Design of PI Fuzzy Logic Gain Scheduling Load Frequency Control in Two-Area Power Systems
Abstract
:1. Introduction
2. Two-Area Power Systems
- i denotes the area number such that 1 is for area one and 2 is for area two,
- Δfi is the frequency deviation,
- ΔPgi is the governor power deviation,
- ΔPdi is the disturbance power deviation,
- is the tie line power deviation.
3. Concepts of Gain Scheduling of the PI Controller Using Fuzzy Logic
- Control action
- Proportional gain
- Integration time
- Td Derivative time
- Set point
- Output measurement
3.1. Droop of the Generator (Speed Droop Governor)
3.2. Speed Regulation ()
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moitaba, S.; Boroujeni, S.; Hemmati, R.; Fayazi, H. Load Frequency Control in Multi Area Electric Power System Using Genetic Algorithm Scaled Fuzzy Logic. Int. J. Phys. Sci. 2011, 6, 377–385. [Google Scholar]
- Zhuang, H.; Wu, X. Membership Function Modification of Fuzzy Logic Controllers with Histogram Equalization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2001, 31, 125–132. [Google Scholar] [CrossRef] [PubMed]
- John, H. Fuzzy Control and Identification; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Ellithy, K.; Elmetwally, K. Design of Decentralized Fuzzy Logic Load Frequency Controller. Intell. Syst. Appl. 2012, 2, 66–75. [Google Scholar] [CrossRef]
- Chang, C.S.; Fu, W. Area load frequency control using fuzzy gain scheduling of PI controller. Electr. Power Syst. Res. 1997, 42, 145–152. [Google Scholar] [CrossRef]
- Parakash, S.; Sinha, S. Load Frequency Control of Three-area Interconnected Hydro-thermal Reheat Power System Using Artificial Intelligent and PI controller. Int. J. Eng. Sci. Technol. 2001, 4, 23–37. [Google Scholar]
- Juang, C.; Lu, C. Power System Load Frequency Control By Genetic Fuzzy Gain Scheduling Controller. J. Chin. Inst. Eng. 2005, 28, 1013–1018. [Google Scholar] [CrossRef]
- Kocaarslan, I.; Cam, E. Fuzzy logic controller in interconnected electrical power systems for load frequency control. Electr. Power Energy Syst. 2005, 27, 542–549. [Google Scholar] [CrossRef]
- Cam, E.; Kocaarslan, I. Load frequency control in two-area power systems using fuzzy logic controller. Energy Convers. Manag. 2005, 46, 233–243. [Google Scholar] [CrossRef]
- WECC Tutorial on Speed Governors, WECC Control Work Group February 1998, WECC Name Revised June 2002. Available online: http://www.wecc.biz/library/WECC%20Documents/Documents%20for%20Generators/ Governor%20Tutorial.pdf (accessed on 19 February 2019).
- Pothiya, S.; Ngamroo, I.; Runggeratigul, S.; Tantaswadi, P. Design of optimal fuzzy logic based PI controller using multiple tabu search algorithm for load frequency control. Int.J. Control Autom. Syst. 2006, 4, 155–164. [Google Scholar]
- Sabahi, K.; Nekoui, M.; Teshnehlab, M.; Aliyari, M.; Mansouri, M. Load Frequency Control in Interconnected Power System Using Modified Dynamic Neural Networks. In Proceedings of the 15th Mediterranean Conference on Control & Automation, Athens, Greece, 27–29 July 2007. [Google Scholar]
- Venkata, B.; Jayaram, S.V. Load Frequency Control for a Two-area Interconnected Power System Using Robust Genetic Algorithm Controller. J. Theor. Appl. Inf. Technol. 2008, 4, 1204–1212. [Google Scholar]
- Pandey, S.K.; Mohanty, S.R.; Kishor, N. A literature survey on load–frequency control for conventional and distribution generation power systems. Renew. Sustain. Energy Rev. 2013, 25, 318–334. [Google Scholar] [CrossRef]
- Rao, R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 2016, 7, 19–34. [Google Scholar]
- Bharath Kumar, T.; Uma Vani, M. Load frequency control in two-area power system using anfis. Int. J. Electr. Electron. Eng. Res. 2014, 4, 85–92. [Google Scholar]
- Chandrakala, K.V.; Balamurugan, S. Adaptive Neuro-Fuzzy Scheduled Load Frequency Controller for Multi Source Multi Area System Interconnected Via Parallel AC-DC Links. Int. J. Electr. Eng. Inform. 2018, 10, 479–490. [Google Scholar] [CrossRef]
- Gheisarnejad, M.; Khooban, M. Secondary load frequency control for multi-microgrids: HiL real-time Simulation. Soft Comput. 2018, 1–14. [Google Scholar] [CrossRef]
- Khooban, M. Secondary Load Frequency Control of Time-Delay Stand-Alone Microgrids with Electric Vehicles. IEEE Trans. Ind. Electron. 2018, 65, 7416–7422. [Google Scholar] [CrossRef]
- Saadat, H. Power System Analysis; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Prakash, S.; Sinha, S.K.; Pandey, A.S.; Singh, B. Impact of Slider Gain on Load Frequency Control Using Fuzzy Logic Controller. ARPN J. Eng. Appl. Sci. 2009, 4, 20–27. [Google Scholar]
- Bubnicki, Z. Modern Control Theory; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Tammam, M.A.; Aboelela, M.A.; Mustafa, M.A.; Seif, A.E. Fuzzy Like-PID Controller Tuned By Multi-objective Genetic Algorithm for Load Frequency Controller in Nonlinear Electric Power Systems. Int. J. Adv. Eng. Technol. 2012, 5, 572. [Google Scholar]
- Wang, L.X. A Course in Fuzzy Systems and Control; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Xin, L.; Wei, C. Approximation Accuracy of Some Neuro-Fuzzy Approaches. IEEE Trans. Fuzzy Syst. 2000, 8, 470–477. [Google Scholar]
Area 1 | Area 2 | |
---|---|---|
Speed regulation | ||
Frequency sensitivity load coefficient | ||
Inertia constant | ||
Rated power |
i | BN | MN | SN | Z | SP | MP | BP | |
---|---|---|---|---|---|---|---|---|
ACEi | ||||||||
BN | BN | BN | BN | BN | MN | SN | Z | |
MN | BN | BN | MN | MN | SN | Z | SP | |
SN | BN | MN | MN | SN | Z | SP | MP | |
Z | MN | MN | SN | Z | SP | MP | MP | |
SP | MN | SN | Z | SP | MP | MP | BP | |
MP | SN | Z | SP | MP | MP | BP | BP | |
BP | Z | SP | MP | BP | BP | BP | BP |
Controller Type | ISE at Step Load Change of 187.5 MW in Area 1 | ISE at Step Load Change of 250 MW in Area 1 |
---|---|---|
I+GLFC | 0.0163 | 0.0290 |
I | 0.020 | 0.0365 |
GLFC | 0.0299 | 0.0582 |
Controller Type | ISE at Step Load Change of 187.5 MW in Area 1 | ISE at Step Load Change of 250 MW in Area 1 |
---|---|---|
I+GLFC | 0.00212 | 0.00373 |
I | 0.00257 | 0.00458 |
GLFC | 0.0109 | 0.0194 |
Controller Type | ISE at Step Load Change of 187.5 MW in Area 1 | ISE at Step Load Change of 250 MW in Area 1 |
---|---|---|
I+GLFC | 0.511 | 0.898 |
I | 0.599 | 0.993 |
GLFC | 3.65 | 5.36 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, T.; Shamekh, A. Design of PI Fuzzy Logic Gain Scheduling Load Frequency Control in Two-Area Power Systems. Designs 2019, 3, 26. https://doi.org/10.3390/designs3020026
Hussein T, Shamekh A. Design of PI Fuzzy Logic Gain Scheduling Load Frequency Control in Two-Area Power Systems. Designs. 2019; 3(2):26. https://doi.org/10.3390/designs3020026
Chicago/Turabian StyleHussein, Tawfiq, and Awad Shamekh. 2019. "Design of PI Fuzzy Logic Gain Scheduling Load Frequency Control in Two-Area Power Systems" Designs 3, no. 2: 26. https://doi.org/10.3390/designs3020026
APA StyleHussein, T., & Shamekh, A. (2019). Design of PI Fuzzy Logic Gain Scheduling Load Frequency Control in Two-Area Power Systems. Designs, 3(2), 26. https://doi.org/10.3390/designs3020026