 | 2.9–3.0 | 2.6–2.7 | 2.8–3.0 | ≥2.5 |
Water absorption/% | 1.5–2.2 | 0.3–0.5 | 0.5–1.0 | 0.3–1.2 | ≤3.0 |
Grinding value/% | 54–70 | 50–56 | 35–45 | 45–55 | ≥36 |
Attrition rate/% | 9–15 | 12–18 | 18–22 | 15–20 | ≤28 |
Crushing value/% | 12–16 | 12–18 | 15–20 | 12–27 | ≤26 |
Adhesion grade | 5 | 4 | 4–5 | 4 | 4–5 |
Amount of Steel Slag Incorporated | Initial Slump/mm | 1 h Degree of Slump/mm | Strength of Compression/MPa | Freezing Resistance (Quick Freezing) | Grade of Impermeability | |||||
---|---|---|---|---|---|---|---|---|---|---|
3 d | 7 d | 28 d | 56 d | 112 d | Quality Loss Rate/% | Relative Dynamic Elastic Modulus/% | ||||
5% | 170 | 20 | 14.5 | 23.3 | 30.1 | 46.3 | 49.2 | 0 | 86.9 | >P6 |
10% | 160 | 30 | 16.9 | 26.3 | 31.6 | 47.8 | 49.9 | 0 | 88.4 | >P6 |
15% | 165 | 45 | 18.2 | 27.2 | 32.4 | 50.2 | 51.7 | 0 | 87.3 | >P6 |
20% | 165 | 60 | 19.9 | 31.3 | 34.9 | 52.9 | 55.2 | 0 | 85.6 | >P6 |
30% | 175 | 100 | 21.2 | 36.4 | 39.6 | 54.6 | 55.6 | 0 | 89.6 | >P6 |
40% | 170 | 130 | 23.6 | 35.2 | 40.2 | 52.6 | 54.9 | 0 | 87.9 | >P6 |
50% | 165 | 145 | 22.7 | 33.1 | 38.6 | 48.7 | 50.3 | 0 | 85.2 | >P6 |
Processing | Manipulate | Advantages | Disadvantages |
---|---|---|---|
Casserole | After pouring molten steel slag into the hot-stuffing device, water is sprayed onto it, and the thermal stress generated by the heat of the steel slag itself causes the large chunks of slag to fracture and disintegrate. | The metal recovery rate is high, the steel slag has a fine particle size, and the f-CaO content is low. | The processing cycle is long, and the required land area is large. |
Platter method | The molten slag is rapidly poured into a shallow slag pan and then cooled by water spraying. | The process requires a small footprint and generates minimal dust. | The process involves a high operational volume, significant costs, and large amounts of wastewater. |
Roller method | The high-temperature molten slag is poured into a rotating drum while cooling water is rapidly sprayed into the drum. | The slag discharge process is fast, with minimal pollution and low f-CaO content. | The process can only handle liquid slag, and the equipment maintenance costs are high. |
Hot splash method (acupuncture) | The molten slag is poured into a slag bed or pit, where it is subjected to multiple small applications of cooling water. | The process is straightforward and highly efficient. | The process consumes a large amount of water and results in a high content of free calcium oxide (f-CaO). |
Code of conduct for wind crushing | High-speed air jets impact the falling molten slag during its descent. | The steel slag has a small particle size, which resulted in lower maintenance costs and reduced water consumption. | The process generates significant noise and produces a large amount of dust. |
Process | Fineness of Finish/(m2·kg−1) | Yield (t·h−1) | Installed Capacity/kW | Grinding Body Consumption/(g·t−1) |
---|---|---|---|---|
Ball mill | 400 | 25 | 2500 | 300 |
Roll compression | 400 | 35 | 1800 | 5 |
Vertical mill | 350 | 15 | 1600 | 3.2 |
Horizontal roller mill | 400 | 55 | 2300 | 3.5 |
Methods | Process | Advantages | Disadvantages |
---|---|---|---|
Mechanical excitation | Ultrafine grinding technology is used to increase the specific surface area of steel slag and improve the activity | Quick response, simple operation, and high repeatability | The energy consumption is high and the activity promotion is limited |
Heat treatment | The crystal-phase structure of steel slag is changed during the high-temperature process to improve the activity | Low equipment requirements and simple operation | The energy consumption is large and the activity is unstable after cooling |
Chemical excitation | Acid and alkaline solution impregnation changes the chemical composition of steel slag and improves the pozzolanic activity | The reaction is fast, the activation effect is high, and the energy consumption is low | High cost and large amount of subsequent acid and base treatment |
Stimulating Agent | Process | Advantages | Disadvantages |
---|---|---|---|
NaOH | The crystal-phase structure in steel slag is destroyed and the formation of C-S-H gel is promoted | The reaction is fast, the time is short, and the activity is strong | It is difficult to dispose of the strong alkali after the reaction, and the long-term durability is poor |
Na2SiO3 | Increases the production of calcium silicate hydrate in steel slag | The stimulating effect lasts, and the long-term performance is good | The reaction is slow, the requirement is large, and the cost is high |
Na2SO4 | Promotes the formation of calcium sulfate crystal magic-modified version of corrosion resistance | High strength and good chemical corrosion | The ability to excite alone is insufficient, so it needs to be used in combination with a strong alkali |
Type | Method | Reagents | Effect of Carbonation |
---|---|---|---|
Dry carbonation | High-temperature dry carbonation | CO2, high-temperature environment (700–1000 °C) | It can improve the carbonation efficiency of CaO in steel slag and generate high-purity calcium carbonate, but it has high energy consumption and is suitable for the utilization of industrial byproduct CO2. |
Pressure dry carbonation | CO2, pressurized environment (5–10 MPa) | The reaction rate and efficiency are improved by high pressure at room temperature, and the energy consumption is low, but the equipment requirements are high. | |
Phase-assisted dry carbonation | CO2, solid catalyst (e.g., NaOH) | Increasing the reaction rate, the energy consumption is relatively low, but the treatment of solid waste should be considered. | |
Wet carbonation | Wet carbonation at normal temperature | Water, CO2 | The operation is simple, the carbonation efficiency is moderate, but the demand for water is large, and it is suitable for small and medium-sized treatment. |
Warm and wet carbonation | Hot water (60–80 °C), CO2 | It improves the dissolution rate of active components in steel slag and has higher carbonation efficiency, which is suitable for scenarios with higher resource utilization. | |
Catalytic wet carbonation | Water, CO2, chemical catalyst (e.g., NH4Cl) | The catalyst can significantly improve the reaction rate and quickly reduce the alkalinity of steel slag, but the cost of the catalyst needs to be comprehensively evaluated. |
Type | Method | Reagents | Effect of Carbonation |
---|---|---|---|
Acid carbonation | Hydrochloric acid-assisted carbonation | HCl, CO2, water | HCl dissolves CaO and MgO in steel slag, improves the release of active components, and has high carbonation efficiency, but it is highly corrosive and needs to deal with acidic waste liquid. |
Assisted carbonation by organic acids | citric acid, CO2, water | The release of active ions under mild conditions has moderate carbonation efficiency and low corrosion, which is suitable for medium and low carbonation requirements, but the cost of organic acids is high. | |
Alkaline carbonation | NaOH-assisted carbonation | NaOH, CO2, water | It improves the alkalinity of the solution, accelerates the precipitation of calcium carbonate, and has a fast reaction rate. It is suitable for the treatment of high-alkaline steel slag, but NaOH costs a lot and requires subsequent alkali recovery treatment. |
KOH-assisted carbonation | KOH, CO2, water | Similar to NaOH, increasing the precipitation rate of calcium carbonate, the byproduct potassium salt can be used as agricultural fertilizer, but it needs to be recycled to reduce costs. | |
Neutral carbonation | Carbonation of the aqueous phase | CO2 NaCl or MgCl2 | The operation is simple and suitable for conventional steel slag treatment. The carbonation efficiency is limited by the dissolution rate of CO2. The reaction condition is mild, but the efficiency is low. |
Gas-phase carbonation | CO2 (high pressure or atmospheric pressure), water | It is suitable for direct steel slag carbonization to avoid the generation of a large amount of liquid waste, but it needs higher pressure or optimized gas–liquid contact surface and has higher energy consumption and equipment costs. |
Steel Slag Without Carbonation | Steel Slag with Carbonation | |
---|---|---|
Strength property | The strength is high, but it is susceptible to the expansion of free calcium oxide (CaO) and free magnesium oxide (MgO), resulting in cracking of the road surface | After carbonation, the CaO and MgO contents are significantly reduced, the stability is improved, and the long-term strength is more reliable |
Stability of volume | It is expandable and easy to cause uneven deformation of subgrade or pavement in the long term | The volume stability is significantly improved and is suitable for high strength and long-term use of road foundations |
Durability | It is easy to be affected by hydration and alkaline substance release and has poor durability | Carbonation reduces the activity of steel slag, improves the durability, and enhances the ability to resist freezing and thawing |
Ph | The alkalinity is strong, which may affect the surrounding soil and groundwater | After carbonation, the pH is significantly reduced and the environmental friendliness is higher |
Porosity and compactness | The high porosity and low compactness are not conducive to the long-term stability of the subgrade | The porosity is reduced and the compactness is significantly improved, which helps to improve the bearing capacity of the subgrade |
Environmental performance | It may release high pH leachate and pollute the environment | Fixed CO2 and reduced alkalinity significantly improve the environmental performance of the material |
Convenience of construction | A longer maturation period or special treatment is required | After carbonation, the ripening time is reduced and it is easier to be directly used in road construction |
cost | No additional carbonation treatment and low material cost | Carbonation increases the process cost, which is partially offset by the long-term performance benefits |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Ma, R.; Dong, B.; Ma, H.; Wang, Y.; Gao, M.; Sun, Y.; Jin, Y. Research Progress and Hotspots of Steel Slag Application in Road Construction: A Bibliometric Perspective. Infrastructures 2025, 10, 54. https://doi.org/10.3390/infrastructures10030054
Yang J, Ma R, Dong B, Ma H, Wang Y, Gao M, Sun Y, Jin Y. Research Progress and Hotspots of Steel Slag Application in Road Construction: A Bibliometric Perspective. Infrastructures. 2025; 10(3):54. https://doi.org/10.3390/infrastructures10030054
Chicago/Turabian StyleYang, Jian, Rui Ma, Biqin Dong, Hongzhi Ma, Ying Wang, Ming Gao, Yujia Sun, and Yonglong Jin. 2025. "Research Progress and Hotspots of Steel Slag Application in Road Construction: A Bibliometric Perspective" Infrastructures 10, no. 3: 54. https://doi.org/10.3390/infrastructures10030054
APA StyleYang, J., Ma, R., Dong, B., Ma, H., Wang, Y., Gao, M., Sun, Y., & Jin, Y. (2025). Research Progress and Hotspots of Steel Slag Application in Road Construction: A Bibliometric Perspective. Infrastructures, 10(3), 54. https://doi.org/10.3390/infrastructures10030054