# Suitability of Electrical Coupling in Solar Cell Thermoelectric Hybridization

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

_{a}.

## 3. Results

#### 3.1. Lossless Conditions

#### 3.2. ${G}_{p}$ vs Lossless Conditions

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Chow, T.T. A review on photovoltaic/thermal hybrid solar technology. Appl. Energy
**2010**, 87, 365–379. [Google Scholar] [CrossRef] - Yazawa, K.; Shakouri, A. System optimiztion of hot water concentrated solar thermoelectric generation. In Proceedings of the Thermal Issues Emerging Technologies, ThETA 3, Cairo, Egypt, 19–22 December 2010; pp. 283–290. [Google Scholar]
- Tyagi, V.V.; Kaushik, S.C.; Tyagi, S.K. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renew. Sustain. Energy Rev.
**2012**, 16, 1383–1398. [Google Scholar] [CrossRef] - Vorobiev, Y.; González-Hernández, J.; Vorobiev, P.; Bulat, L. Thermal-photovoltaic solar hybrid system for efficient solar energy conversion. Sol. Energy
**2006**, 80, 170–176. [Google Scholar] [CrossRef] - Chavez-Urbiola, E.A.; Vorobiev, Y.V.; Bulat, L.P. Solar hybrid systems with thermoelectric generators. Sol. Energy
**2012**, 86, 369–378. [Google Scholar] [CrossRef] - Narducci, D.; Lorenzi, B. Challenges and perspectives in tandem thermoelectric-photovoltaic solar energy conversion. IEEE Trans. Nanotechnol.
**2016**, 15, 348–355. [Google Scholar] [CrossRef] - Li, Y.; Witharana, S.; Cao, H.; Lasfargues, M.; Huang, Y.; Ding, Y. Wide spectrum solar energy harvesting through an integrated photovoltaic and thermoelectric system. Particuology
**2014**, 15, 39–44. [Google Scholar] [CrossRef] - Zhang, J.; Xuan, Y.; Yang, L. Performance estimation of photovoltaic-thermoelectric hybrid systems. Energy
**2014**, 78, 895–903. [Google Scholar] [CrossRef] - Liao, T.; Lin, B.; Yang, Z. Performance characteristics of a low concentrated photovoltaic-thermoelectric hybrid power generation device. Int. J. Therm. Sci.
**2014**, 77, 158–164. [Google Scholar] [CrossRef] - Bjørk, R.; Nielsen, K.K. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system. Sol. Energy
**2015**, 120, 187–194. [Google Scholar] [CrossRef][Green Version] - Cui, T.; Xuan, Y.; Li, Q. Design of a novel concentrating photovoltaic–thermoelectric system incorporated with phase change materials. Energy Convers. Manag.
**2016**, 112, 49–60. [Google Scholar] [CrossRef] - Li, D.; Xuan, Y.; Li, Q.; Hong, H. Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems. Energy
**2017**, 126, 343–351. [Google Scholar] [CrossRef] - Beeri, O.; Rotem, O.; Hazan, E.; Katz, E.A.; Braun, A.; Gelbstein, Y. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling. J. Appl. Phys.
**2015**, 11. [Google Scholar] [CrossRef] - Luo, B.; Deng, Y.; Wang, Y.; Gao, M.; Zhu, W.; Hashim, H.T. Synergistic photovoltaic–thermoelectric effect in a nanostructured CdTe/Bi
_{2}Te_{3}heterojunction for hybrid energy harvesting. RSC Adv.**2016**, 6, 114046–114051. [Google Scholar] [CrossRef] - Yan, X.; Poudel, B.; Ma, Y.; Liu, W.S.; Joshi, G.; Wang, H. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi
_{2}Te_{2.7}Se_{0.3}. Nano Lett.**2010**, 10, 3373–3378. [Google Scholar] [CrossRef] [PubMed] - Xu, L.; Xiong, Y.; Mei, A.; Hu, Y.; Rong, Y.; Zhou, Y. Efficient perovskite photovoltaic-thermoelectric hybrid device. Adv. Energy Mater.
**2018**, 8, 1702937. [Google Scholar] [CrossRef] - Narducci, D.; Bermel, P.; Lorenzi, B.; Wang, N.; Yazawa, K. Hybrid and Fully Thermoelectric Solar Harvesting, 1st ed.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Lorenzi, B.; Contento, G.; Sabatelli, V.; Rizzo, A.; Narducci, D. Theoretical analysis of two novel hybrid thermoelectric–photovoltaic systems based on CZTS solar cells. J. Nanosci. Nanotechnol.
**2017**, 17, 1608–1615. [Google Scholar] [CrossRef] [PubMed] - Contento, G.; Lorenzi, B.; Rizzo, A.; Narducci, D. Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies. Energy
**2017**, 131, 230–238. [Google Scholar] [CrossRef] - Fisac, M.; Villasevil, F.X.; López, A.M. High-efficiency photovoltaic technology including thermoelectric generation. J. Power Sources
**2014**, 252, 264–269. [Google Scholar] [CrossRef] - Park, K.T.; Shin, S.M.; Tazebay, A.S.; Um, H.D.; Jung, J.Y.; Jee, S.W. Lossless hybridization between photovoltaic and thermoelectric devices. Sci. Rep.
**2013**, 3, 422–427. [Google Scholar] [CrossRef] [PubMed] - Li, G.; Zhou, K.; Song, Z.; Zhao, X.; Ji, J. Inconsistent phenomenon of thermoelectric load resistance for photovoltaic–thermoelectric module. Energy Convers. Manag.
**2018**, 161, 155–161. [Google Scholar] [CrossRef] - Verma, V.; Kane, A.; Singh, B. Complementary performance enhancement of PV energy system through thermoelectric generation. Renew. Sustain. Energy Rev.
**2016**, 58, 1017–1026. [Google Scholar] [CrossRef] - Cotfas, D.T.; Cotfas, P.A.; Ursutiu, D.; Samoila, C. The methods to determine the series resistance and the ideality factor of diode for solar cells-review. In Proceedings of the 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Romania, 24–26 May 2012; pp. 966–972. [Google Scholar]
- Lorenzi, B.; Acciarri, M.; Narducci, D. Conditions for beneficial coupling of thermoelectric and photovoltaic devices. J. Mater. Res.
**2015**, 30. [Google Scholar] [CrossRef] - Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell ef fi ciency tables (version 46). Prog. Photovolt. Res. Appl.
**2015**, 23, 805–812. [Google Scholar] [CrossRef] - Green, M.A.; Hishikawa, Y.; Warta, W.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J. Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl.
**2017**, 25, 668–676. [Google Scholar] [CrossRef] - Kondo, M.; Yoshida, I.; Saito, K.; Matsumoto, M.; Suezaki, T.; Sai, H. Development of highly stable and efficient amorphous silicon based solar cells. In Proceedings of the 28th European Photovoltaic Solar Energy Conference, Villepinte, France, 30 September–4 October 2013; pp. 2213–2217. [Google Scholar]
- Sun, K.; Yan, C.; Liu, F.; Huang, J.; Zhou, F.; Stride, J.A. Over 9% efficient kesterite Cu
_{2}ZnSnS_{4}solar cell fabricated by using Zn_{1−x}Cd_{x}S buffer layer. Adv. Energy Mater.**2016**, 6, 1600046. [Google Scholar] [CrossRef] - Sze, S.M. Physics of Semiconductor Devices, 2nd ed.; John Wiley & Sons, Ltd.: New York, NY, USA, 1981; pp. 84–89. [Google Scholar]
- Friesen, G.; Pavanello, D.; Virtuani, A. Overview of temperature coefficients of different thin film photovoltaic technologies. In Proceedings of the 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, 6–10 September 2010; pp. 422–427. [Google Scholar]
- Lin, P.; Lin, L.; Yu, J.; Cheng, S.; Lu, P.; Zheng, Q. Numerical simulation of Cu
_{2}ZnSnS_{4}based solar cells with In_{2}S_{3}buffer layers by SCAPS-1D. J. Appl. Sci. Eng.**2014**, 17, 383–390. [Google Scholar]

**Figure 1.**Scheme of the simulator used in this work. Several types of photovoltaic (PV) cells were connected in series with a voltage generator and a variable electrical resistance.

**Figure 2.**Example of the effect of ${R}_{i,teg}$ (red and blue triangles) and the combination of ${R}_{i,teg}$ and ${V}_{teg}$ (red and blue circles) on the solar cell current-voltage (IV) curve of a solar cell (black squares). Dashed lines are fits from Equation (7). In this example, ${R}_{i,teg}^{1}<{R}_{i,teg}^{2}$.

**Figure 3.**(

**Left**) Effect of ${R}_{i,teg}$ on the solar cell power in the case of ${V}_{teg}=0$. (

**Right**) ${V}_{teg}$ needed for a lossless condition.

**Figure 4.**Interplay between electrical losses and G

_{p}for amorphous silicon (a-Si) (

**Left**) and copper zinc tin sulfide (CZTS) (

**Right**) solar cells. In both plots full and dashed lines refer to thermally coupled (TC) and optically coupled (OC) systems, respectively, while colors refer to different $\raisebox{1ex}{${R}_{i,teg}$}\!\left/ \!\raisebox{-1ex}{${R}_{s}$}\right.$ ratios. Simulations were run by sweeping ${T}_{cell}$ between 300 and 500 K in 5-K steps.

Solar Cell | ${\mathit{P}}_{\mathit{p}\mathit{v}}^{0}(\mathbf{mW}/{\mathbf{cm}}^{2})$ | ${\mathit{\beta}}_{\mathit{p}\mathit{v}}^{0}(\%/\mathbf{K})$ | ${\mathit{\beta}}_{\mathit{p}\mathit{v}}^{0}\mathbf{calc}.(\%/\mathbf{K})$ | ${\mathit{R}}_{\mathit{s}}(\mathsf{\Omega}\xb7{\mathbf{cm}}^{2})$ |
---|---|---|---|---|

Amorphous Silicon (a-Si) | 101.89 [26] | 0.150 [31] | 0.146 | 5.50 |

Copper Zinc Tin Sulfide (CZTS) | 89.84 [27] | 0.170 [32] | 0.174 | 4.01 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lorenzi, B.; Acciarri, M.; Narducci, D. Suitability of Electrical Coupling in Solar Cell Thermoelectric Hybridization. *Designs* **2018**, *2*, 32.
https://doi.org/10.3390/designs2030032

**AMA Style**

Lorenzi B, Acciarri M, Narducci D. Suitability of Electrical Coupling in Solar Cell Thermoelectric Hybridization. *Designs*. 2018; 2(3):32.
https://doi.org/10.3390/designs2030032

**Chicago/Turabian Style**

Lorenzi, Bruno, Maurizio Acciarri, and Dario Narducci. 2018. "Suitability of Electrical Coupling in Solar Cell Thermoelectric Hybridization" *Designs* 2, no. 3: 32.
https://doi.org/10.3390/designs2030032