Clinical Applications of Artificial Intelligence in Corneal Diseases
Abstract
1. Introduction
2. Methods
3. Results
3.1. Corneal Structural Diseases
3.1.1. Keratoconus
3.1.2. Fuch’s Endothelial Corneal Dystrophy
3.2. Dry Eye Disease
3.3. Tear Film
3.4. Infectious Keratitis
3.5. Corneal Neuropathy
3.6. Conjunctiva
3.6.1. Vascular Assessments
3.6.2. Ocular Surface Tumors
3.6.3. Pterygium
3.6.4. Infectious Conjunctivitis
3.7. Large Language Models in Corneal Disease
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steinmetz, J.D.; GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef] [PubMed]
- Burton, M.J.; Ramke, J.; Marques, A.P.; Bourne, R.R.A.; Congdon, A.; Jones, I.; Tong, B.; Arunga, S.; Bachani, D.; Bascaran, C.; et al. The Lancet Global Health Commission on Global Eye Health: Vision beyond 2020. Lancet Glob. Health 2021, 9, e489–e551. [Google Scholar] [CrossRef]
- Whitcher, J.P.; Srinivasan, M.; Upadhyay, M.P. Corneal blindness: A global perspective. Bull. World Health Organ. 2001, 79, 214–221. [Google Scholar] [PubMed]
- Morthen, M.K.; Magno, M.S.; Utheim, T.P.; Snieder, H.; Hammond, C.J.; Vehof, J. The physical and mental burden of dry eye disease: A large population-based study investigating the relationship with health-related quality of life and its determinants. Ocul. Surf. 2021, 21, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Lanza, M.; Incagli, F.; Ceccato, C.; Reffo, M.E.; Mercuriali, E.; Parmeggiani, F.; Pagliano, E.; Saletti, V.; Leonardi, M.; Suppiej, A.; et al. Quality of life, functioning and participation of children and adolescents with visual impairment: A scoping review. Res. Dev. Disabil. 2024, 151, 104772. [Google Scholar] [CrossRef]
- Kandel, H.; Pesudovs, K.; Watson, S.L. Measurement of Quality of Life in Keratoconus. Cornea 2020, 39, 386–393. [Google Scholar] [CrossRef]
- Yu, J.; Asche, C.V.; Fairchild, C.J. The economic burden of dry eye disease in the United States: A decision tree analysis. Cornea 2011, 30, 379–387. [Google Scholar] [CrossRef]
- Collier, S.A.; Gronostaj, M.P.; MacGurn, A.K.; Cope, J.R.; Awsumb, K.L.; Yoder, J.S.; Beach, M.J. Estimated burden of keratitis—United States, 2010. MMWR Morb. Mortal. Wkly. Rep. 2014, 63, 1027–1030. [Google Scholar]
- Vashist, P.; Gupta, N.; Tandon, R.; Gupta, S.K.; Dwivedi, S.; Mani, K. Population-based assessment of vision-related quality of life in corneal disease: Results from the CORE study. Br. J. Ophthalmol. 2016, 100, 588–593. [Google Scholar] [CrossRef]
- Baral, P.; Kumaran, S.; Stapleton, F.; Pesudovs, K. Quality of life impacts of ocular surface diseases: A qualitative exploration. Investig. Ophthalmol. Vis. Sci. 2024, 65, 1846. [Google Scholar]
- Cabrera-Aguas, M.; Khoo, P.; Watson, S.L. Infectious keratitis: A review. Clin. Exp. Ophthalmol. 2022, 50, 543–562. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B.; Liu, Y.-C.; Mohamed-Noriega, K.; Mehta, J.S. Advances in Imaging Technology of Anterior Segment of the Eye. J. Ophthalmol. 2021, 2021, 9539765. [Google Scholar] [CrossRef] [PubMed]
- Ang, M.; Baskaran, M.; Werkmeister, R.M.; Chua, J.; Schmidl, D.; Aranha dos Santos, V.; Garhofer, G.; Mehta, J.S.; Schmetterer, L. Anterior segment optical coherence tomography. Prog. Retin. Eye Res. 2018, 66, 132–156. [Google Scholar] [CrossRef] [PubMed]
- Kojima, T.; Dogru, M.; Kawashima, M.; Nakamura, S.; Tsubota, K. Advances in the diagnosis and treatment of dry eye. Prog. Retin. Eye Res. 2020, 78, 100842. [Google Scholar] [CrossRef]
- Cheng, K.K.W.; Fingerhut, L.; Duncan, S.; Prajna, N.V.; Rossi, A.G.; Mills, B. In vitro and ex vivo models of microbial keratitis: Present and future. Prog. Retin. Eye Res. 2024, 102, 101287. [Google Scholar] [CrossRef]
- Tuft, S.; Somerville, T.B.; Li, J.-P.O.; Neal, T.; De, S.; Horsburgh, M.J.; Fothergill, J.L.; Foulkes, D.; Kaye, S. Bacterial keratitis: Identifying the areas of clinical uncertainty. Prog. Retin. Eye Res. 2022, 89, 101031. [Google Scholar] [CrossRef]
- Ting, D.S.W.; Peng, L.; Varadarajan, A.V.; Keane, P.A.; Burlina, P.M.; Chiang, M.F.; Schmetterer, L.; Pasquale, L.R.; Bressler, N.M.; Webster, D.R. Deep learning in ophthalmology: The technical and clinical considerations. Prog. Retin. Eye Res. 2019, 72, 100759. [Google Scholar] [CrossRef]
- Haug, C.J.; Drazen, J.M. Artificial Intelligence and Machine Learning in Clinical Medicine, 2023. N. Engl. J. Med. 2023, 388, 1201–1208. [Google Scholar] [CrossRef]
- Rampat, R.; Deshmukh, R.; Chen, X.; Ting, D.S.W.; Said, D.G.; Dua, H.S.; Ting, D.S.J. Artificial Intelligence in Cornea, Refractive Surgery, and Cataract: Basic Principles, Clinical Applications, and Future Directions. Asia Pac. J. Ophthalmol. 2021, 10, 268–281. [Google Scholar] [CrossRef]
- Nguyen, T.; Ong, J.; Masalkhi, M.; Waisberg, E.; Zaman, N.; Sarker, P.; Aman, S.; Lin, H.; Luo, M.; Ambrosio, R.; et al. Artificial intelligence in corneal diseases: A narrative review. Cont. Lens Anterior Eye 2024, 47, 102284. [Google Scholar] [CrossRef]
- Kang, L.D.; Ballouz, D.; Woodward, M.A. Artificial intelligence and corneal diseases. Curr. Opin. Ophthalmol. 2022, 33, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.J.; Foo, V.H.X.; Yang, L.W.H.; Sia, J.T.; Ang, M.; Lin, H.; Chodosh, J.; Mehta, J.S.; Ting, D.S.W. Artificial intelligence for anterior segment diseases: Emerging applications in ophthalmology. Br. J. Ophthalmol. 2021, 105, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Linde, G.; Rodrigues de Souza, W., Jr.; Chalakkal, R.; Danesh-Meyer, H.V.; O’Keeffe, B.; Hong, S.C. A comparative evaluation of deep learning approaches for ophthalmology. Sci. Rep. 2024, 14, 21829. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, J.; Chen, K.; Chen, Q.; Zheng, Q.; Liu, X.; Weng, H.; Wu, S.; Chen, W. Preventing corneal blindness caused by keratitis using artificial intelligence. Nat. Commun. 2021, 12, 3738. [Google Scholar] [CrossRef]
- Biousse, V.; Newman, N.J.; Najjar, R.P.; Vasseneix, C.; Xu, X.; Ting, D.S.; Milea, L.B.; Hwang, J.-M. Kim, D.H.; Yang, H.K.; et al. Optic Disc Classification by Deep Learning versus Expert Neuro-Ophthalmologists. Ann. Neurol. 2020, 88, 785–795. [Google Scholar] [CrossRef]
- Yoo, T.K.; Ryu, I.H.; Lee, G.; Kim, Y.; Kim, J.K.; Lee, I.S.; Kim, J.S.; Rim, T.H. Adopting machine learning to automatically identify candidate patients for corneal refractive surgery. NPJ Digit. Med. 2019, 2, 13. [Google Scholar] [CrossRef]
- Accardo, P.A.; Pensiero, S. Neural network-based system for early keratoconus detection from corneal topography. J. Biomed. Inform. 2002, 35, 151–159. [Google Scholar] [CrossRef]
- Kamiya, K.; Ayatsuka, Y.; Kato, Y.; Fujimura, F.; Takahashi, M.; Shoji, N.; Mori, Y.; Miyata, K. Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: A diagnostic accuracy study. BMJ Open 2019, 9, e031313. [Google Scholar] [CrossRef]
- Souza, M.B.; de Medeiros, F.W.; Souza, D.B.; Alves, M.R. Detection of keratoconus based on a neural network with orbscan. Arq. Bras. Oftalmol. 2008, 71, 65–68. [Google Scholar] [CrossRef]
- Maeda, N.; Klyce, S.D.; Smolek, M.K.; Thompson, H.W. Automated keratoconus screening with corneal topography analysis. Investig. Ophthalmol. Vis. Sci. 1994, 35, 2749–2757. [Google Scholar]
- Malyugin, B.; Sakhnov, S.; Izmailova, S.; Boiko, E.; Pozdeyeva, N.; Axenova, L.; Axenov, K.; Titov, A.; Terentyeva, A.; Zakaraiia, T.; et al. Keratoconus Diagnostic and Treatment Algorithms Based on Machine-Learning Methods. Diagnostics 2021, 11, 1933. [Google Scholar] [CrossRef]
- Arbelaez, M.C.; Versaci, F.; Vestri, G.; Barboni, P.; Savini, G. Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data. Ophthalmology 2012, 119, 2231–2238. [Google Scholar] [CrossRef] [PubMed]
- Toutounchian, F.; Shanbehzadeh, J.; Khanlari, M. Detection of Keratoconus and Suspect Keratoconus by Machine Vision. In Proceedings of the International Multiconference of Engineers and Computer Scientists, IMECS 2012, Hong Kong, China, 14–16 March 2012; Volume I, pp. 89–91. [Google Scholar]
- Song, P.; Ren, S.W.; Liu, Y.; Li, P.; Zeng, Q.Y. Detection of subclinical keratoconus using a novel combined tomographic and biomechanical model based on an automated decision tree. Sci. Rep. 2022, 12, 5316. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Yousefi, E.; Takahashi, H.; Hayashi, T.; Tampo, H.; Inoda, S.; Arai, Y.; Asbell, P. Keratoconus severity identification using unsupervised machine learning. PLoS ONE 2018, 13, e0205998. [Google Scholar] [CrossRef] [PubMed]
- Klyce, S.D.; Smolek, M.K.; Maeda, N. Keratoconus detection with the KISA% method—Another view. J. Cataract Refract. Surg. 2000, 26, 472–474. [Google Scholar] [CrossRef]
- Jimenez-Garcia, M.; Issarti, I.; Kreps, E.O.; Dhubhghaill, S.N.; Koppen, C.; Varssano, D.; Rozema, J.J. Keratoconus progression forecast by means of a time delay neural network. Investig. Ophthalmol. Vis. Sci. 2021, 62, 13. [Google Scholar]
- Falahati Marvast, F.; Arabalibeik, H.; Alipour, F.; Sheikhtaheri, A.; Nouri, L.; Soozande, M.; Yarmahmoodi, M. Evaluation of RGP Contact Lens Fitting in Keratoconus Patients Using Hierarchical Fuzzy Model and Genetic Algorithms. In Medicine Meets Virtual Reality 22; SAGE Publications Ltd: Thousand Oaks, CA, USA, 2016; pp. 124–129. [Google Scholar]
- Hu, D.; Lin, Z.; Jiang, J.; Li, P.; Zhang, Z.; Yang, C. Identification of Key Genes and Molecular Pathways in Keratoconus: Integrating Text Mining and Bioinformatics Analysis. BioMed Res. Int. 2022, 2022, 4740141. [Google Scholar] [CrossRef]
- Marsack, J.D.; Benoit, J.S.; Kollbaum, P.S.; Anderson, H.A. Application of Topographical Keratoconus Detection Metrics to Eyes of Individuals with Down Syndrome. Optom. Vis. Sci. 2019, 96, 664–669. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Liu, J.; Zhao, W. Identification of Important Genes of Keratoconus and Construction of the Diagnostic Model. Genet. Res. 2022, 2022, 5878460. [Google Scholar] [CrossRef]
- Kamiya, K.; Ayatsuka, Y.; Kato, Y.; Shoji, N.; Miyai, T.; Ishii, H.; Mori, Y.; Miyata, K. Prediction of keratoconus progression using deep learning of anterior segment optical coherence tomography maps. Ann. Transl. Med. 2021, 9, 1287. [Google Scholar] [CrossRef]
- Castro-Luna, G.; Jimenez-Rodriguez, D.; Castano-Fernandez, A.B.; Perez-Rueda, A. Diagnosis of Subclinical Keratoconus Based on Machine Learning Techniques. J. Clin. Med. 2021, 10, 4281. [Google Scholar] [CrossRef] [PubMed]
- Wisse, R.P.L.; Godefrooij, D.A.; Nuijts, R. Using Machine Learning to Monitor Keratoconus Progression—Reply. JAMA Ophthalmol. 2019, 137, 1468. [Google Scholar] [CrossRef] [PubMed]
- Yucekul, B.; Dick, H.B.; Taneri, S. Systematic Detection of Keratoconus in Optical Coherence Tomography: Corneal and Epithelial Thickness Maps. J. Cataract Refract. Surg. 2022, 48, 1360–1365. [Google Scholar] [CrossRef] [PubMed]
- Reinstein, D.Z.; Archer, T.J.; Urs, R.; Gobbe, M.; RoyChoudhury, A.; Silverman, R.H. Detection of Keratoconus in Clinically and Algorithmically Topographically Normal Fellow Eyes Using Epithelial Thickness Analysis. J. Refract. Surg. 2015, 31, 736–744. [Google Scholar] [CrossRef]
- Ahuja, A.S.; Halperin, L.S. Using Machine Learning to Monitor Keratoconus Progression. JAMA Ophthalmol. 2019, 137, 1467–1468. [Google Scholar] [CrossRef]
- Kato, N.; Masumoto, H.; Tanabe, M.; Sakai, C.; Negishi, K.; Torii, H.; Tabuchi, H.; Tsubota, K. Predicting Keratoconus Progression and Need for Corneal Crosslinking Using Deep Learning. J. Clin. Med. 2021, 10, 844. [Google Scholar] [CrossRef]
- Kalin, N.S.; Maeda, N.; Klyce, S.D.; Hargrave, S.; Wilson, S.E. Automated Topographic Screening for Keratoconus in Refractive Surgery Candidates. CLAO J. 1996, 22, 164–167. [Google Scholar]
- Kheiri, S.; Meshkani, M.R.; Faghihzadeh, S. A Correlated Frailty Model for Analysing Risk Factors in Bilateral Corneal Graft Rejection for Keratoconus: A Bayesian Approach. Stat. Med. 2005, 24, 2681–2693. [Google Scholar] [CrossRef]
- Smolek, M.K.; Klyce, S.D. Neural Network Pair for the Detection and Grading of Keratoconus and Keratoconus Suspects by Videokeratoscopy. Investig. Ophthalmol. Vis. Sci. 1996, 37, 4200. [Google Scholar]
- Dong, Y.; Li, D.; Guo, Z.; Liu, Y.; Lin, P.; Lv, B.; Lv, C.; Xie, G.; Xie, L. Dissecting the Profile of Corneal Thickness with Keratoconus Progression Based on Anterior Segment Optical Coherence Tomography. Front. Neurosci. 2021, 15, 804273. [Google Scholar] [CrossRef]
- Fariselli, C.; Vega-Estrada, A.; Arnalich-Montiel, F.; Alio, J.L. Artificial Neural Network to Guide Intracorneal Ring Segments Implantation for Keratoconus Treatment: A Pilot Study. Eye Vis. 2020, 7, 20. [Google Scholar] [CrossRef]
- Hallett, N.; Yi, K.; Dick, J.; Hodge, C.; Sutton, G.; Wang, Y.G.; You, J. Deep Learning Based Unsupervised and Semi-supervised Classification for Keratoconus. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020. [Google Scholar]
- Hasan, S.A.; Singh, M. An Algorithm to Differentiate Astigmatism from Keratoconus in Axial Topgraphic Images. In Proceedings of the 2015 International Conference on Industrial Instrumentation and Control (ICIC), Pune, India, 28–30 May 2015; pp. 1134–1139. [Google Scholar]
- Silverman, R.H.; Urs, R.; RoyChaudhury, A.; Archer, T.J.; Gobbe, M.; Reinstein, D.Z. Epithelial Remodeling as Basis for Machine-Based Identification of Keratoconus. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1580–1587. [Google Scholar] [CrossRef]
- Souza, M.B.; Medeiros, F.W.; Souza, D.B.; Garcia, R.; Alves, M.R. Evaluation of Machine Learning Classifiers in Keratoconus Detection from Orbscan II Examinations. Clinics 2010, 65, 1223–1228. [Google Scholar] [CrossRef]
- Subramanian, P.; Ramesh, G.P.; Parameshachari, B.D. Comparative Analysis of Machine Learning Approaches for the Early Diagnosis of Keratoconus. In Distributed Computing and Optimization Techniques, ICDCOT 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 241–250. [Google Scholar]
- Valdes-Mas, M.A.; Martin-Guerrero, J.D.; Ruperez, M.J.; Pastor, F.; Dualde, C.; Monserrat, C.; Peris-Martinez, C. A New Approach Based on Machine Learning for Predicting Corneal Curvature (K1) and Astigmatism in Patients with Keratoconus after Intracorneal Ring Implantation. Comput. Methods Programs Biomed. 2014, 116, 39–47. [Google Scholar] [CrossRef]
- Bolarin, J.M.; Cavas, E.; Velazquez, J.S.; Alio, J.L. A Machine-Learning Model Based on Morphogeometric Parameters for RETICS Disease Classification and GUI Development. Appl. Sci. 2020, 10, 1874. [Google Scholar] [CrossRef]
- Kato, N.; Masumoto, H.; Tanabe, M.; Sakai, C.; Negishi, K.; Torii, H.; Tabuchi, H.; Tsubota, K. Predicting keratoconus progression using deep learning. Investig. Ophthalmol. Vis. Sci. 2021, 62, 769. [Google Scholar]
- Cao, K.; Verspoor, K.; Chan, E.; Daniell, M.; Sahebjada, S.; Baird, P.N. Machine learning with a reduced dimensionality representation of comprehensive Pentacam tomography parameters to identify subclinical keratoconus. Comput. Biol. Med. 2021, 138, 104884. [Google Scholar] [CrossRef]
- Cao, K.; Verspoor, K.; Chan, E.; Daniell, M.; Sahebjada, S.; Baird, P.N. Novel, high-performance machine learning model for detection of subclinical keratoconus. Investig. Ophthalmol. Vis. Sci. 2021, 62, 2157. [Google Scholar]
- Cao, K.; Verspoor, K.; Sahebjada, S.; Baird, P.N. Evaluating the Performance of Various Machine Learning Algorithms to Detect Subclinical Keratoconus. Transl. Vis. Sci. Technol. 2020, 9, 24. [Google Scholar] [CrossRef]
- Gao, Y.H.; Wu, Q.; Li, J.; Sun, J.D.; Wan, W.B. SVM-Based Automatic Diagnosis Method for Keratoconus. In Proceedings of the Second International Workshop on Pattern Recognition, Singapore, 1–3 May 2017. [Google Scholar]
- Lavric, A.; Anchidin, L.; Popa, V.; Al-Timemy, A.H.; Alyasseri, Z.; Takahashi, H.; Yousefi, S.; Hazarbassanov, R.M. Evaluation of keratoconus detection from elevation, topography and pachymetry raw data using machine learning. Investig. Ophthalmol. Vis. Sci. 2021, 62, 2154. [Google Scholar]
- Herber, R.; Spoerl, E.; Pillunat, L.E.; Raiskup, F. Classification of dynamic corneal response parameters concerning the topographical severity of keratoconus using the dynamic Scheimpflug imaging and machine-learning algorithms. Investig. Ophthalmol. Vis. Sci. 2020, 61, 5210. [Google Scholar]
- Hernandez, L.A.; Sanchez-Huerta, V.; Ramirez-Fernandez, M.; Hernandez-Quintela, E. Combinatorial approach to determine top performing keratometric features and machine learning algorithms for keratoconus detection. Investig. Ophthalmol. Vis. Sci. 2020, 61, 4750. [Google Scholar]
- Hidalgo, I.R.; Perez, P.R.; Rozema, J.J.; Tassignon, M. Comparison of Machine Learning Methods to Automatically Classify Keratoconus. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4206. [Google Scholar]
- Issarti, I.; Consejo, A.; Jimenez-Garcia, M.; Hershko, S.; Koppen, C.; Rozema, J.J. Computer aided diagnosis for suspect keratoconus detection. Comput. Biol. Med. 2019, 109, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Issarti, I.; Consejo, A.; Jimenez-Garcia, M.; Kreps, E.O.; Koppen, C.; Rozema, J.J. Logistic index for keratoconus detection and severity scoring (Logik). Comput. Biol. Med. 2020, 122, 103809. [Google Scholar] [CrossRef]
- Kovacs, I.; Mihaltz, K.; Kranitz, K.; Juhasz, E.; Takacs, A.; Dienes, L.; Gergely, R.; Nagy, Z. Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of keratoconus. J. Cataract Refract. Surg. 2016, 42, 275–283. [Google Scholar] [CrossRef]
- Langenbucher, A.; Hafner, L.; Eppig, T.; Seitz, B.; Szentmary, N.; Flockerzi, E. Keratoconus detection and classification from parameters of the Corvis (R) ST A study based on algorithms of machine learning. Ophthalmologe 2021, 118, 697–706. [Google Scholar] [CrossRef]
- Lavric, A.; Anchidin, L.; Popa, V.; Al-Timemy, A.H.; Alyasseri, Z.; Takahashi, H. Keratoconus Severity Detection From Elevation, Topography and Pachymetry Raw Data Using a Machine Learning Approach. IEEE Access 2021, 9, 84344–84355. [Google Scholar] [CrossRef]
- Lyra, D.; Ribeiro, G.; Torquetti, L.; Ferrara, P.; Machado, A.; Lyra, J.M. Computational Models for Optimization of the Intrastromal Corneal Ring Choice in Patients With Keratoconus Using Corneal Tomography Data. J. Refract. Surg. 2018, 34, 547–550. [Google Scholar] [CrossRef]
- Mehravaran, S.; Dehzangi, I.; Rahman, M.M. Interocular Symmetry Analysis of Corneal Elevation Using the Fellow Eye as the Reference Surface and Machine Learning. Healthcare 2021, 9, 1738. [Google Scholar] [CrossRef]
- Ruiz Hidalgo, I.; Rodriguez, P.; Rozema, J.J.; Ni Dhubhghaill, S.; Zakaria, N.; Tassignon, M.-J.; Koppen, C. Evaluation of a Machine-Learning Classifier for Keratoconus Detection Based on Scheimpflug Tomography. Cornea 2016, 35, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Hidalgo, I.; Rozema, J.J.; Saad, A.; Gatinel, D.; Rodriguez, P.; Zakaria, N.; Koppen, C. Validation of an Objective Keratoconus Detection System Implemented in a Scheimpflug Tomographer and Comparison with Other Methods. Cornea 2017, 36, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Wang, M.; Zhu, T.; Zhang, Y.; Ye, Y.; Jiang, J.; Chen, S.; Lu, F.; Shen, M. Machine learning helps improve diagnostic ability of subclinical keratoconus using Scheimpflug and OCT imaging modalities. Eye Vis. 2020, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Silverman, R.H.; Urs, R.; RoyChaudhury, A.; Archer, T.J.; Gobbe, M.; Reinstein, D.Z. Combined tomography and epithelial thickness mapping for diagnosis of keratoconus. Eur. J. Ophthalmol. 2017, 27, 129–134. [Google Scholar] [CrossRef]
- Smadja, D.; Touboul, D.; Cohen, A.; Doveh, E.; Santhiago, M.R.; Mello, G.R.; Krueger, R.R.; Colin, J. Detection of subclinical keratoconus using an automated decision tree classification. Am. J. Ophthalmol. 2013, 156, 237–246.e1. [Google Scholar] [CrossRef]
- Srivatsa, P.R.; Shetty, R.; Matalia, H.; Roy, A.S. A new Zernike algorithm to link asymmetric corneal thickness to corneal wavefront aberrations for diagnosis of keratoconus. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1618. [Google Scholar]
- Takahashi, H.; Al-Timemy, A.H.; Mosa, Z.M.; Alyasseri, Z.; Lavric, A.; Filho, J.A.P.M.; Yuda, K.; Hazarbassonov, R.M.; Yousefi, S. Detecting keratoconus severity from corneal data of different populations with machine learning. Investig. Ophthalmol. Vis. Sci. 2021, 62, 2145. [Google Scholar]
- Afifah, A.; Syafira, F.; Afladhanti, P.M.; Dharmawidiarini, D. Artificial intelligence as diagnostic modality for keratoconus: A systematic review and meta-analysis. J. Taibah Univ. Med. Sci. 2024, 19, 296–303. [Google Scholar] [CrossRef]
- Alshammari, G.; Hamad, A.A.; Abdullah, Z.M.; Alshareef, A.M.; Alhebaishi, N.; Alshammari, A.; Belay, A. Applications of Deep Learning on Topographic Images to Improve the Diagnosis for Dynamic Systems and Unconstrained Optimization. Wirel. Commun. Mob. Comput. 2021, 2021, 4672688. [Google Scholar] [CrossRef]
- Al-Timemy, A.; Al-Zubaidi, L.; Ghaeb, N.; Takahashi, H.; Lavric, A.; Mosa, Z.; Hazarbassanov, R.M.; Alyasseri, Z.A.A.; Yousefi, S. A device-agnostic deep learning model for detecting keratoconus based on anterior elevation corneal maps. Investig. Ophthalmol. Vis. Sci. 2022, 63, 2101-F0090. [Google Scholar]
- Al-Timemy, A.H.; Ghaeb, N.H.; Mosa, Z.M.; Escudero, J. Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps. Cogn. Comput. 2022, 14, 1627–1642. [Google Scholar] [CrossRef]
- Al-Timemy, A.H.; Hazarbassanov, R.M.; Mosa, Z.M.; Alyasseri, M.; Lavric, A.; Oliveira da Rosa, C.A.; Griz, C.P.; Takahashi, H.; Yousefi, S. A hybrid deep learning framework for keratoconus detection based on anterior and posterior corneal maps. Investig. Ophthalmol. Vis. Sci. 2021, 62, 46. [Google Scholar]
- Al-Timemy, A.H.; Mosa, Z.M.; Alyasseri, Z.; Lavric, A.; Lui, M.M.; Hazarbassanov, R.M.; Yousefi, S. A Hybrid Deep Learning Construct for Detecting Keratoconus from Corneal Maps. Transl. Vis. Sci. Technol. 2021, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, V.A.; Schmetterer, L.; Stegmann, H.; Pfister, M.; Messner, A.; Schmidinger, G.; Garhofer, G.; Werkmeister, R.M. CorneaNet: Fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning. Biomed. Opt. Express 2019, 10, 622–641. [Google Scholar] [CrossRef]
- Feng, R.W.; Xu, Z.; Zheng, X.; Hu, H.; Jin, X.; Chen, D.Z.; Yao, K.; Wu, J. KerNet: A Novel Deep Learning Approach for Keratoconus and Sub-Clinical Keratoconus Detection Based on Raw Data of the Pentacam HR System. IEEE J. Biomed. Health Inform. 2021, 25, 3898–3910. [Google Scholar] [CrossRef]
- Firat, M.; Cankaya, C.; Cinar, A.; Tuncer, T. Automatic detection of keratoconus on Pentacam images using feature selection based on deep learning. Int. J. Imaging Syst. Technol. 2022, 32, 1548–1560. [Google Scholar] [CrossRef]
- Fisher, A.C.; Taktak, A.F.G.; Iskander, D.R.; Naroo, S.A.; Shah, S.; Kaye, S.B.; Batterbury, M. Optimisation by an Artificial Neural Network of general ellipsotoric, Fourier Series and Zernike polynomial decompositions of anterior and posterior Orbscan topography data in keratoconus. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2875. [Google Scholar]
- Gairola, S.; Joshi, P.; Balasubramaniam, A.; Murali, K.; Kwatra, N.; Jain, M. Keratoconus Classifier for Smartphone-based Corneal Topographer. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Glasgow, UK, 11–15 July 2022; Volume 2022, pp. 1875–1878. [Google Scholar] [CrossRef]
- Gao, H.B.; Pan, Z.-G.; Shen, M.-X.; Lu, F.; Li, H.; Zhang, X.-Q. KeratoScreen: Early Keratoconus Classification With Zernike Polynomial Using Deep Learning. Cornea 2022, 41, 1158–1165. [Google Scholar] [CrossRef]
- Ghaderi, M.; Sharifi, A.; Jafarzadeh Pour, E. Proposing an ensemble learning model based on neural network and fuzzy system for keratoconus diagnosis based on Pentacam measurements. Int. Ophthalmol. 2021, 41, 3935–3948. [Google Scholar] [CrossRef]
- Kamiya, K.; Ayatsuka, Y.; Kato, Y.; Shoji, N.; Mori, Y.; Miyata, K. Diagnosability of Keratoconus Using Deep Learning with Placido Disk-Based Corneal Topography. Front. Med. 2021, 8, 724902. [Google Scholar] [CrossRef]
- Karimi, A.; Meimani, N.; Razaghi, R.; Rahmati, S.M.; Jadidi, K.; Rostami, M. Biomechanics of the Healthy and Keratoconic Corneas: A Combination of the Clinical Data, Finite Element Analysis, and Artificial Neural Network. Curr. Pharm. Des. 2018, 24, 4474–4483. [Google Scholar] [CrossRef] [PubMed]
- Kuo, B.-I.; Chang, W.-Y.; Liao, T.-S.; Liu, F.-Y.; Liu, H.-Y.; Chu, H.-S.; Chen, W.-L.; Hu, F.-R.; Yen, J.-Y.; Wang, I.-J. Keratoconus Screening Based on Deep Learning Approach of Corneal Topography. Transl. Vis. Sci. Technol. 2020, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Lavric, A.; Valentin, P. KeratoDetect: Keratoconus Detection Algorithm Using Convolutional Neural Networks. Comput. Intell. Neurosci. 2019, 2019, 8162567. [Google Scholar] [CrossRef] [PubMed]
- Dongfang, L.; Yanling, D.; Sen, X.; Zhen, G.; Suxia, L.; Yan, G.; Bin, L.; Lixin, X. Deep learning based lesion detection from anterior segment optical coherence tomography images and its application in the diagnosis of keratoconus. Chin. J. Ophthalmol. 2021, 57, 447–453. [Google Scholar] [CrossRef]
- Liu, H.; Anwar, M.; Koaik, M.; Taylor, S.; Karanjia, R.; Mintsioulis, G.; Ziai, S.; Baig, K. Deep Learning for Detection of Keratoconus and Prediction of Crosslinking Efficacy. Investig. Ophthalmol. Vis. Sci. 2021, 62, 2044. [Google Scholar]
- Pavlatos, E.; Huang, D.; Li, Y. Combining OCT Corneal Topography and Thickness Maps to Diagnose Keratoconus Using a Convolutional Neural Network. Investig. Ophthalmol. Vis. Sci. 2022, 63, 2109-F0098. [Google Scholar]
- Perissutti, P.; Accardo, A.P.; Pensiero, S.; Salvetat, M.L. Automatic keratoconus detection by means of a neural network: Comparison between a monocular and a binocular approach. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Biomedical Engineering Towards the Year 2000 and Beyond, Hong Kong, China, 1 November 1998; pp. 1397–1399. [Google Scholar]
- Quah, X.M.; Kerdraon, Y. Construction and evaluation of an artificial neural network based screening tool for keratoconus using refractive error measurements. Clin. Exp. Ophthalmol. 2022, 49, 862–863. [Google Scholar]
- Smolek, M.K.; Klyce, S.D. Current keratoconus detection methods compared with a neural network approach. Investig. Ophthalmol. Vis. Sci. 1997, 38, 2290–2299. [Google Scholar]
- Ucar, M.; Sen, B.; Cakmak, H.B.; IEEE. A Novel Classification and Estimation Approach for Detecting Keratoconus Disease with Intelligent Systems. In Proceedings of the 2013 8th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2013; pp. 521–525. [Google Scholar]
- Zaki, W.; Daud, M.M.; Saad, A.H.; Hussain, A.; Mutalib, H.A. A Mobile Solution for Lateral Segment Photographed Images Based Deep Keratoconus Screening Method. Int. J. Integr. Eng. 2021, 13, 18–27. [Google Scholar] [CrossRef]
- Zaki, W.; Daud, M.M.; Saad, A.H.; Hussain, A.; Mutalib, H.A. Towards Automated Keratoconus Screening Approach using Lateral Segment Photographed Images. In Proceedings of the 2020 IEEE-EMBS Conference on Biomedical Engineering and Science (IECBES 2020): Leading Modern Healthcare Technology Enhancing Wellness, Langkawi Island, Malaysia, 1–3 March 2021; pp. 466–471. [Google Scholar]
- Hazarbassanov, R.M.; Alyasseri, Z.A.A.; Al-Timemy, A.; Lavric, A.; Abasid, A.K.; Takahashi, H.; Filho, J.A.M.; Campos, M.; Yousefi, S. Detecting keratoconus on two different populations using an unsupervised hybrid artificial intelligence model. Investig. Ophthalmol. Vis. Sci. 2022, 63, 2088-F0077. [Google Scholar]
- Lavric, A.; Popa, V.; Takahashi, H.; Yousefi, S. Detecting Keratoconus From Corneal Imaging Data Using Machine Learning. IEEE Access 2020, 8, 149113–149121. [Google Scholar] [CrossRef]
- Herber, R.; Pillunat, L.E.; Raiskup, F. Development of a classification system based on corneal biomechanical properties using artificial intelligence predicting keratoconus severity. Eye Vis. 2021, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Aatila, M.; Lachgar, M.; Hamid, H.; Kartit, A. Keratoconus Severity Classification Using Features Selection and Machine Learning Algorithms. Comput. Math. Methods Med. 2021, 2021, 9979560. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, Y.; Miyake, M.; Meguro, A.; Tabara, Y.; Iwai, S.; Ueda-Arakawa, N.; Nakano, E.; Mori, Y.; Yoshikawa, M.; Nakanishi, H.; et al. Keratoconus-susceptibility gene identification by corneal thickness genome-wide association study and artificial intelligence IBM Watson. Commun. Biol. 2020, 3, 410. [Google Scholar] [CrossRef]
- Vandevenne, M.M.; Favuzza, E.; Veta, M.; Lucenteforte, E.; Berendschot, T.T.; Mencucci, R.; Nuijts, R.M.; Virgili, G.; Dickman, M.M. Artificial intelligence for detecting keratoconus. Cochrane Database Syst. Rev. 2023, 11, CD014911. [Google Scholar] [CrossRef]
- Niazi, S.; Jiménez-García, M.; Findl, O.; Gatzioufas, Z.; Doroodgar, F.; Shahriari, M.H.; Javadi, M.A. Keratoconus Diagnosis: From Fundamentals to Artificial Intelligence: A Systematic Narrative Review. Diagnostics 2023, 13, 2715. [Google Scholar] [CrossRef]
- Hashemi, H.; Doroodgar, F.; Niazi, S.; Khabazkhoob, M.; Heidari, Z. Comparison of different corneal imaging modalities using artificial intelligence for diagnosis of keratoconus: A systematic review and meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 1017–1039. [Google Scholar] [CrossRef]
- Rocha, K.M.; Van den Berg, R.; Van den Berg, A.; Ambrosio, R. Optimized artificial intelligence for enhanced ectasia detection using Scheimpflug-based corneal tomography and biomechanical data. Am. J. Ophthalmol. 2022, 240, 115–123. [Google Scholar] [CrossRef]
- Ahn, H.; Kim, N.E.; Chung, J.L.; Kim, Y.J.; Jun, I.; Kim, T.-I.; Seo, K.Y. Patient Selection for Corneal Topographic Evaluation of Keratoconus: A Screening Approach Using Artificial Intelligence. Front. Med. 2022, 9, 934865. [Google Scholar] [CrossRef]
- Almeida, G.C., Jr.; Guido, R.C.; Balarin Silva, H.M.; Brandão, C.C.; de Mattos, L.C.; Lopes, B.T.; Machado, A.P.; Ambrósio, R., Jr. New Artificial Intelligence Index Based on Scheimpflug Corneal Tomography to Distinguish Subclinical Keratoconus from Healthy Corneas. J. Cataract Refract. Surg. 2022, 48, 1168–1174. [Google Scholar] [CrossRef]
- Zou, H.H.; Xu, J.H.; Zhang, L.; Ji, S.F.; Wang, Y. Assistant Diagnose for Subclinical Keratoconus by Artificial Intelligence. Chin. J. Ophthalmol. 2019, 55, 911–915. [Google Scholar] [CrossRef]
- Goodman, D.; Zhu, A.Y. Utility of Artificial Intelligence in the Diagnosis and Management of Keratoconus: A Systematic Review. Front. Ophthalmol. 2024, 4, 1380701. [Google Scholar] [CrossRef] [PubMed]
- Abdelmotaal, H.; Mostafa, M.M.; Mostafa, A.N.R.; Mohamed, A.A.; Abdelazeem, K. Classification of Color-Coded Scheimpflug Camera Corneal Tomography Images Using Deep Learning. Trans. Vis. Sci. Technol. 2020, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Gatinel, D.; Saad, A. The Challenges of the Detection of Subclinical Keratoconus at Its Earliest Stage. Int. J. Keratoconus Ectatic Corneal Dis. 2012, 1, 36–43. [Google Scholar] [CrossRef]
- Kanellopoulos, A.J. Keratoconus Management With Customized Photorefractive Keratectomy by Artificial Intelligence Ray-Tracing Optimization Combined with Higher Fluence Corneal Crosslinking: The Ray-Tracing Athens Protocol. Cornea 2021, 40, 1181–1187. [Google Scholar] [CrossRef]
- Kundu, G.; Shetty, R.; Khamar, P.; Mullick, R.; Gupta, S.; Nuijts, R.; Roy, A.S. Universal Architecture of Corneal Segmental Tomography Biomarkers for Artificial Intelligence-Driven Diagnosis of Early Keratoconus. Br. J. Ophthalmol. 2021, 107, 635–643. [Google Scholar] [CrossRef]
- Lopes, B.T.; Ramos, I.C.; Salomao, M.Q.; Guerra, F.P.; Schallhorn, S.C.; Schallhorn, J.M.; Vinciguerra, R.; Vinciguerra, P.; Price, F.W., Jr.; Price, M.O.; et al. Enhanced Tomographic Assessment to Detect Corneal Ectasia Based on Artificial Intelligence. Am. J. Ophthalmol. 2018, 195, 223–232. [Google Scholar] [CrossRef]
- Mohammadpour, M.; Heidari, Z.; Hashemi, H.; Yaseri, M.; Fotouhi, A. Comparison of Artificial Intelligence-Based Machine Learning Classifiers for Early Detection of Keratoconus. Eur. J. Ophthalmol. 2022, 32, 1352–1360. [Google Scholar] [CrossRef]
- Shetty, R.; Kundu, G.; Narasimhan, R.; Khamar, P.; Gupta, K.; Singh, N.; Nuijits, R.M.M.A.; Roy, A.S. Artificial Intelligence Efficiently Identifies Regional Differences in the Progression of Tomographic Parameters of Keratoconic Corneas. J. Refract. Surg. 2021, 37, 240–248. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, X.; Li, K.; Liu, Y.; Cao, H.; Li, J.; Jhanji, V.; Zou, H.; Liu, F.; Wang, R.; et al. Artificial Intelligence-Based Diagnostic Model for Detecting Keratoconus Using Videos of Corneal Force Deformation. Transl. Vis. Sci. Technol. 2022, 11, 32. [Google Scholar] [CrossRef]
- Xu, Z.; Feng, R.; Jin, X.; Hu, H.; Ni, S.; Xu, W.; Zheng, X.; Wu, J.; Yao, K. Evaluation of Artificial Intelligence Models for the Detection of Asymmetric Keratoconus Eyes Using Scheimpflug Tomography. Clin. Exp. Ophthalmol. 2022, 50, 714–723. [Google Scholar] [CrossRef]
- Niazi, S.; Doroodgar, F.; Hashemi Nazari, S.; Rahimi, Y.; Alió Del Barrio, J.L.; Gatzioufas, Z.; Findl, O.; Vinciguerra, P.; Vinciguerra, R.; Moshirfar, M.; et al. Refractive Surgical Approaches to Keratoconus: A Systematic Review and Network Meta-Analysis. Surv. Ophthalmol. 2024, 69, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Niazi, S.; Gatzioufas, Z.; Doroodgar, F.; Findl, O.; Baradaran-Rafii, A.; Liechty, J.; Moshirfar, M. Keratoconus: Exploring Fundamentals and Future Perspectives—A Comprehensive Systematic Review. Ther. Adv. Ophthalmol. 2024, 16, 25158414241232258. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.J.; Koppen, C.; Hafezi, F.; Ní Dhubhghaill, S.; Aslanides, I.M.; Wang, Q.M.; Cui, L.L.; Rozema, J.J. Combinations of Scheimpflug Tomography, Ocular Coherence Tomography and Air-Puff Tonometry Improve the Detection of Keratoconus. Contact Lens Anterior Eye 2023, 46, 101840. [Google Scholar] [CrossRef]
- Bodmer, N.S.; Christensen, D.G.; Bachmann, L.M.; Faes, L.; Sanak, F.; Iselin, K.; Kaufmann, C.; Thiel, M.A.; Baenninger, P.B. Deep Learning Models Used in the Diagnostic Workup of Keratoconus: A Systematic Review and Exploratory Meta-Analysis. Cornea 2024, 43, 916–931. [Google Scholar] [CrossRef]
- Gurnani, B.; Somani, A.N.; Moshirfar, M.; Patel, B.C. Fuchs Endothelial Dystrophy; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545248/ (accessed on 18 July 2025).
- Eleiwa, T.; Elsawy, A.; Özcan, E.; Abou Shousha, M. Automated diagnosis and staging of Fuchs’ endothelial cell corneal dystrophy using deep learning. Eye Vis. 2020, 7, 44. [Google Scholar] [CrossRef]
- Elsawy, A.; Eleiwa, T.; Chase, C.; Ozcan, E.; Tolba, M.; Feuer, W.; Abdel-Mottaleb, M.; Abou Shousha, M. Multidisease deep learning neural network for the diagnosis of corneal diseases. Am. J. Ophthalmol. 2021, 226, 252–261. [Google Scholar] [CrossRef]
- Gu, H.; Guo, Y.; Gu, L.; Wei, A.; Xie, S.; Ye, Z.; Xu, J.; Zhou, X.; Lu, Y.; Liu, X.; et al. Deep Learning for Identifying Corneal Diseases from Ocular Surface Slit-Lamp Photographs. Sci. Rep. 2020, 10, 17851. [Google Scholar] [CrossRef]
- Li, W.; Yang, Y.; Zhang, K.; Long, E.; He, L.; Zhang, L.; Zhu, Y.; Chen, C.; Liu, Z.; Wu, X.; et al. Dense anatomical annotation of slit lamp images improves the performance of deep learning for the diagnosis of ophthalmic disorders. Nat. Biomed. Eng. 2020, 4, 767–777. [Google Scholar] [CrossRef]
- Han, S.B.; Liu, Y.C.; Liu, C.; Mehta, J.S. Applications of Imaging Technologies in Fuchs Endothelial Corneal Dystrophy: A Narrative Literature Review. Bioengineering 2024, 11, 271. [Google Scholar] [CrossRef]
- Vigueras-Guillén, J.P.; van Rooij, J.; Engel, A.; Lemij, H.G.; van Vliet, L.J.; Vermeer, K.A. Deep Learning for Assessing the Corneal Endothelium from Specular Microscopy Images up to 1 Year after Ultrathin-DSAEK Surgery. Transl. Vis. Sci. Technol. 2020, 9, 49. [Google Scholar] [CrossRef]
- Laing, R.A.; Leibowitz, H.M.; Oak, S.S.; Chang, R.; Berrospi, A.R.; Theodore, J. Endothelial mosaic in Fuchs’ dystrophy. A qualitative evaluation with the specular microscope. Arch. Ophthalmol. 1981, 99, 80–83. [Google Scholar] [CrossRef]
- Ong Tone, S.; Jurkunas, U. Imaging the Corneal Endothelium in Fuchs Corneal Endothelial Dystrophy. Semin. Ophthalmol. 2019, 34, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Foo, V.H.X.; Lim, G.Y.S.; Liu, Y.C.; Ong, H.S.; Wong, E.; Chan, S.; Wong, J.; Mehta, J.S.; Ting, D.S.W.; Ang, M. Deep learning for detection of Fuchs endothelial dystrophy from widefield specular microscopy imaging: A pilot study. Eye Vis. 2024, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Belda-Para, C.; Velarde-Rodríguez, G.; Marichal-Hernández, J.G.; Velasco-Ocaña, M.; Trujillo-Sevilla, J.M.; Alejandre-Alba, N.; Rodríguez-Ramos, J.M. Fuchs’ Endothelial Corneal Dystrophy evaluation using a high-resolution wavefront sensor. Sci. Rep. 2024, 14, 20369. [Google Scholar] [CrossRef]
- Bitton, K.; Zéboulon, P.; Ghazal, W.; Rizk, M.; Elahi, S.; Gatinel, D. Deep Learning Model for the Detection of Corneal Edema Before Descemet Membrane Endothelial Keratoplasty on Optical Coherence Tomography Images. Transl. Vis. Sci. Technol. 2022, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Prada, A.M.; Quintero, F.; Mendoza, K.; Galvis, V.; Tello, A.; Romero, L.A.; Marrugo, A.G. Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence-Derived Morphometric Parameters from Specular Microscopy Images. Cornea 2024, 43, 1080–1087. [Google Scholar] [CrossRef]
- Liu, S.; Kandakji, L.; Stupnicki, A.; Sumodhee, D.; Leucci, M.T.; Hau, S.; Balal, S.; Okonkwo, A.; Moghul, I.; Kanda, S.P.; et al. Current Applications of Artificial Intelligence for Fuchs Endothelial Corneal Dystrophy: A Systematic Review. Transl. Vis. Sci. Technol. 2025, 14, 12. [Google Scholar] [CrossRef]
- Yang, H.K.; Che, S.A.; Hyon, J.Y.; Han, S.B. Integration of Artificial Intelligence into the Approach for Diagnosis and Monitoring of Dry Eye Disease. Diagnostics 2022, 12, 3167. [Google Scholar] [CrossRef]
- Pur, D.R.; Krance, S.H.; Pucchio, A.; Miranda, R.N.; Felfeli, T. Current Uses of Artificial Intelligence in the Analysis of Biofluid Markers Involved in Corneal and Ocular Surface Diseases: A Systematic Review. Eye 2023, 37, 2007–2019. [Google Scholar] [CrossRef]
- Mohammadi, S.F.; Farrokhpour, H.; Soltani, G.; Latifi, G. Keratoneuropathy. Ocul. Surf. 2023, 29, 386–387. [Google Scholar] [CrossRef]
- Storås, A.M.; Strümke, I.; Riegler, M.A.; Grauslund, J.; Hammer, H.L.; Yazidi, A.; Halvorsen, P.; Gundersen, K.G.; Utheim, T.P.; Jackson, C.J. Artificial Intelligence in Dry Eye Disease. Ocul. Surf. 2022, 23, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Persiya, J.; Sasithradevi, A. Thermal Mapping the Eye: A Critical Review of Advances in Infrared Imaging for Disease Detection. J. Therm. Biol. 2024, 121, 103867. [Google Scholar] [CrossRef] [PubMed]
- Cartes, C.; López, D.; Salinas, D.; Segovia, C.; Ahumada, C.; Pérez, N.; Valenzuela, F.; Lanza, N.; López Solís, R.O.; Perez, V.L.; et al. Dry Eye Is Matched by Increased Intrasubject Variability in Tear Osmolarity as Confirmed by Machine Learning Approach. Arch. Soc. Esp. Oftalmol. 2019, 94, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Grus, F.H.; Augustin, A.J. Analysis of Tear Protein Patterns by a Neural Network as a Diagnostical Tool for the Detection of Dry Eyes. Electrophoresis 1999, 20, 875–880. [Google Scholar] [CrossRef]
- Grus, F.H.; Podust, V.N.; Bruns, K.; Lackner, K.; Fu, S.; Dalmasso, E.A.; Wirthlin, A.; Pfeiffer, N. SELDI-TOF-MS ProteinChip Array Profiling of Tears from Patients with Dry Eye. Investig. Ophthalmol. Vis. Sci. 2005, 46, 863–876. [Google Scholar] [CrossRef]
- Yedidya, T.; Hartley, R.; Guillon, J.-P.; Kanagasingam, Y. (Eds.) Automatic Dry Eye Detection. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2007; Springer: Berlin/Heidelberg, Germany, 2007; Volume 10. [Google Scholar]
- Su, T.-Y.; Liu, Z.-Y.; Chen, D.-Y. Tear Film Break-Up Time Measurement Using Deep Convolutional Neural Networks for Screening Dry Eye Disease. IEEE Sens. J. 2018, 18, 6857–6862. [Google Scholar] [CrossRef]
- Vyas, A.H.; Mehta, M.A.; Kotecha, K.; Pandya, S.; Alazab, M.; Gadekallu, T.R. Tear Film Breakup Time-Based Dry Eye Disease Detection Using Convolutional Neural Network. Neural Comput. Appl. 2024, 36, 143–161. [Google Scholar] [CrossRef]
- Su, T.-Y.; Ting, P.-J.; Chang, S.-W.; Chen, D.-Y. Superficial Punctate Keratitis Grading for Dry Eye Screening Using Deep Convolutional Neural Networks. IEEE Sens. J. 2019, 20, 1672–1678. [Google Scholar] [CrossRef]
- Arita, R.; Yabusaki, K.; Yamauchi, T.; Ichihashi, T.; Morishige, N. Diagnosis of Dry Eye Subtype by Artificial Intelligence Software Based on the Interferometric Fringe Pattern of the Tear Film Obtained with the Kowa DR-1α Instrument. Investig. Ophthalmol. Vis. Sci. 2018, 59, 1965. [Google Scholar]
- Yabusaki, K.; Arita, R.; Yamauchi, T. Automated Classification of Dry Eye Type Analyzing Interference Fringe Color Images of Tear Film Using Machine Learning Techniques. Model. Artif. Intell. Ophthalmol. 2019, 2, 28–35. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, L.; Wen, H.; Ren, Y.; Huang, S.; Bai, F.; Li, N.; Craig, J.P.; Tong, L.; Chen, W. Impact of Incomplete Blinking Analyzed Using a Deep Learning Model with the Keratograph 5M in Dry Eye Disease. Transl. Vis. Sci. Technol. 2022, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Zhang, X.; Zhang, J.; Bai, F.; Huang, S.; Pu, J.; Chen, W.; Wang, L. A Texture-Aware U-Net for Identifying Incomplete Blinking from Eye Videography. Biomed. Signal Process. Control 2022, 75, 103630. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Kuang, R.F.; Wei, Z.Y.; Wang, L.Y.; Su, G.Y.; Ou, Z.H.; Liang, Q.F. Detection of the Spontaneous Blinking Pattern of Dry Eye Patients Using the Machine Learning Method. Zhonghua Yan Ke Za Zhi 2022, 58, 120–129. [Google Scholar] [CrossRef]
- Edorh, N.A.; El Maftouhi, A.; Djerada, Z.; Arndt, C.; Denoyer, A. New Model to Better Diagnose Dry Eye Disease Integrating OCT Corneal Epithelial Mapping. Br. J. Ophthalmol. 2022, 106, 1488–1495. [Google Scholar] [CrossRef]
- Wang, M.T.M.; Xue, A.L.; Craig, J.P. Screening Utility of a Rapid Non-Invasive Dry Eye Assessment Algorithm. Cont. Lens Anterior Eye 2019, 42, 497–501. [Google Scholar] [CrossRef]
- Heidari, Z.; Hashemi, H.; Sotude, D.; Ebrahimi-Besheli, K.; Khabazkhoob, M.; Soleimani, M.; Djalilian, A.R.; Yousefi, S. Applications of Artificial Intelligence in Diagnosis of Dry Eye Disease: A Systematic Review and Meta-Analysis. Cornea 2024, 43, 1310–1318. [Google Scholar] [CrossRef]
- Aranha dos Santos, V.; Schmetterer, L.; Gröschl, M.; Garhofer, G.; Schmidl, D.; Kucera, M.; Unterhuber, A.; Hermand, J.-P.; Werkmeister, R.M. In Vivo Tear Film Thickness Measurement and Tear Film Dynamics Visualization Using Spectral Domain Optical Coherence Tomography. Opt. Express 2015, 23, 21043–21063. [Google Scholar] [CrossRef]
- Deng, X.; Tian, L.; Liu, Z.; Zhou, Y.; Jie, Y. A Deep Learning Approach for the Quantification of Lower Tear Meniscus Height. Biomed. Signal Process. Control 2021, 68, 102655. [Google Scholar] [CrossRef]
- Stegmann, H.; Aranha dos Santos, V.; Messner, A.; Unterhuber, A.; Schmidl, D.; Garhöfer, G.; Schmetterer, L.; Werkmeister, R.M. Automatic Assessment of Tear Film and Tear Meniscus Parameters in Healthy Subjects Using Ultrahigh-Resolution Optical Coherence Tomography. Biomed. Opt. Express 2019, 10, 2744–2756. [Google Scholar] [CrossRef]
- Stegmann, H.; Werkmeister, R.M.; Pfister, M.; Garhöfer, G.; Schmetterer, L.; dos Santos, V.A. Deep Learning Segmentation for Optical Coherence Tomography Measurements of the Lower Tear Meniscus. Biomed. Opt. Express 2020, 11, 1539–1554. [Google Scholar] [CrossRef]
- Egrilmez, S.; Yildirim-Theveny, Ş. Treatment-Resistant Bacterial Keratitis: Challenges and Solutions. Clin. Ophthalmol. 2020, 14, 287–297. [Google Scholar] [CrossRef]
- Farrokhpour, H.; Soleimani, M.; Cheraqpour, K.; Masoumi, A.; Tabatabaei, S.A.; Shahriari, M.; Hobaby, S.; Baharnoor, S.M.; Chaudhry, A.; Djalilian, A.R. A Case Series of Infectious Keratitis After Corneal Cross-Linking. J. Refract. Surg. 2023, 39, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, M.; Keykhaei, M.; Tabatabaei, S.A.; Shahriari, M.; Farrokhpour, H.; Ramezani, B.; Cheraqpour, K. Post Photorefractive Keratectomy (PRK) Infectious Keratitis; Six-Year Experience of a Tertiary Eye Hospital. Eye 2023, 37, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Parikh, P.C.; Valikodath, N.G.; Estopinal, C.B.; Shtein, R.M.; Sugar, A.; Niziol, L.M.; Woodward, M.A. Precision of Epithelial Defect Measurements. Cornea 2017, 36, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, M.P.; Srinivasan, M.; Whitcher, J.P. Diagnosing and Managing Microbial Keratitis. Community Eye Health 2015, 28, 3–6. [Google Scholar]
- Avunduk, A.M.; Varnell, E.D.; Kaufman, H.E. The Effect of Roscovitine on Herpetic Keratitis. Exp. Eye Res. 2003, 76, 679–683. [Google Scholar] [CrossRef]
- Moshirfar, M.; Hopping, G.C.; Vaidyanathan, U.; Liu, H.; Somani, A.N.; Ronquillo, Y.C.; Hoopes, P.C. Biological Staining and Culturing in Infectious Keratitis: Controversy in Clinical Utility. Med. Hypothesis Discov. Innov. Ophthalmol. 2019, 8, 145–151. [Google Scholar]
- Sarayar, R.; Lestari, Y.D.; Setio, A.A.A.; Sitompul, R. Accuracy of Artificial Intelligence Model for Infectious Keratitis Classification: A Systematic Review and Meta-Analysis. Front. Public Health 2023, 11, 1239231. [Google Scholar] [CrossRef]
- Ong, Z.Z.; Sadek, Y.; Qureshi, R.; Liu, S.-H.; Li, T.; Liu, X.; Takwoingi, Y.; Sounderajah, V.; Ashrafian, H.; Ting, D.S.W.; et al. Diagnostic Performance of Deep Learning for Infectious Keratitis: A Systematic Review and Meta-Analysis. EClinicalMedicine 2024, 77, 102887. [Google Scholar] [CrossRef]
- Soleimani, M.; Esmaili, K.; Rahdar, A.; Aminizadeh, M.; Cheraqpour, K.; Tabatabaei, S.A.; Mirshahi, R.; Bibak-Bejandi, Z.; Mohammadi, S.F.; Koganti, R.; et al. From the Diagnosis of Infectious Keratitis to Discriminating Fungal Subtypes; A Deep Learning-Based Study. Sci. Rep. 2023, 13, 22200. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, S.; Wang, Z.; Chen, K.; Gong, L.; Li, G.; Zheng, Q.; Zhang, Q.; He, Y.; Zhang, Q.; et al. Development and Multi-Center Validation of Machine Learning Model for Early Detection of Fungal Keratitis. eBioMedicine 2023, 88, 104438. [Google Scholar] [CrossRef]
- Li, Z.; Xie, H.; Wang, Z.; Li, D.; Chen, K.; Zong, X.; Qiang, W.; Wen, F.; Deng, Z.; Chen, L.; et al. Deep Learning for Multi-Type Infectious Keratitis Diagnosis: A Nationwide, Cross-Sectional, Multicenter Study. npj Digit. Med. 2024, 7, 181. [Google Scholar] [CrossRef] [PubMed]
- Shareef, O.; Soleimani, M.; Tu, E.; Jacobs, D.S.; Ciolino, J.B.; Rahdar, A.; Cheraqpour, K.; Ashraf, M.; Habib, N.B.; Greenfield, J.; et al. A Novel Artificial Intelligence Model for Diagnosing Acanthamoeba Keratitis Through Confocal Microscopy. Ocul. Surf. 2024, 34, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.; Gopal, B.P.; Deshmukh, R.; Seitzman, G.D.; Said, D.G.; Dua, H.S. Diagnostic Armamentarium of Infectious Keratitis: A Comprehensive Review. Ocul. Surf. 2022, 23, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Saini, J.S.; Jain, A.K.; Kumar, S.; Vikal, S.; Pankaj, S.; Singh, S. Neural Network Approach to Classify Infective Keratitis. Curr. Eye Res. 2003, 27, 111–116. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Thammasudjarit, R.; Jongkhajornpong, P.; Attia, J.; Thakkinstian, A. Deep Learning for Discrimination Between Fungal Keratitis and Bacterial Keratitis: DeepKeratitis. Cornea 2022, 41, 616–622. [Google Scholar] [CrossRef]
- Hung, N.; Shih, A.K.-Y.; Lin, C.; Kuo, M.-T.; Hwang, Y.-S.; Wu, W.-C.; Kuo, C.-F.; Kang, E.Y.-C.; Hsiao, C.-H. Using Slit-Lamp Images for Deep Learning-Based Identification of Bacterial and Fungal Keratitis: Model Development and Validation with Different Convolutional Neural Networks. Diagnostics 2021, 11, 1246. [Google Scholar] [CrossRef]
- Redd, T.K.; Prajna, N.V.; Srinivasan, M.; Lalitha, P.; Krishnan, T.; Rajaraman, R.; Venugopal, A.; Acharya, N.; Seitzman, G.D.; Lietman, T.M.; et al. Image-Based Differentiation of Bacterial and Fungal Keratitis Using Deep Convolutional Neural Networks. Ophthalmol. Sci. 2022, 2, 100119. [Google Scholar] [CrossRef]
- Redd, T.K.; Santina, L.D.; Prajna, L.V.; Lalitha, P.; Acharya, N.; Lietman, T. Automated Differentiation of Bacterial from Fungal Keratitis Using Deep Learning. Investig. Ophthalmol. Vis. Sci. 2021, 62, 2161. [Google Scholar]
- Woodward, M.A.; Maganti, N.; Niziol, L.M.; Amin, S.; Hou, A.; Singh, K. Development and Validation of a Natural Language Processing Algorithm to Extract Descriptors of Microbial Keratitis from the Electronic Health Record. Cornea 2021, 40, 1548–1553. [Google Scholar] [CrossRef]
- Kuo, M.T.; Hsu, B.W.; Lin, Y.S.; Fang, P.C.; Yu, H.J.; Chen, A.; Yu, M.S.; Tseng, V.S. Comparisons of Deep Learning Algorithms for Diagnosing Bacterial Keratitis via External Eye Photographs. Sci. Rep. 2021, 11, 24227. [Google Scholar] [CrossRef] [PubMed]
- Loo, J.; Woodward, M.A.; Prajna, V.; Kriegel, M.F.; Pawar, M.; Khan, M.; Niziol, L.M.; Farsiu, S. Open-Source Automatic Biomarker Measurement on Slit-Lamp Photography to Estimate Visual Acuity in Microbial Keratitis. Transl. Vis. Sci. Technol. 2021, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Mayya, V.; Kamath Shevgoor, S.; Kulkarni, U.; Hazarika, M.; Barua, P.D.; Acharya, U.R. Multi-Scale Convolutional Neural Network for Accurate Corneal Segmentation in Early Detection of Fungal Keratitis. J. Fungi 2021, 7, 850. [Google Scholar] [CrossRef] [PubMed]
- Farsiu, S.; Loo, J.; Kreigel, M.F.; Tuohy, M.; Prajna, V.; Woodward, M.A. Deep Learning-Based Automatic Segmentation of Stromal Infiltrates and Associated Biomarkers on Slit-Lamp Images of Microbial Keratitis. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1480. [Google Scholar]
- Ji, Q.; Jiang, Y.; Qu, L.; Yang, Q.; Zhang, H. An Image Diagnosis Algorithm for Keratitis Based on Deep Learning. Neural Process. Lett. 2022, 54, 2007–2024. [Google Scholar] [CrossRef]
- Kuo, M.T.; Hsu, B.W.; Yin, Y.K.; Fang, P.C.; Lai, H.Y.; Chen, A.; Yu, M.S.; Tseng, V.S. A Deep Learning Approach in Diagnosing Fungal Keratitis Based on Corneal Photographs. Sci. Rep. 2020, 10, 14424. [Google Scholar] [CrossRef]
- Kriegel, M.F.; Huang, J.; Ashfaq, H.A.; Niziol, L.M.; Preethi, M.; Tan, H.; Tuohy, M.M.; Patel, T.P.; Prajna, V.; Woodward, M.A. Algorithm Variability in Quantification of Epithelial Defect Size in Microbial Keratitis Images. Cornea 2020, 39, 628–633. [Google Scholar] [CrossRef]
- Patel, T.P.; Prajna, N.V.; Farsiu, S.; Valikodath, N.G.; Niziol, L.M.; Dudeja, L.; Kim, K.H.; Woodward, M.A. Novel Image-Based Analysis for Reduction of Clinician-Dependent Variability in Measurement of the Corneal Ulcer Size. Cornea 2018, 37, 331–339. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, Y.; Li, Y.; Xiao, X.; Qiu, Q.; Yang, M.; Zhao, Y.; Cui, L. Automatic Diagnosis of Fungal Keratitis Using Data Augmentation and Image Fusion with Deep Convolutional Neural Network. Comput. Methods Programs Biomed. 2020, 187, 105019. [Google Scholar] [CrossRef]
- Wu, X.; Qiu, Q.; Liu, Z.; Zhao, Y.; Zhang, B.; Zhang, Y.; Wu, X.; Ren, J. Hyphae Detection in Fungal Keratitis Images with Adaptive Robust Binary Pattern. IEEE Access 2018, 6, 13449–13460. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, K.; Chen, Q.; Chen, Q.; Huang, W.; Cui, L.; Li, M.; Li, J.; Chen, L.; Shen, C.; et al. Deep Learning-Based Automated Diagnosis of Fungal Keratitis with In Vivo Confocal Microscopy Images. Ann. Transl. Med. 2020, 8, 706. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Cao, Y.; Cui, X.; Liu, Z.; Xu, H.; Wang, C.; Zhang, W.; Zhang, Y.; Fang, Y.; Geng, Y.; et al. Medical Image Management and Analysis System Based on Web for Fungal Keratitis Images. Math. Biosci. Eng. 2021, 4, 3667–3679. [Google Scholar] [CrossRef] [PubMed]
- Koyama, A.; Miyazaki, D.; Nakagawa, Y.; Ayatsuka, Y.; Miyake, H.; Ehara, F.; Sasaki, S.-I.; Shimizu, Y.; Inoue, Y. Determination of Probability of Causative Pathogen in Infectious Keratitis Using Deep Learning Algorithm of Slit-Lamp Images. Sci. Rep. 2021, 11, 22642. [Google Scholar] [CrossRef]
- Soleimani, M.; Rahdar, A.; Esmaili, K.; Cheraqpour, K.; Baharnoori, M.; Kufta, A.; Mohammadi, S.F.; Cheung, A.; Yousefi, S.; Djalilian, A.R. AI-Assisted Diagnosis and Subtype Differentiation of Microbial Keratitis: One Step Forward to Mitigate Health Disparities. Investig. Ophthalmol. Vis. Sci. 2024, 65, 1503. [Google Scholar]
- Vupparaboina, K.K.; Vedula, S.N.; Aithu, S.; Bashar, S.B.; Challa, K.; Loomba, A.; Taneja, M.; Channapayya, S.; Richhariya, A. Artificial Intelligence Based Detection of Infectious Keratitis Using Slit-Lamp Images. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4236. [Google Scholar]
- Xu, Y.; Kong, M.; Xie, W.; Duan, R.; Fang, Z.; Lin, Y.; Zhu, Q.; Tang, S.; Wu, F.; Yao, Y.-F. Deep Sequential Feature Learning in Clinical Image Classification of Infectious Keratitis. Engineering 2021, 7, 1002–1010. [Google Scholar] [CrossRef]
- Fang, Z.; Kuang, K.; Lin, Y.; Wu, F.; Yao, Y.-F. (Eds.) Concept-Based Explanation for Fine-Grained Images and Its Application in Infectious Keratitis Classification. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020. [Google Scholar]
- Wang, L.; Chen, K.; Wen, H.; Zheng, Q.; Chen, Y.; Pu, J.; Chen, W. Feasibility Assessment of Infectious Keratitis Depicted on Slit-Lamp and Smartphone Photographs Using Deep Learning. Int. J. Med. Inform. 2021, 155, 104583. [Google Scholar] [CrossRef]
- Natarajan, R.; Matai, H.D.; Raman, S.; Kumar, S.; Ravichandran, S.; Swaminathan, S.; Alex John, S.R. Advances in the Diagnosis of Herpes Simplex Stromal Necrotising Keratitis: A Feasibility Study on Deep Learning Approach. Indian J. Ophthalmol. 2022, 70, 3279–3283. [Google Scholar] [CrossRef]
- Tiwari, M.; Piech, C.; Baitemirova, M.; Prajna, N.V.; Srinivasan, M.; Lalitha, P.; Villegas, N.; Balachandar, N.; Chua, J.T.; Redd, T.; et al. Differentiation of Active Corneal Infections from Healed Scars Using Deep Learning. Ophthalmology 2022, 129, 139–146. [Google Scholar] [CrossRef]
- Alquran, H.; Al-Issa, Y.; Alsalatie, M.; Mustafa, W.A.; Qasmieh, I.A.; Zyout, A. Intelligent Diagnosis and Classification of Keratitis. Diagnostics 2022, 12, 1344. [Google Scholar] [CrossRef]
- Mansoor, H.; Tan, H.C.; Lin, M.T.; Mehta, J.S.; Liu, Y.C. Diabetic Corneal Neuropathy. J. Clin. Med. 2020, 9, 3956. [Google Scholar] [CrossRef] [PubMed]
- Vereertbrugghen, A.; Galletti, J.G. Corneal Nerves and Their Role in Dry Eye Pathophysiology. Exp. Eye Res. 2022, 222, 109191. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Lin, M.T.; Mehta, J.S. Analysis of Corneal Nerve Plexus in Corneal Confocal Microscopy Images. Neural Regen. Res. 2021, 16, 690–691. [Google Scholar] [CrossRef] [PubMed]
- Preston, F.G.; Meng, Y.; Burgess, J.; Ferdousi, M.; Azmi, S.; Petropoulos, I.N.; Kaye, S.; Malik, R.A.; Zheng, Y.; Alam, U. Artificial Intelligence Utilising Corneal Confocal Microscopy for the Diagnosis of Peripheral Neuropathy in Diabetes Mellitus and Prediabetes. Diabetologia 2022, 65, 457–466. [Google Scholar] [CrossRef]
- Salahouddin, T.; Petropoulos, I.N.; Ferdousi, M.; Ponirakis, G.; Asghar, O.; Alam, U.; Kamran, S.; Mahfoud, Z.R.; Efron, N.; Malik, R.A.; et al. Artificial Intelligence–Based Classification of Diabetic Peripheral Neuropathy from Corneal Confocal Microscopy Images. Diabetes Care 2021, 44, e151. [Google Scholar] [CrossRef]
- Scarpa, F.; Colonna, A.; Ruggeri, A. Multiple-Image Deep Learning Analysis for Neuropathy Detection in Corneal Nerve Images. Cornea 2020, 39, 342–347. [Google Scholar] [CrossRef]
- Williams, B.M.; Borroni, D.; Liu, R.; Zhao, Y.; Zhang, J.; Lim, J.; Ma, B.; Romano, V.; Qi, H.; Ferdousi, M.; et al. An Artificial Intelligence-Based Deep Learning Algorithm for the Diagnosis of Diabetic Neuropathy Using Corneal Confocal Microscopy: A Development and Validation Study. Diabetologia 2020, 63, 419–430. [Google Scholar] [CrossRef]
- Mou, L.; Qi, H.; Liu, Y.; Zheng, Y.; Matthew, P.; Su, P.; Liu, J.; Zhang, J.; Zhao, Y. DeepGrading: Deep Learning Grading of Corneal Nerve Tortuosity. IEEE Trans. Med. Imaging 2022, 41, 2079–2091. [Google Scholar] [CrossRef]
- Wu, X.; Liu, L.; Zhao, L.; Guo, C.; Li, R.; Wang, T.; Yang, X.; Xie, P.; Liu, Y.; Lin, H. Application of Artificial Intelligence in Anterior Segment Ophthalmic Diseases: Diversity and Standardization. Ann. Transl. Med. 2020, 8, 714. [Google Scholar] [CrossRef]
- Delgado-Rivera, G.; Roman-Gonzalez, A.; Alva-Mantari, A.; Saldivar-Espinoza, B.; Zimic, M.; Barrientos-Porras, F.; Salguedo-Bohorquez, M. Method for the Automatic Segmentation of the Palpebral Conjunctiva Using Image Processing. In Proceedings of the 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), Concepcion, Chile, 17–19 October 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Derakhshani, R.; Saripalle, S.K.; Doynov, P. Computational Methods for Objective Assessment of Conjunctival Vascularity. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar]
- Jo, H.-C.; Jeong, H.; Lee, J.; Na, K.-S.; Kim, D.-Y. Quantification of Blood Flow Velocity in the Human Conjunctival Microvessels Using Deep Learning-Based Stabilization Algorithm. Sensors 2021, 21, 3224. [Google Scholar] [CrossRef]
- Owen, C.G.; Ellis, T.J.; Woodward, E.G. A Comparison of Manual and Automated Methods of Measuring Conjunctival Vessel Widths from Photographic and Digital Images. Ophthalmic Physiol. Opt. 2004, 24, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Masumoto, H.; Tabuchi, H.; Yoneda, T.; Nakakura, S.; Ohsugi, H.; Sumi, T.; Fukushima, A. Severity Classification of Conjunctival Hyperaemia by Deep Neural Network Ensembles. J. Ophthalmol. 2019, 2019, 7820971. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xia, C.; Li, X.; Wei, S.; Zhou, S.; Yu, X.; Gao, J.; Cao, Y.; Zhang, H. Identifying Diabetes from Conjunctival Images Using a Novel Hierarchical Multi-Task Network. Sci. Rep. 2022, 12, 264. [Google Scholar] [CrossRef]
- Mergen, B.; Safi, T.; Nadig, M.; Bhattrai, G.; Daas, L.; Alexandersson, J.; Seitz, B. Detecting the corneal neovascularisation area using artificial intelligence. Br. J. Ophthalmol. 2024, 108, 667–672. [Google Scholar] [CrossRef]
- Mirzayev, I.; Gündüz, A.K.; Aydın Ellialtıoğlu, P.; Gündüz, Ö.Ö. Clinical Applications of Anterior Segment Swept-Source Optical Coherence Tomography: A Systematic Review. Photodiagnosis Photodyn. Ther. 2023, 42, 103334. [Google Scholar] [CrossRef]
- Yoo, T.K.; Choi, J.Y.; Kim, H.K.; Ryu, I.H.; Kim, J.K. Adopting Low-Shot Deep Learning for the Detection of Conjunctival Melanoma Using Ocular Surface Images. Comput. Methods Programs Biomed. 2021, 205, 106086. [Google Scholar] [CrossRef]
- Ueno, Y.; Oda, M.; Yamaguchi, T.; Fukuoka, H.; Nejima, R.; Kitaguchi, Y.; Miyake, M.; Akiyama, M.; Miyata, K.; Kashiwagi, K.; et al. Deep learning model for extensive smartphone-based diagnosis and triage of cataracts and multiple corneal diseases. Br. J. Ophthalmol. 2024, 108, 1406–1413. [Google Scholar] [CrossRef]
- Maehara, H.; Ueno, Y.; Yamaguchi, T.; Kitaguchi, Y.; Miyazaki, D.; Nejima, R.; Inomata, T.; Kato, N.; Chikama, T.I.; Ominato, J.; et al. Artificial intelligence support improves diagnosis accuracy in anterior segment eye diseases. Sci. Rep. 2025, 15, 5117. [Google Scholar] [CrossRef]
- Taki, Y.; Ueno, Y.; Oda, M.; Kitaguchi, Y.; Ibrahim, O.M.A.; Aketa, N.; Yamaguchi, T. Analysis of the performance of the CorneAI for iOS in the classification of corneal diseases and cataracts based on journal photographs. Sci. Rep. 2024, 14, 15517. [Google Scholar] [CrossRef]
- Kozma, K.; Jánki, Z.R.; Bilicki, V.; Csutak, A.; Szalai, E. Artificial intelligence to enhance the diagnosis of ocular surface squamous neoplasia. Sci. Rep. 2025, 15, 9550. [Google Scholar] [CrossRef]
- Nguena, M.B.; van den Tweel, J.G.; Makupa, W.; Hu, V.H.; Weiss, H.A.; Gichuhi, S.; Burton, M.J. Diagnosing ocular surface squamous neoplasia in East Africa: Case-control study of clinical and in vivo confocal microscopy assessment. Ophthalmology 2014, 121, 484–491. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Qiang, W.; Wu, X.; Zhang, Y.; Gu, Y.; Chen, K.; Qi, D.; Xiu, L.; Sun, Y.; et al. A Domain-Specific Pretrained Model for Detecting Malignant and Premalignant Ocular Surface Tumors: A Multicenter Model Development and Evaluation Study. Research 2025, 8, 0711. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv. (CSUR) 2020, 53, 134. [Google Scholar] [CrossRef]
- Sarkar, P.; Tripathy, K. Pterygium; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK558907/ (accessed on 19 July 2025).
- Chen, B.; Fang, X.W.; Wu, M.N.; Zhu, S.J.; Zheng, B.; Liu, B.Q.; Wu, T.; Hong, X.Q.; Wang, J.T.; Yang, W.H. Artificial intelligence assisted pterygium diagnosis: Current status and perspectives. Int. J. Ophthalmol. 2023, 16, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Gan, F.; Chen, W.Y.; Liu, H.; Zhong, Y.L. Application of artificial intelligence models for detecting the pterygium that requires surgical treatment based on anterior segment images. Front. Neurosci. 2022, 16, 1084118. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Fang, X.; Qian, Y.; He, K.; Wu, M.; Zheng, B.; Song, J. Pterygium Screening and Lesion Area Segmentation Based on Deep Learning. J. Healthc. Eng. 2022, 2022, 3942110. [Google Scholar] [CrossRef]
- Wan, C.; Shao, Y.; Wang, C.; Jing, J.; Yang, W. A Novel System for Measuring Pterygium’s Progress Using Deep Learning. Front. Med. 2022, 9, 819971. [Google Scholar] [CrossRef]
- Hung, K.H.; Lin, C.; Roan, J.; Kuo, C.F.; Hsiao, C.H.; Tan, H.Y.; Chen, H.C.; Ma, D.H.; Yeh, L.K.; Lee, O.K. Application of a Deep Learning System in Pterygium Grading and Further Prediction of Recurrence with Slit Lamp Photographs. Diagnostics 2022, 12, 888. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, C.; Wang, S.; Chen, Y.; Lin, X.; Guo, S.; Liu, Z.; Wang, Y.; Zhang, H.; Guo, Y.; et al. Accurate detection and grading of pterygium through smartphone by a fusion training model. Br. J. Ophthalmol. 2024, 108, 336–342. [Google Scholar] [CrossRef]
- Fang, X.; Deshmukh, M.; Chee, M.L.; Soh, Z.D.; Teo, Z.L.; Thakur, S.; Goh, J.H.L.; Liu, Y.C.; Husain, R.; Mehta, J.S.; et al. Deep learning algorithms for automatic detection of pterygium using anterior segment photographs from slit-lamp and hand-held cameras. Br. J. Ophthalmol. 2022, 106, 1642–1647. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Liu, Y.; He, K.; Wu, M.; Jin, L.; Jiang, Q.; Zhu, S.; Hao, X.; Wang, C.; Yang, W. Research on an Intelligent Lightweight-Assisted Pterygium Diagnosis Model Based on Anterior Segment Images. Dis. Markers 2021, 2021, 7651462. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Z.; Xiu, L.; Zhang, P.; Wang, W.; Wang, Y.; Chen, G.; Yang, W.; Chen, W. Large language model-based multimodal system for detecting and grading ocular surface diseases from smartphone images. Front. Cell Dev. Biol. 2025, 13, 1600202. [Google Scholar] [CrossRef] [PubMed]
- Seitzman, G.D.; Prajna, L.; Prajna, N.V.; Sansanayudh, W.; Satitpitakul, V.; Laovirojjanakul, W.; Chen, C.; Zhong, L.; Ouimette, K.; Redd, T.; et al. Biomarker Detection and Validation for Corneal Involvement in Patients with Acute Infectious Conjunctivitis. JAMA Ophthalmol. 2024, 142, 865–871. [Google Scholar] [CrossRef]
- Delsoz, M.; Madadi, Y.; Munir, W.M.; Tamm, B.; Mehravaran, S.; Soleimani, M.; Djalilian, A.; Yousefi, S. Performance of ChatGPT in Diagnosis of Corneal Eye Diseases. Cornea 2024, 43, 664–670. [Google Scholar] [CrossRef]
- Hussain, Z.S.; Delsoz, M.; Elahi, M.; Jerkins, B.; Kanner, E.; Wright, C.; Munir, W.M.; Soleimani, M.; Djalilian, A.; Lao, P.A.; et al. Performance of DeepSeek, Qwen 2.5 MAX, and ChatGPT Assisting in Diagnosis of Corneal Eye Diseases, Glaucoma, and Neuro-Ophthalmology Diseases Based on Clinical Case Reports. medRxiv, 2025; preprint. [Google Scholar] [CrossRef]
- Jiao, C.; Rosas, E.; Asadigandomani, H.; Delsoz, M.; Madadi, Y.; Raja, H.; Munir, W.M.; Tamm, B.; Mehravaran, S.; Djalilian, A.R.; et al. Diagnostic Performance of Publicly Available Large Language Models in Corneal Diseases: A Comparison with Human Specialists. Diagnostics 2025, 15, 1221. [Google Scholar] [CrossRef]
- Soleimani, M.; Cheraqpour, K.; Sadeghi, R.; Pezeshgi, S.; Koganti, R.; Djalilian, A.R. Artificial Intelligence and Infectious Keratitis: Where Are We Now? Life 2023, 13, 2117. [Google Scholar] [CrossRef]
- Kim, M.; Sohn, H.; Choi, S.; Kim, S. Requirements for Trustworthy Artifical Intelligence and its Application in Healthcare. Healthc. Inform. Res. 2021, 27, 105–113. [Google Scholar] [CrossRef]
- Liu, X.; Rivera, S.C.; Moher, D.; Calvert, M.J.; Denniston, A.K.; The SPIRIT-AI and CONSORT-AI Working Group. Reporting Guidelines for Clinical Trials Evaluating Artificial Intelligence Interventions: The CONSORT-AI Extension. npj Digit. Med. 2020, 3, 37. [Google Scholar] [CrossRef]
- Sounderajah, V.; Ashrafian, H.; Golub, R.M.; Shetty, S.; De Fauw, J.; Hooft, L.; Moons, K.; Collins, G.; Moher, D.; Bossuyt, P.M.; et al. Developing a Reporting Guideline for Artificial Intelligence-Centred Diagnostic Test Accuracy Studies: The STARD-AI Protocol. BMJ Open 2021, 11, e047709. [Google Scholar] [CrossRef]
- Maile, H.; Li, J.P.O.; Gore, D.; Leucci, M.; Mulholland, P.; Hau, S.; Szabo, A.; Moghul, I.; Balaskas, K.; Fujinami, K.; et al. Machine Learning Algorithms to Detect Subclinical Keratoconus: Systematic Review. JMIR Med. Inform. 2021, 9, e27363. [Google Scholar] [CrossRef]
- Guni, A.; Sounderajah, V.; Whiting, P.; Bossuyt, P.; Darzi, A.; Ashrafian, H. Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies Using AI (QUADAS-AI): Protocol for a Qualitative Study. JMIR Res. Protoc. 2024, 13, e58202. [Google Scholar] [CrossRef]
- Kazemzadeh, K. Artificial intelligence in ophthalmology: Opportunities, challenges, and ethical considerations. Med. Hypothesis Discov. Innov. Ophthalmol. J. 2025, 14, 255–272. [Google Scholar] [CrossRef]
- Li, Q.; Tan, J.; Xie, H.; Zhang, X.; Dai, Q.; Li, Z.; Yan, L.L.; Chen, W. Evaluating the accuracy of the Ophthalmologist Robot for multiple blindness-causing eye diseases: A multicentre, prospective study protocol. BMJ Open 2024, 14, e077859. [Google Scholar] [CrossRef]
- Young, J.A.; Chang, C.W.; Scales, C.W.; Menon, S.V.; Holy, C.E.; Blackie, C.A. Machine Learning Methods Using Artificial Intelligence Deployed on Electronic Health Record Data for Identification and Referral of At-Risk Patients from Primary Care Physicians to Eye Care Specialists: Retrospective, Case-Controlled Study. JMIR AI 2024, 3, e48295. [Google Scholar] [CrossRef] [PubMed]
AI Model | Imaging Modality | Performance Metrics | Notes |
---|---|---|---|
Random Forest [112] | Pentacam, Harvard Dataverse (topography); 434 eyes | Accuracy: 98%, 95% | Used sequential forward selection (SFS) for feature selection |
Support Vector Machine [32,66,111] | 3151 OCT images [113], Pentacam parameters from 5881 eyes [67] and 3502 eyes [32] (elevation and topography) | Accuracy: 96.6%, 95%; prediction: >93% | Used cubic kernel and 8 key parameters |
Neural Networks [27,28,29,51,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109] | Corneal topography images (quantity varies by study) | Sensitivity: 94–100%, specificity: 97.6–100% | High performance across multiple studies |
FPA-K-means (Unsupervised) [110] | 6961 OCT-based topography | Accuracy: 96.03%, precision: 96.29%, recall: 96.06%, F-score: 96.17%, purity: 96.03% | Unsupervised, pre-labeling bias-free |
Automated Tree-Based Classifier [81] | Topography parameters from 372 eyes | Sensitivity: 100%, specificity: 99.5% | High performance differentiating KC from non-KC |
CNN + Scheimpflug [123] | Pentacam four-map color-coded display of 3218 eyes | Accuracies: 0.98 to 0.99 for tested classes/sets | Excellent KC, SKC, vs. non-KC eye discrimination |
Soft Voting Ensemble Model [119] | None (used clinical data to recommend topography) | Sensitivity: 90.5% (internal), 96.4% (external) | Used for triage and screening |
BESTi [120] | Pentacam (topography) of 2893 eyes | Sensitivity and specificity: 84.97% | Outperformed PRFI and BAD-D indices for SKC detection |
RETICS-based AI Model [60] | None (used morpho-geometric parameters) | Sensitivity: 85% (validation), 95% (training) | Categorized severity; considered gender, HOAs, coma-like aberrations |
Ectasia Status Index (ESI) [35] | 3156 eyes selected from OCT | Sensitivity: 97.7%, specificity: 94.1% | Based on posterior corneal surface and thickness; grades KC severity |
Gradient Boosting Decision Tree (GBDT) algorithm compared with residents [121] | OCT-based topography of 2018 cases | Accuracy: 95.53% vs. 93.55% (residents), AUC: 0.99 | Outperformed ophthalmology residents |
Deep Learning (adjusted age algorithm) [61] | 274 OCT color-coded maps | Accuracy: 85% | Differentiates progressive from non-progressive KC |
Naïve Bayes [114] | None | Not quantified | Used for patient subgroup stratification |
Hierarchical Clustering [114] | None | Not quantified | Unsupervised clustering method |
K-Nearest Neighbor [118] | 3886 eyes using Scheimpflug-based corneal tomography + biomechanical assessments | 99.8% sensitivity, 99.8% specificity, and 99.8% accuracy (left eye); 99.9% sensitivity, 99.4% specificity, and 99.8% accuracy (right eye) | Used for classification and subgrouping |
GAN [122] | Not specified | Not quantified | Used for data augmentation and feature representation |
SVM (progression prediction) [107] | 695 eyes using corneal topography | Accuracy: 97.72% | Second highest accuracy with faster training/testing time |
Neural Networks (progression prediction) [107] | 695 eyes using corneal topography | Accuracy: 98.29% | Highest accuracy in predicting KC progression |
Model Type | Imaging Modality | Performance Metrics | Notes |
---|---|---|---|
DL model [137] | 18,720 AS-OCT | Sensitivity = 99%, Specificity = 98% | Differentiated normal, early-stage, and late-stage FECD |
DL model [137] | 18,720 AS-OCT | Early-FECD: AUC = 0.997, sensitivity = 91%, specificity = 97% Late-FECD: AUC = 0.974, sensitivity up to 100%, specificity = 92% FECD vs. non-FECD: AUC = 0.998, sensitivity 99%, specificity 98% | High accuracy in staging and diagnosis of FECD |
DL model [138] | 158,220 AS-OCT | FECD: AUC = 1.0, F1 = 100% Keratoconus: AUC = 0.99, F1 = 98% DED: AUC = 0.99, F1 = 90% | Multi-disease diagnosis, including FECD |
Hierarchical DL model [139] | 5325 Slit lamp photography | AUC = 0.939 (FECD + other dystrophies), AUC range = 0.90 = 0.95 (retrospective), >0.91 (prospective) | Included FECD as part of broader corneal dystrophy classification |
Semantic segmentation DL model [140] | 1772 Slit lamp photography | Accuracy = 79–99%, sensitivity = 53–99%, specificity = 85–99% | Detected 10 anterior segment pathologies including FECD |
CNN-based DL model [142] | 383 Specular microscopy | Success = 98% of images, error = 2.5–5.7% vs. 7.5–18.3% (manual); manual only worked in 31–72% of images | Outperformed traditional methods |
DL model [145] | 775 Salience map images | Internal validation: AUC = 0.92, sensitivity = 0.86, specificity = 0.86 External validation: AUC = 0.82, sensitivity = 0.74, specificity = 0.74 | Detected abnormal images across FECD |
DL model [145] | 775 Salience map images | Internal validation: AUC = 0.96, sensitivity = 0.91, specificity = 0.91 External validation: AUC = 0.77, sensitivity = 0.69, specificity = 0.68 | Distinguished FECD from other diagnoses |
DL model [145] | 775 Widefield salience map images | AUC = 0.88, Sensitivity = 0.79, Specificity = 0.78 | Detected ECD > 1000 cells/mm2 to diagnose FECD |
Support Vector Machine [146] | Not specified (247 eyes in 3 mm group and 149 in 5 mm group) | 3 mm pupil: accuracy = 92.8%, sensitivity = 96.9%, precision = 94.8–95.2% 5 mm pupil: accuracy = 90.2–90.7%, sensitivity = 94.8%, precision = 92.1–92.7% | Differentiated healthy vs. pathological corneas using statistical features |
DL model using edema fraction [147] | 1992 AS-OCT | AUC = 0.97 overall; 0.96 (FECD vs. normal); 0.99 (non-FECD vs. normal) | EF used as early biomarker based on DCCT change |
DL model using GAR% [147] | 104 eyes from AS-OCT (central cornea) | Correlation = 0.60, p < 0.001 | GAR% correlated with m-Krachmer grading scale |
AI Model | Imaging Modality | Performance Metrics | Notes |
---|---|---|---|
NIPALS+ MLP Neural Network (MLP NN) [153] | None; used tear proteomics | Accuracy: 89.3% | Classified non-DED, DED, and MGD-associated DED using proteomics |
Multi-layer Feed-forward NN [153] | None; used seven-biomarker tear panel | AUC: 0.93 | Strong performance but limited interpretability |
Hierarchical Clustering + RF [153] | None; used tear proteins and metabolites | Not specified | Differentiated DED from other OSDs; identified subgroups and risk factors |
Infrared Thermography [154] | Thermal images (quantity not specified) | Sensitivity: 84–99.9%, specificity: 83–99.4%, accuracy: 84–99.8% | IRT + ML (KNN, PNN, SVM); high accuracy for ADDE classification |
K-Nearest Neighbor [154] | Thermography images (quantity not specified) | Accuracy: 99.88%, sensitivity: 99.7%, specificity: 100% | Evaluated corneal temperature profiles |
Artificial Neural Network [156] | None; tear proteomics (electrophoresis) | Accuracy: 89% | Automatically detected DED from protein electrophoretic patterns |
Protein Chip Array + AI [157] | None; tear protein microarrays | Sensitivity and specificity: 90% | Differentiated DED patients from non-DED controls |
EyeScan Algorithm [158] | 8 slit lamp videos (TBUT) | Accuracy: 91% | First automated video-based DED tool (2007), expanded with additional tear metrics |
CNN (FTBUT) [159] | 60 fluorescein TBUT videos | Accuracy: 98.3% | Segmented TBUT break-up areas automatically |
TBUT Video Algorithm [160] | 30 TBUT video recordings | Accuracy: 83% | Diagnosed and graded DED severity based on TBUT |
CNN (SPK detection) [161] | 5160 fluorescein-stained images | Accuracy: 97%, r = 0.81 (with clinical grading) | Graded punctate dots and correlated with clinical severity |
Lipid Interferometer + ML [162,163] | 414 [163] and 138 [164], tear film lipid interferometer images | Agreement: 0.82 | Classified healthy, ADDE, or evaporative DED |
DL-based Blink Analysis [164,165] | Video recordings from 100 eyes [165] and 1196 frame images from a keratograph [166] | Not quantified | Linked blink frequency and incomplete blinking to DED |
U-Net + ResNet [166] | Blink video recordings (quantity not specified) | Segmentation accuracy: 96.3%, classification accuracy: 96.0% | Differentiated partial/complete blinks; identified blink dynamics in DED |
Random Forest Regression [167] | AS-OCT epithelial mapping of 114 patients | Sensitivity: 86.4%, specificity: 91.7%, AUC: 0.87 | Identified epithelial thickness differences as DED markers |
SANDE + NIBUT Rule-Based Algorithm [168] | Clinical survey + NIBUT (non-invasive TBUT) of 235 patients using infrared meibography | Sensitivity: 86%, specificity: 94% | Combined symptom and tear stability data for fast DED screening |
General AI Models (Meta-analysis) [169] | Various | Accuracy: 91.91%, sensitivity: 89.58%, specificity: 92.62% | Based on pooled results across studies |
AI Model | Imaging Modalities | Performance Metrics | Notes |
---|---|---|---|
Automated Tear Film Thickness Model [170] | High-Resolution OCT (quantity not specified) | Relative accuracy: 65% | Fully automated; high reproducibility for DED diagnosis and treatment monitoring |
CNN-Based TMH Segmentation [171] | 485 Tear Meniscus Images (OCT) | IoU: 82.5%, correlation with ground truth: 0.965 vs. manual 0.898 | Automated measurement of TMH; improved consistency and reliability in aqueous-deficient DED |
Conventional Image Processing [172] | 384 Ultrahigh-Resolution OCT images | Significant correlation (all r ≥ 0.657) | Accurately segmented TMH, tear meniscus area, depth, radius using traditional methods |
Thresholding-Based ML Algorithm [173] | 6658 AS-OCT | Sensitivity: 96%, specificity: 100% | Robust segmentation of lower tear meniscus; enhances objective quantification for DED evaluation |
Model Type | Imaging Modality | Performance Metrics | Notes |
---|---|---|---|
CNN (3 models) [183] | 9329 slit lamp photos | Accuracies: 99.3% (IK), ~84% (BK vs. FK), 77.5% (yeast vs. filamentous) | Multi-task model for IK diagnosis and etiology differentiation |
DeepIK (custom DL) [185] | 23,055 slit lamp photos | Cohen’s Kappa: 0.70–0.77; time/image: 0.034 sec | Two-stage classification mimicking expert workflow; outperformed other DL models |
Neural networks [188] | None (input clinical variables) | Accuracy: 90.7% | Early AI model distinguishing BK vs. FK; outperformed clinicians |
Ensemble CNN [190,191] | 2167 slit lamp photos | Sensitivity: 0.77; F1: 0.83; AUPRC: 0.904 | BK vs. FK classification |
CNN [190] | 1330 cropped images | Accuracy: 80% | BK and FK classification |
MobileNet [191] | 980 slit lamp images | AUC: 0.86 (single-center), 0.83 (multi-center) | CNN comparison for BK/FK detection |
ResNet-50 [192] | Slit lamp images (quantity not specified) | Specificity/sensitivity (BK): 80%/70%; (FK): 70%/80% | Differentiating BK vs. FK |
NLP algorithm [193] | None (qualitative phrases from notes) | Sensitivity: 50–100% | Quantified MK features: centrality, thinning, depth |
EfficientNet B3 [194] | 1512 slit lamp images | Sensitivity: 74%; specificity: 64% | BK diagnosis; performance comparable to ophthalmologists |
VGG19, ResNet50, DenseNet121 [189] | 2167 mixed BK/FK images | Best: VGG19 F1 score: 0.78; AUPRC: 0.861 | Comparative study for BK/FK classification |
SLIT-Net, ResNeXt [195,196] | 195 white light and 148 blue light slit lamp images [196]; 133 clinically suspected slit lamp images and 540 collated public-domain images [197] | Accuracy: up to 88.96% | Lesion segmentation models |
R-CNN [197] | 80 Slit lamp images | Dice coefficient: 0.74–0.76 | Segmentation of IK features (e.g., infiltrates, hypopyons) |
ResNet50 (multi-attribute) [198] | Slit lamp images (quantity not specified) | Accuracy: 89.51% | Multi-attribute IK feature detection |
DenseNet + semi-automated algorithm [199,200,201] | 288 Slit lamp photos [200]; 92 images [201]; not specified [202] | ICC: 0.96–0.98 (automated), 0.84–0.88 (human) | FK diagnosis; epithelial defect measurement |
AlexNet, VGGNet + HMF [202] | 977 abnormal and 876 normal slit lamp images | Accuracy: 99.95% | Used histogram matching fusion for enhancement |
ARBP texture analysis [203] | 183 normal and 195 abnormal confocal microscopy images | Accuracy: 99.74%; TPR, TNR, AUC ≈ 1 | Texture-based classification |
ResNet [204] | 2088 in vivo confocal microscopy | AUC: 0.987; accuracy: 0.962; sensitivity: 0.918; specificity: 0.9834 | FK classification |
AlexNet, ZFNet, VGG16 [205] | Confocal microscopy (quantity not specified) | VGG16: accuracy: 0.992; sensitivity: 0.993; specificity: 0.992; AUC: 0.999 | High performance in IK classification |
DL models [140] | 1772 and 5325 slit lamp images | AUCs > 0.91 | Classification of IK subtypes and other corneal pathologies |
Hybrid DL [206] | 4306 images | Bacteria: 90.7%/0.963; fungi: 95.0%/0.975; Acanthamoeba: 97.9%/0.995; HSV: 92.3%/0.946 | Multi-pathogen classification |
CNN [207] | 10,739 images | BK: 91.91%; FK: 79.77%; Acanthamoeba: 81.27% | Multi-class classification study |
AlexNet, VGG-16, VGG-19 [208] | 928 slit lamp images | Training: ~100%; testing: 99.1–100% | IK classification across three networks |
Sequential CNN [209] | 362 images | BK: 78.7%; FK: 74.23%; HSK: 75.1% | Outperformed 121 ophthalmologists |
DenseNet121 + VCM [210] | 3319 slit lamp images | F1: BK 0.431; FK 0.872; HSK 0.651 | Pixel-level saliency-enhanced classification |
InceptionV3 [211] | 5673 slit lamp images | DenseNet121 outperformed ResNet50 and InceptionV3 | Normal vs. BK, FK, HSK classification |
DenseNet [212] | 307 slit lamp images | Accuracy: 72%; AUC: 0.73; sensitivity: 69.6%; specificity: 76.5% | HSV necrotizing stromal keratitis classification |
CNN [186] | 3312 in vivo confocal microscopy (HRT3) | Accuracy, sensitivity, specificity: 76% | Acanthamoeba keratitis diagnosis |
Logistic regression, RF, DT, Lasso [184] | 1047 slit lamp images | Internal validation: mean AUC of 0.916, 0.920, and 0.859, respectively | Explored for FK diagnosis and clinical sign prediction |
Systematic review [181,182] | 34,070 slit lamp photos; 136,401 anterior segment photos, AS-OCT, IVCM, and corneal topography | Accuracy: 64.38% (BK vs. FK); 96.6% (infectious vs. noninfectious) | DL models outperformed clinicians; IVCM superior to ASP |
AI Model | Image Modality | Performance Metrics | Diagnostic Target |
---|---|---|---|
Modified ResNet-50 [218] | 369 confocal microscopy images | Sensitivity 1.0 for healthy controls, 0.85 for DPN+, 0.83 for DPN- | Diabetic peripheral neuropathy (DPN) |
U-Net + adaptive neuro-fuzzy inference system [219] | Trained on 174 confocal microscopy images, validated with 534 | AUC 0.95 (92% sensitivity, 80% specificity) for DPN detection | Diabetic neuropathy (DPN) |
CNN model [220] | 600 confocal microscopy images | Sensitivity 0.98, specificity 0.96, accuracy 0.97 | DPN detection |
Automatic segmentation model [221] | 1698 confocal microscopy images | Sensitivity 0.68, specificity 0.87, AUC 0.83 | DPN detection |
Deep Grading CNN [222] | 354 confocal microscopy images | 85.64% accuracy | Nerve tortuosity quantification |
Model Type | Imaging Modality | Performance Metrics | Notes |
---|---|---|---|
CNN [224] | 115 segmented conjunctiva images | 77.58% sensitivity (anemia detection) | Compared to lab test results for anemia detection |
ANN [225] | 271 color digital images of conjunctiva | 0.89 correlation with ground truth | Evaluated conjunctival vascularity; best method out of two |
Attention U-Net [226] | 15 conjunctival images with motion artifacts | High segmentation performance | Developed for motion correction and segmentation in blurred images |
Custom Algorithm [227] | 101 vessels from 12 digital photographs | High intra-session repeatability; strong agreement with manual assessment | Measured conjunctival vessel width with minor estimation errors |
Neural Network (JOAS criteria) [228] | 5008 conjunctival images | 71.8% vessel area detection; r = 0.737, p < 0.01 | Graded conjunctival hyperemia severity vs. expert evaluation |
Neural Network [229] | 611 conjunctival images | 75.1% accuracy; 78.7% sensitivity; 69.0% specificity | Detected diabetes via conjunctival microcirculation analysis |
DL algorithms [231] | AS SS-OCT images (quantity not specified) | Near-perfect sensitivity and specificity | Applied to angle closure glaucoma detection and VA prediction; future potential in conjunctival tumor assessment |
CNN with data augmentation [232] | 398 smartphone-captured conjunctival images | 97% accuracy | Detected conjunctival melanoma using enhanced training dataset |
YOLOv5-based DL model [233] | 6442 smartphone slit lamp images | AUC: 0.997 (ocular surface tumors) | High diagnostic accuracy for multiple ocular conditions |
CorneAI platform [234,235] | 5270 smartphone + slit lamp images | Accuracy: 86%; improved accuracy from 79.2% to 88.8% overall; AUC: 0.62 (tumor), 0.71 (deposits) | Improved attending and resident performance |
ResNet50V2, YOLOv8x, VGG19 [236,237] | 2774 IVCM images | Accuracy > 97%, precision ≥ 98%, recall ≥ 85%, F1 score ≥ 92% | Applied to OSSN; enabled subtype stratification |
OSPM-enhanced classification model [238] | 1455 tumor images | AUC range: 0.89–0.99 across datasets | Outperformed standard CNNs; matched senior ophthalmologists; improved junior diagnostic performance |
MobileNetV2, NASNet, GoogleNet, ResNet50, InceptionV3 [239] | 398 public ocular surface images | Best: MobileNetV2 AUC = 0.976, accuracy = 96.5%; with GANs: AUC = 0.983, accuracy = 97.2% | GAN-enhanced training improved results |
Ensemble DL model [242] | 172 slit lamp images | Accuracy = 94.12%, AUC = 0.980 | Pterygium detection |
VGG16 [243] | 734 slit lamp images | Accuracy = 99%, sensitivity = 98%, specificity = 99.33%, Kappa = 0.98, F1 = 99% | High performance in binary classification |
CNN-based segmentation model [244] | 489 slit lamp images | Dice = 0.9620 (cornea), 0.9020 (pterygium); Kappa = 0.918 | Effective in anatomical segmentation tasks |
DL model [245] | 258 slit lamp images | Sensitivity, specificity, and accuracy = 91.7%; F1 = 0.846 | Classified primary, recurrent, and no pterygium |
RFRC and SRU-Net [246] | 20,987 slit lamp + 1094 smartphone images | Accuracy = 95.24%; fusion segmentation: F1 = 0.8981, sensitivity = 0.8709, specificity = 0.9668, AUC = 0.9295 | Performed well across devices; comparable to clinicians |
Two custom DL algorithms [247] | 2503 slit lamp photographs | Any pterygium AUC = 99.5% (internal), 99.1% (ext1), 99.7% (ext2); referable AUC = 98.5%, 99.7%, 99.0% | High generalizability across datasets |
MobileNetV2 [248] | 436 slit lamp images | Sensitivity = 0.8370, specificity = 0.9048, F1 = 0.8250 | Consistent high performance in multiple studies |
MOSAIC (GPT-4 Turbo, Claude-3 Opus, Gemini-1.5 Pro) [249] | 375 smartphone-acquired images | Accuracy = 86.96% (detection), 66.67% (grading pterygium) | Integrates LLMs in diagnostics |
ML (with SHAP analysis) [250] | 58 RNA sequencing samples | Performance dropped without APOE gene | Predicted corneal involvement in infectious conjunctivitis; identified APOE as key biomarker |
Model | Diagnostic Accuracy | Accuracy by Disease Type | AI–Physician Agreement | Physician–Physician Agreement | ||
---|---|---|---|---|---|---|
Pairwise Agreement with Experts [253] | Interobserver Agreement [251,252] | Kappa (p-Value) [254] | ||||
ChatGPT-4.0 (GPT-4.0) | 85%, 85%, 80% | Degenerative: 100%, Inflammatory: 40%, Congenital: 83.3%, Infectious: 100% | 80%, 75%, 85%, 80% | 85%, 80%, 75%, 65% (vs. GPT-3.5) | 0.348 (p = 0.040) | 93.3%, 90.5% |
ChatGPT-01 | 85% | — | — | 8.3% less than physician average | — | 93.3% |
ChatGPT-3.5 (GPT-3.5) | 60%, 60% | Degenerative: 66.7%, Inflammatory: 60%, Congenital: 50%, Infectious: 66.7% | 60%, 60%, 60%, 60% | 60%, 65% (vs. GPT-4.0) | 0.146 (p = 0.209) | 93.3% |
GPT-4.0 Mini | 55% | Degenerative: 83.3%, Inflammatory: 40%, Congenital: 33.3%, Infectious: 66.7% | 55%, 50%, 60%, 65% | — | 0.121 (p = 0.257) | 90.5% |
DeepSeek (V3 and R1) | 90% (V3), 65% (R1) | Degenerative: 100%, Inflammatory: 40%, Congenital: 50%, Infectious: 66.7% | 65%, 75%, 70%, 70% | 3.3% less than physician average (V3) | 0.178 (p = 0.162) (R1) | 93.3% |
Claude 3.5 Sonnet | 70% | Degenerative: 100%, Inflammatory: 60%, Congenital: 50%, Infectious: 66.7% | 60%, 60%, 60%, 65% | — | 0.219 (p = 0.117) | 90.5% |
Grok3 | 70% | Degenerative: 83.3%, Inflammatory: 40%, Congenital: 66.7%, Infectious: 100% | 80%, 75%, 85%, 80% | — | 0.219 (p = 0.117) | 90.5% |
Qwen 2.5 MAX | 55% | — | — | 38.3% less than physician average | — | 93.3% |
Gemini 1.5 Flash | 30% | Degenerative: 33.3%, Inflammatory: 0%, Congenital: 33.3%, Infectious: 66.7% | 30%, 30%, 30%, 30% | — | 0.044 (p = 0.502) | 90.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nusair, O.; Asadigandomani, H.; Farrokhpour, H.; Moosaie, F.; Bibak-Bejandi, Z.; Razavi, A.; Daneshvar, K.; Soleimani, M. Clinical Applications of Artificial Intelligence in Corneal Diseases. Vision 2025, 9, 71. https://doi.org/10.3390/vision9030071
Nusair O, Asadigandomani H, Farrokhpour H, Moosaie F, Bibak-Bejandi Z, Razavi A, Daneshvar K, Soleimani M. Clinical Applications of Artificial Intelligence in Corneal Diseases. Vision. 2025; 9(3):71. https://doi.org/10.3390/vision9030071
Chicago/Turabian StyleNusair, Omar, Hassan Asadigandomani, Hossein Farrokhpour, Fatemeh Moosaie, Zahra Bibak-Bejandi, Alireza Razavi, Kimia Daneshvar, and Mohammad Soleimani. 2025. "Clinical Applications of Artificial Intelligence in Corneal Diseases" Vision 9, no. 3: 71. https://doi.org/10.3390/vision9030071
APA StyleNusair, O., Asadigandomani, H., Farrokhpour, H., Moosaie, F., Bibak-Bejandi, Z., Razavi, A., Daneshvar, K., & Soleimani, M. (2025). Clinical Applications of Artificial Intelligence in Corneal Diseases. Vision, 9(3), 71. https://doi.org/10.3390/vision9030071