Machine-Learning Applications in Energy Efficiency: A Bibliometric Approach and Research Agenda
Abstract
:1. Introduction
- RQ1: How has the scientific literature on the use of ML for energy efficiency evolved historically?
- RQ2: What are the main research references for the use of ML for energy efficiency?
- RQ3: What is the thematic evolution of the scientific production on the use of ML for energy efficiency?
- RQ4: What are the main thematic clusters of the use of ML for energy efficiency?
- RQ5: What are the established and emerging keywords in the research field of the use of ML for energy efficiency?
- RQ6: What are the relevant topics for the design of a research agenda for the use of ML for energy efficiency?
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Sources of Information
2.3. Search Strategy
- Scopus database search: (TITLE (“energy efficiency”)) AND (TITLE (“machine learning”)) OR (KEY (“energy efficiency”)) AND (KEY (“machine learning”)); and
- Web of Science database search: (TI = (“energy efficiency”)) AND (TI = (“machine learning”)) OR (AK = (“energy efficiency”)) AND (AK = (“machine learning”)).
2.4. Data Management
2.5. Selection Process
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, S.A.; Lee, J.; Lin, J.; Kim, S.-W.; Kim, J.H. Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials. Nano Energy 2019, 57, 680–691. [Google Scholar] [CrossRef]
- Islas, J.; Manzini, F.; Masera, O. A prospective study of bioenergy use in Mexico. Energy 2007, 32, 2306–2320. [Google Scholar] [CrossRef]
- Paramati, S.R.; Shahzad, U.; Doğan, B. The role of environmental technology for energy demand and energy efficiency: Evidence from OECD countries. Renew. Sustain. Energy Rev. 2022, 153, 111735. [Google Scholar] [CrossRef]
- Zakari, A.; Khan, I.; Tan, D.; Alvarado, R.; Dagar, V. Energy efficiency and sustainable development goals (SDGs). Energy 2022, 239, 122365. [Google Scholar] [CrossRef]
- Kurt, S.S.; Kurdoglu, B.Ç. The role and importance of tourism information system in urban tourism planning. In Global Issues and Trends in Tourism; Avcikurt, C., Dinu, M.S., Hacioğlu, N., Efe, R., Soykan, A., Tetİk, N., Eds.; Springer: Berlin, Heidelberg, 2016; pp. 661–668. [Google Scholar]
- Allahyarzadeh Bidgoli, A.; Hamidishad, N.; Yanagihara, J.I. The impact of carbon capture storage and utilization on energy efficiency, sustainability, and production of an offshore platform: Thermodynamic and sensitivity analyses. J. Energy Resour. Technol. 2022, 144, 112102. [Google Scholar] [CrossRef]
- Benavente-Peces, C.; Ibadah, N. Buildings energy efficiency analysis and classification using various machine learning technique classifiers. Energies 2020, 13, 3497. [Google Scholar] [CrossRef]
- Hassan, H.; Ahmed, I.; Ahmad, R.; Khammari, H.; Bhatti, G.; Ahmed, W.; Alam, M.M. A machine learning approach to achieving energy efficiency in relay-assisted LTE-A downlink system. Sensors 2019, 19, 3461. [Google Scholar] [CrossRef]
- Zekić-Sušac, M.; Mitrović, S.; Has, A. Machine learning based system for managing energy efficiency of public sector as an approach towards smart cities. Int. J. Inf. Manag. 2021, 58, 102074. [Google Scholar] [CrossRef]
- Tien, P.W.; Wei, S.; Darkwa, J.; Wood, C.; Calautit, J.K. Machine learning and deep learning methods for enhancing building energy efficiency and indoor environmental quality—A review. Energy AI 2022, 10, 100198. [Google Scholar] [CrossRef]
- Petroșanu, D.-M.; Căruțașu, G.; Căruțașu, N.L.; Pîrjan, A. A review of the recent developments in integrating machine learning models with sensor devices in the smart buildings sector with a view to attaining enhanced sensing, energy efficiency, and optimal building management. Energies 2019, 12, 4745. [Google Scholar] [CrossRef]
- Niewiadomska-Szynkiewicz, E.; Sikora, A.; Arabas, P.; Kołodziej, J. Control system for reducing energy consumption in backbone computer network. Concurr. Comput. Pract. Exp. 2012, 25, 1738–1754. [Google Scholar] [CrossRef]
- Kutty, A.A.; Kucukvar, M.; Abdella, G.M.; Bulak, M.E.; Onat, N.C. Sustainability performance of european smart cities: A novel DEA approach with double frontiers. Sustain. Cities Soc. 2022, 81, 103777. [Google Scholar] [CrossRef]
- Ghobakhloo, M. Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 2020, 252, 119869. [Google Scholar] [CrossRef]
- Shah, S.F.A.; Iqbal, M.; Aziz, Z.; Rana, T.A.; Khalid, A.; Cheah, Y.-N.; Arif, M. The role of machine learning and the internet of things in smart buildings for energy efficiency. Appl. Sci. 2022, 12, 7882. [Google Scholar] [CrossRef]
- Narciso, D.A.C.; Martins, F.G. Application of machine learning tools for energy efficiency in industry: A review. Energy Rep. 2020, 6, 1181–1199. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, Y.; Calautit, J.K. A review on occupancy prediction through machine learning for enhancing energy efficiency, air quality and thermal comfort in the built environment. Renew. Sustain. Energy Rev. 2022, 167, 112704. [Google Scholar] [CrossRef]
- Kang, M.; Lee, Y.; Park, M. Energy efficiency of machine learning in embedded systems using neuromorphic hardware. Electronics 2020, 9, 1069. [Google Scholar] [CrossRef]
- Bian, S.; Li, C.; Fu, Y.; Ren, Y.; Wu, T.; Li, G.-P.; Li, B. Machine learning-based real-time monitoring system for smart connected worker to improve energy efficiency. J. Manuf. Syst. 2021, 61, 66–76. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, M.; Li, H.; Wu, X. A data-driven intelligent energy efficiency management system for ships. IEEE Intell. Transp. Syst. Mag. 2023, 15, 270–284. [Google Scholar] [CrossRef]
- Pham, A.-D.; Ngo, N.-T.; Ha Truong, T.T.; Huynh, N.-T.; Truong, N.-S. Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability. J. Clean. Prod. 2020, 260, 121082. [Google Scholar] [CrossRef]
- Dawangi, I.D.; Budiyanto, M.A. Ship energy efficiency management plan development using machine learning: Case study of CO2 emissions of ship activities at container port. Int. J. Technol. 2021, 12, 1048–1057. [Google Scholar] [CrossRef]
- Lopez-Perez, D.; De Domenico, A.; Piovesan, N.; Xinli, G.; Bao, H.; Qitao, S.; Debbah, M. A survey on 5G radio access network energy efficiency: Massive MIMO, lean carrier design, sleep modes, and machine learning. IEEE Commun. Surv. Tutor. 2022, 24, 653–697. [Google Scholar] [CrossRef]
- Shi, B.; Zhang, Y. A novel algorithm to optimize the energy consumption using IoT and based on ant colony algorithm. Energies 2021, 14, 1709. [Google Scholar] [CrossRef]
- Gamal, M. Energy efficiency routing algorithms in IoT: A survey. In Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics 2022; Springer: Cham, Swizterland, 2022; pp. 668–679. [Google Scholar]
- Gonzalez-Palacio, M.; Tobon-Vallejo, D.; Sepulveda-Cano, L.M.; Rua, S.; Le, L.B. Machine-learning-based combined path loss and shadowing model in LoRaWAN for energy efficiency enhancement. IEEE Internet Things J. 2023, 1. [Google Scholar] [CrossRef]
- Wang, K.; Xu, J.; Zhang, S.; Tan, J.; Qin, J. Towards low-budget energy efficiency design in additive manufacturing based on variational scale-aware transformer. J. Clean. Prod. 2023, 393, 136168. [Google Scholar] [CrossRef]
- Shook, P.; Choi, J.-K. Predicting the impact of utility lighting rebate programs on promoting industrial energy efficiency: A machine learning approach. Environments 2022, 9, 100. [Google Scholar] [CrossRef]
- López, E.S.; Quintero, S.C.; Rey, M.; Fernández, J.H. La bibliometría: Una herramienta eficaz para evaluar la actividad científica postgraduada. MediSur 2009, 7, 59–62. [Google Scholar]
- Durieux, V.; Gevenois, P.A. Bibliometric indicators: Quality measurements of scientific publication. Radiology 2010, 255, 342–351. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Lappalainen, Y.; Narayanan, N. Harvesting publication data to the institutional repository from Scopus, Web of Science, Dimensions and Unpaywall using a custom R Script. J. Acad. Librariansh. 2023, 49, 102653. [Google Scholar] [CrossRef]
- Xiao, Q.; Li, C.; Tang, Y.; Chen, X. Energy efficiency modeling for configuration-dependent machining via machine learning: A comparative study. IEEE Trans. Autom. Sci. Eng. 2021, 18, 717–730. [Google Scholar] [CrossRef]
- Chochliouros, I.P.; Kourtis, M.-A.; Spiliopoulou, A.S.; Lazaridis, P.; Zaharis, Z.; Zarakovitis, C.; Kourtis, A. Energy efficiency concerns and trends in future 5G network infrastructures. Energies 2021, 14, 5392. [Google Scholar] [CrossRef]
- Marculescu, D. When climate meets machine learning: Edge to cloud ML energy efficiency. In Proceedings of the 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Boston, MA, USA, 26–28 July 2021; IEEE: Piscataway, NJ, USA, 2021; p. 1. [Google Scholar]
- Chien, S.F.; Lim, H.S.; Kourtis, M.A.; Ni, Q.; Zappone, A.; Zarakovitis, C.C. Quantum-driven energy-efficiency optimization for next-generation communications systems. Energies 2021, 14, 4090. [Google Scholar] [CrossRef]
- Al Tarhuni, B.; Naji, A.; Brodrick, P.G.; Hallinan, K.P.; Brecha, R.J.; Yao, Z. Large scale residential energy efficiency prioritization enabled by machine learning. Energy Effic. 2019, 12, 2055–2078. [Google Scholar] [CrossRef]
- Senchilo, N.; Babanova, I. Improving the energy efficiency of electricity distribution in the mining industry using distributed generation by forecasting energy consumption using machine learning. In Proceedings of the 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, 6–9 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7. [Google Scholar]
- Sun, D.; Fei, C. Prediction method of energy efficiency ratio of central air-conditioning operation based on extreme learning machine. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 6765–6770. [Google Scholar]
- Verma, A.; Kumar, Y. Study on machine learning based energy efficiency in developed countries. In Proceedings of the 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 7–9 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 895–899. [Google Scholar]
- Chou, J.S.; Ngo, N.T.; Chong, W.K.; Gibson, G.E. Big data analytics and cloud computing for sustainable building energy efficiency. In Start-Up Creation; Pacheco-Torgal, F., Rasmussen, E., Granqvist, C.-G., Ivanov, V., Kaklauskas, A., Makonin, S., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 397–412. [Google Scholar]
- Das, S.; Doppa, J.R.; Kim, D.H.; Pande, P.P.; Chakrabarty, K. Optimizing 3D NoC design for energy efficiency: A machine learning approach. In Proceedings of the 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, TX, USA, 2–6 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 705–712. [Google Scholar]
- Fan, H.; Zhu, L.; Yao, C.; Guo, J.; Lu, X. Deep reinforcement learning for energy efficiency optimization in wireless networks. In Proceedings of the 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 12–15 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 465–471. [Google Scholar]
- Lai, Y.; Papadopoulos, S.; Fuerst, F.; Pivo, G.; Sagi, J.; Kontokosta, C.E. Building retrofit hurdle rates and risk aversion in energy efficiency investments. Appl. Energy 2022, 306, 118048. [Google Scholar] [CrossRef]
- Strušnik, D.; Marčič, M.; Golob, M.; Hribernik, A.; Živić, M.; Avsec, J. Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling. Appl. Energy 2016, 173, 386–405. [Google Scholar] [CrossRef]
- Yang, C.C.; Soh, C.S.; Yap, V.V. A systematic approach in appliance disaggregation using k-nearest neighbours and naive Bayes classifiers for energy efficiency. Energy Effic. 2017, 11, 239–259. [Google Scholar] [CrossRef]
- Mittal, M.; de Prado, R.P.; Kawai, Y.; Nakajima, S.; Muñoz-Expósito, J.E. Machine learning techniques for energy efficiency and anomaly detection in hybrid wireless sensor networks. Energies 2021, 14, 3125. [Google Scholar] [CrossRef]
- Zhong, C.; Yan, K.; Dai, Y.; Jin, N.; Lou, B. Energy efficiency solutions for buildings: Automated fault diagnosis of air handling units using generative adversarial networks. Energies 2019, 12, 527. [Google Scholar] [CrossRef]
- Rodríguez Fernández, M.; Cortés García, A.; González Alonso, I.; Zalama Casanova, E. Using the big data generated by the smart home to improve energy efficiency management. Energy Effic. 2016, 9, 249–260. [Google Scholar] [CrossRef]
- Khosrowpour, A.; Gulbinas, R.; Taylor, J.E. Occupant workstation level energy-use prediction in commercial buildings: Developing and assessing a new method to enable targeted energy efficiency programs. Energy Build. 2016, 127, 1133–1145. [Google Scholar] [CrossRef]
- Sonta, A.; Dougherty, T.R.; Jain, R.K. Data-driven optimization of building layouts for energy efficiency. Energy Build. 2021, 238, 110815. [Google Scholar] [CrossRef]
- Halhoul Merabet, G.; Essaaidi, M.; Ben Haddou, M.; Qolomany, B.; Qadir, J.; Anan, M.; Al-Fuqaha, A.; Abid, M.R.; Benhaddou, D. Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques. Renew. Sustain. Energy Rev. 2021, 144, 110969. [Google Scholar] [CrossRef]
- Alsalemi, A.; Himeur, Y.; Bensaali, F.; Amira, A.; Sardianos, C.; Varlamis, I.; Dimitrakopoulos, G. Achieving domestic energy efficiency using micro-moments and intelligent recommendations. IEEE Access 2020, 8, 15047–15055. [Google Scholar] [CrossRef]
- Tan, J.; Xie, S.; Wu, W.; Qin, P.; Ouyang, T. Evaluating and optimizing the cold energy efficiency of power generation and wastewater treatment in LNG-fired power plant based on data-driven approach. J. Clean. Prod. 2022, 334, 130149. [Google Scholar] [CrossRef]
- Han, R.; Huang, P.; Xiang, Y.; Liu, C.; Dong, Z.; Su, Z.; Liu, Y.; Liu, L.; Liu, X.; Kang, J. A novel convolution computing paradigm based on NOR flash array with high computing speed and energy efficiency. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 1692–1703. [Google Scholar] [CrossRef]
- Gui, J.; Liu, Y. Enhancing energy efficiency for cellular-assisted vehicular networks by online learning-based mmWave beam selection. EURASIP J. Wirel. Commun. Netw. 2021, 1. [Google Scholar] [CrossRef]
- Hamedani, K.; Liu, L.; Yi, Y. Energy efficient MIMO-OFDM spectrum sensing using deep stacked spiking delayed feedback reservoir computing. IEEE Trans. Green Commun. Netw. 2021, 5, 484–496. [Google Scholar] [CrossRef]
- Liu, C.H.; Lin, Q.; Wen, S. Blockchain-enabled data collection and sharing for industrial IoT with deep reinforcement learning. IEEE Trans. Ind. Inform. 2019, 15, 3516–3526. [Google Scholar] [CrossRef]
- Khayyam, H.; Naebe, M.; Milani, A.S.; Fakhrhoseini, S.M.; Date, A.; Shabani, B.; Atkiss, S.; Ramakrishna, S.; Fox, B.; Jazar, R.N. Improving energy efficiency of carbon fiber manufacturing through waste heat recovery: A circular economy approach with machine learning. Energy 2021, 225, 120113. [Google Scholar] [CrossRef]
- Ran, Y.; Hu, H.; Zhou, X.; Wen, Y. DeepEE: Joint optimization of job scheduling and cooling control for data center energy efficiency using deep reinforcement learning. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 645–655. [Google Scholar]
- Wang, Z.; Liu, J.; Zhang, Y.; Yuan, H.; Zhang, R.; Srinivasan, R.S. Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles. Renew. Sustain. Energy Rev. 2021, 143, 110929. [Google Scholar] [CrossRef]
- Tu, Z.; Kong, J.; Shen, R. Smart city projects boost urban energy efficiency in China. Sustainability 2022, 14, 1814. [Google Scholar] [CrossRef]
- Behera, S.; Misra, R. SmartPeak: Peak shaving and ambient analysis for energy efficiency in electrical smart grid. In Proceedings of the 2018 Artificial Intelligence and Cloud Computing Conference; AICM: Tokio, Japan, 2018; pp. 157–165. [Google Scholar]
- Usama, M.; Erol-Kantarci, M. A survey on recent trends and open issues in energy efficiency of 5G. Sensors 2019, 19, 3126. [Google Scholar] [CrossRef] [PubMed]
- Kiluk, S. Diagnostic information system dynamics in the evaluation of machine learning algorithms for the supervision of energy efficiency of district heating-supplied buildings. Energy Convers. Manag. 2017, 150, 904–913. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, Y.; Chan, C.-H.; Martins, R.P. An Entropy-Source-Preselection-Based Strong PUF With Strong Resilience to Machine Learning Attacks and High Energy Efficiency. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 5108–5120. [Google Scholar] [CrossRef]
- Kan, E.Y.Y.; Chan, W.K.; Tse, T.H. EClass: An execution classification approach to improving the energy-efficiency of software via machine learning. J. Syst. Softw. 2012, 85, 960–973. [Google Scholar] [CrossRef]
- Mamidi, S.; Chang, Y.H.; Maheswaran, R. Improving building energy efficiency with a network of sensing, learning and prediction agents. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems 2012, AAMAS 2012: Innovative Applications Track, Valencia, Spain, 4–8 June 2012; ACM: New York, NY, USA, 2012; pp. 33–40. [Google Scholar]
- Kazmi, H.; D’Oca, S. Demonstrating model-based reinforcement learning for energy efficiency and demand response using hot water vessels in net-zero energy buildings. In Proceedings of the 2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Ljubljana, Slovenia, 9–12 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Pasricha, S.; Doppa, J.R.; Chakrabarty, K.; Tiku, S.; Dauwe, D.; Jin, S.; Pande, P.P. Data analytics enables energy-efficiency and robustness. In Proceedings of the Twelfth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis Companion, Seoul, Republic of Korea, 15–20 October 2017; ACM: New York, NY, USA, 2017; pp. 1–10. [Google Scholar]
- Akmandor, A.O.; Yin, H.; Jha, N.K. Simultaneously ensuring smartness, security, and energy efficiency in internet-of-things sensors. In Proceedings of the 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, USA, 8–11 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–8. [Google Scholar]
- Avendano, D.N.; Ruyssinck, J.; Vandekerckhove, S.; Van Hoecke, S.; Deschrijver, D. Data-driven optimization of energy efficiency and comfort in an apartment. In Proceedings of the 2018 International Conference on Intelligent Systems (IS), Funchal, Portugal, 25–27 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 174–182. [Google Scholar]
- Gloria, A.; Cardoso, J.; Sebasliao, P. Improve energy efficiency of irrigation systems using smartgrid and random forest. In Proceedings of the 2020 5th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Corfu, Greece, 25–27 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Abdel-Razek, S.A.; Marie, H.S.; Alshehri, A.; Elzeki, O.M. Energy efficiency through the implementation of an AI model to predict room occupancy based on thermal comfort parameters. Sustainability 2022, 14, 7734. [Google Scholar] [CrossRef]
- Koasidis, K.; Psarras, J. Innovative personalised applications to motivate and support behavioural energy efficiency. In Proceedings of the 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA), Chania Crete, Greece, 12–14 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Ji, Y.; Choi, W.; Ok, K.; Ahn, J. Intelligent building using hybrid inference with building automation system to improve energy efficiency. In Proceedings of the Second Workshop on Semantic Web Technologies for the Internet of Things co-located with 16th International Semantic Web Conference, Vienna, Austria, 21 October 2017; CEUR Workshop Proceedings: Aachen, Germany, 2017; pp. 1–12. [Google Scholar]
- Sesto-Castilla, D.; Garcia-Villegas, E.; Lyberopoulos, G.; Theodoropoulou, E. Use of machine learning for energy efficiency in present and future mobile networks. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Kelechi, A.H.; Alsharif, M.H.; Bameyi, O.J.; Ezra, P.J.; Joseph, I.K.; Atayero, A.-A.; Geem, Z.W.; Hong, J. Artificial intelligence: An energy efficiency tool for enhanced high performance computing. Symmetry 2020, 12, 1029. [Google Scholar] [CrossRef]
- Kak, S.M.; Agarwal, P.; Alam, M.A. Task scheduling techniques for energy efficiency in the cloud. EAI Endorsed Trans. Energy Web 2022, 9, e6. [Google Scholar] [CrossRef]
- Song, H.; Chen, Y.; Li, J.; Wang, T.; Shen, H.; He, C. Energy efficiency forecasting for central air-conditioning refrigeration systems based on deep neural network. In Proceedings of the 2022 IEEE International Conference on Networking, Sensing and Control (ICNSC), Shanghai, China, 15–18 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar]
- Tomazzoli, C.; Scannapieco, S. Machine learning for energy efficiency: Automatic detection of electric loads from power consumption. In Proceedings of the 2017 AEIT International Annual Conference, Cagliari, Italy, 20–22 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Vorkapić, A.; Radonja, R.; Martinčić-Ipšić, S. Predicting seagoing ship energy efficiency from the operational data. Sensors 2021, 21, 2832. [Google Scholar] [CrossRef]
- Ertugrul, Ö.F.; Kaya, Y. Smart city planning by estimating energy efficiency of buildings by extreme learning machine. In Proceedings of the 2016 4th International Istanbul Smart Grid Congress and Fair (ICSG), Istanbul, Turkey, 20–21 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Wang, Y.; Dai, X.; Wang, J.M.; Bensaou, B. A reinforcement learning approach to energy efficiency and QoS in 5G wireless networks. IEEE J. Sel. Areas Commun. 2019, 37, 1413–1423. [Google Scholar] [CrossRef]
- Algedir, A.A.; Refai, H.H. Energy efficiency optimization and dynamic mode selection algorithms for D2D communication under HetNet in downlink reuse. IEEE Access 2020, 8, 95251–95265. [Google Scholar] [CrossRef]
- Andrés, E.; Cuéllar, M.P.; Navarro, G. On the use of quantum reinforcement learning in energy-efficiency scenarios. Energies 2022, 15, 6034. [Google Scholar] [CrossRef]
Techniques | Tools | Applications |
---|---|---|
Deep Learning | Sensors | Smart cities |
Linear regression | Big data | Thermal comfort |
Data mining | Data analytics | Energy management |
Deep reinforcement learning | Wireless networks | Smart buildings |
Genetic algorithm | Internet of Things | Sustainability |
Artificial neural network | Forecasting | Energy consumption |
Random forest | Energy saving | |
Support vector machine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Arias, A.; García-Pineda, V.; González-Ruiz, J.D.; Medina-Valderrama, C.J.; Bao García, R. Machine-Learning Applications in Energy Efficiency: A Bibliometric Approach and Research Agenda. Designs 2023, 7, 71. https://doi.org/10.3390/designs7030071
Valencia-Arias A, García-Pineda V, González-Ruiz JD, Medina-Valderrama CJ, Bao García R. Machine-Learning Applications in Energy Efficiency: A Bibliometric Approach and Research Agenda. Designs. 2023; 7(3):71. https://doi.org/10.3390/designs7030071
Chicago/Turabian StyleValencia-Arias, Alejandro, Vanessa García-Pineda, Juan David González-Ruiz, Carlos Javier Medina-Valderrama, and Raúl Bao García. 2023. "Machine-Learning Applications in Energy Efficiency: A Bibliometric Approach and Research Agenda" Designs 7, no. 3: 71. https://doi.org/10.3390/designs7030071
APA StyleValencia-Arias, A., García-Pineda, V., González-Ruiz, J. D., Medina-Valderrama, C. J., & Bao García, R. (2023). Machine-Learning Applications in Energy Efficiency: A Bibliometric Approach and Research Agenda. Designs, 7(3), 71. https://doi.org/10.3390/designs7030071