Safety and Efficacy of Prostaglandin Analogues in the Immediate Postoperative Period after Uneventful Phacoemulsification
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Blindness; Vision Impairment Collaborators; the Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef] [PubMed]
- Sigler, E.J.; Randolph, J.C.; Kiernan, D.F. Longitudinal analysis of the structural pattern of pseudophakic cystoid macular edema using multimodal imaging. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Rotsos, T.; Moschos, M. Cystoid macular edema. Clin. Ophthalmol. 2008, 2, 919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, C.J.; Johnston, R.L.; Buscombe, C.; Sallam, A.B.; Mohamed, Q.; Yang, Y.C. Risk Factors and Incidence of Macular Edema after Cataract Surgery A Database Study of 81984 Eyes. Ophthalmology 2016, 123, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.W. Etiology and Treatment of Macular Edema. Am. J. Ophthalmol. 2009, 147, 11–21.e1. [Google Scholar] [CrossRef]
- Miyake, K.; Ibaraki, N. Prostaglandins and Cystoid Macular Edema. Surv. Ophthalmol. 2002, 47, S203–S218. [Google Scholar] [CrossRef]
- Sacconi, R.; Corbelli, E.; Carnevali, A.; Mercuri, S.; Rabiolo, A.; Querques, L.; Marchini, G.; Bandello, F.; Querques, G. Optical coherence tomography angiography in pseudophakic cystoid macular oedema compared to diabetic macular oedema: Qualitative and quantitative evaluation of retinal vasculature. Br. J. Ophthalmol. 2018, 102, 1684–1690. [Google Scholar] [CrossRef]
- Peng, X.-J.; Su, L.-P. Characteristics of fundus autofluorescence in cystoid macular edema. Chin. Med. J. 2011, 124, 253–257. [Google Scholar]
- Barteselli, G.; Chhablani, J.; Na Lee, S.; Wang, H.; El Emam, S.; Kozak, I.; Cheng, L.; Bartsch, D.-U.; Azen, S.; Freeman, W.R. Safety and efficacy of oral fluorescein angiography in detecting macular edema in comparison with spectral domain optical coherence tomography. Retina 2013, 33, 1574–1583. [Google Scholar] [CrossRef] [Green Version]
- Obis, J.; Arias, L.; Lorenzo, D.; Padron-Perez, N.; Garcia-Bru, P.; Cobos, E.; Morwani, R.; Caminal, J. Topical NSAIDs, intravitreal dexamethasone and peribulbar triamcinolone for pseudophakic macular edema. BMC Ophthalmol. 2021, 21, 387. [Google Scholar] [CrossRef]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsey, J.D.; Kashiwagi, K.; Kashiwagi, F.; Weinreb, R.N. Prostaglandin action on ciliary smooth muscle extracellular matrix metabolism: Implications for uveoscleral outflow. Surv. Ophthalmol. 1997, 41, S53–S59. [Google Scholar] [CrossRef]
- Gaton, D.D.; Sagara, T.; Lindsey, J.D.; Gabelt, B.T.; Kaufman, P.L.; Weinreb, R.N. Increased matrix metalloproteinases 1, 2, and 3 in the monkey uveoscleral outflow pathway after topical prostaglandin F2α-isopropyl ester treatment. Arch. Ophthalmol. 2001, 119, 1165–1170. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, K.; Jin, M.; Suzuki, M.; Tanaka, Y.; Iizuka, Y.; Tsukahara, S. Isopropyl Unoprostone Increases the Activities of Matrix Metalloproteinases in Cultured Monkey Ciliary Muscle Cells. J. Glaucoma 2001, 10, 271–276. [Google Scholar] [CrossRef]
- Lim, K.S.; Nau, C.B.; O’Byrne, M.M.; Hodge, D.O.; Toris, C.B.; McLaren, J.W.; Johnson, D.H. Mechanism of Action of Bimatoprost, Latanoprost, and Travoprost in Healthy Subjects. A Crossover Study. Ophthalmology 2008, 115, 790–795.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halpern, D.L.; Pasquale, L.R. Cystoid macular edema in aphakia and pseudophakia after use of prostaglandin analogs. Semin. Ophthalmol. 2003, 17, 181–186. [Google Scholar] [CrossRef]
- Wendel, C.; Zakrzewski, H.; Carleton, B.; Etminan, M.; Mikelberg, F.S. Association of Postoperative Topical Prostaglandin Analog or Beta-Blocker Use and Incidence of Pseudophakic Cystoid Macular Edema. J. Glaucoma 2018, 27, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Yeh, P.C.; Ramanathan, S. Latanoprost and clinically significant cystoid macular edema after uneventful phacoemulsification with intraocular lens implantation. J. Cataract. Refract. Surg. 2002, 28, 1814–1818. [Google Scholar] [CrossRef] [PubMed]
- Miyake, K.; Ota, I.; Maekubo, K.; Ichihashi, S.; Miyake, S. Latanoprost Accelerates Disruption of the Blood-Aqueous Barrier and the Incidence of Angiographic Cystoid Macular Edema in Early Postoperative Pseudophakias. Arch. Ophthalmol. 1999, 117, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.M.; Lee, E.J.; Kim, T.-W.; Kim, H. Pseudophakic Macular Edema in Primary Open-Angle Glaucoma: A Prospective Study Using Spectral-Domain Optical Coherence Tomography. Am. J. Ophthalmol. 2017, 179, 97–109. [Google Scholar] [CrossRef]
- Niyadurupola, N.; Brodie, J.; Patel, T.; Chan, J.; Rahman, M.M.; Svasti-Salee, C.R.; Ching, J.; Misra, A.; Eke, T.; Broadway, D.C. Topical prostaglandin analogue use and cystoid macular oedema following uneventful cataract surgery: A randomised control trial. Br. J. Ophthalmol. 2021, 106, 1662–1666. [Google Scholar] [CrossRef] [PubMed]
- Fakhraie, G.; Mirghorbani, M.; Katz, J.L.; Mollazadeh, A.; Vahedian, Z.; Zarei, R.; Eslami, Y.; Mohammadi, M.; Hamzeh, N.; Masoomi, A. Cystoid macular edema with prostaglandin analogue use after uneventful cataract surgery in glaucoma patients. J. Cataract. Refract. Surg. 2019, 45, 1436–1445. [Google Scholar] [CrossRef] [PubMed]
- Lo, K.-J.; Ko, Y.-C.; Hwang, D.-K.; Liu, C.J.-L. The influence of topical non-steroidal anti-inflammatory drugs on the intraocular pressure lowering effect of topical prostaglandin analogues—A systemic review and meta-analysis. PLoS ONE 2020, 15, e0239233. [Google Scholar] [CrossRef] [PubMed]
- Mataftsi, A.; Tsaousis, K.T.; Tsinopoulos, I.T.; Dimitrakos, S.A. Survey of perioperative prostaglandin analogue administration during cataract surgery in Greece. Int.Ophthalmol. 2012, 32, 97–98. [Google Scholar] [CrossRef] [PubMed]
- Ahad, M.A.; McKee, H.D.R. Stopping prostaglandin analogues in uneventful cataract surgery. J. Cataract Refract. Surg. 2004, 30, 2644–2645. [Google Scholar] [CrossRef]
- Von Jagow, B.; Ohrloff, C.; Kohnen, T. Macular thickness after uneventful cataract surgery determined by optical coherence tomography. Graefe’s Arch. Clin. Exp. Ophthalmol. 2007, 245, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, Y.; Higashide, T.; Ohkubo, S.; Takeda, H.; Sugiyama, K. Effect of Cataract and Its Removal on Ganglion Cell Complex Thickness and Peripapillary Retinal Nerve Fiber Layer Thickness Measurements by Fourier-Domain Optical Coherence Tomography. J. Glaucoma 2013, 22, 447–455. [Google Scholar] [CrossRef]
- Park, K.S.; Kim, K.N.; Kim, K.M.; Lee, H.M.; Lee, S.B.; Lee, N.H.; Kim, C.-S. Effects of Topical Prostaglandin Analog on Macular Thickness Following Cataract Surgery with Postoperative Topical Bromfenac Treatment. J. Clin. Med. 2020, 9, 2883. [Google Scholar] [CrossRef]
- Chen, P.P.; Lin, S.C.; Junk, A.K.; Radhakrishnan, S.; Singh, K.; Chen, T.C. The Effect of Phacoemulsification on Intraocular Pressure in Glaucoma Patients: A Report by the American Academy of Ophthalmology. Ophthalmology 2015, 122, 1294–1307. [Google Scholar] [CrossRef]
- Anastasilakis, K.; Mourgela, A.; Symeonidis, C.; Dimitrakos, S.A.; Ekonomidis, P.; Tsinopoulos, I. Macular Edema after Uncomplicated Cataract Surgery: A Role for Phacoemulsification Energy and Vitreoretinal Interface Status? Eur. J. Ophthalmol. 2014, 25, 192–197. [Google Scholar] [CrossRef]
PGA-On Group (n = 22) | PGA-Off Group (n = 33) | p-Value | 95% CI | |
---|---|---|---|---|
Eye | ||||
Right no. | 13 | 16 | 0.442 * | |
Left no. | 9 | 17 | ||
Gender | ||||
Male no. | 10 | 13 | 0.58 ⁑ | |
Female no. | 12 | 20 | ||
Age years, mean ± SD | 75.5 ± 8.1 | 73.9 ± 5.6 | 0.45 † | −6 to 3 |
Preoperative Treatment | 0.11 ⁑ | |||
Latanoprost no. | 14 | 10 | ||
Tafluprost no. | 2 | 6 | ||
Travoprost no. | 5 | 11 | ||
Bimatoprost no. | 1 | 6 | ||
Diagnosis | 0.33 ⁑ | |||
Ocular hypertension no. | 6 | 4 | ||
Primary open-angle glaucoma no. | 5 | 14 | ||
Pseudoexfoliation syndrome no. | 9 | 8 | ||
Normal tension glaucoma no. | 2 | 4 | ||
Chronic closed-angle glaucoma no. | 0 | 3 | ||
CDE median (IQR) | 13.45 (8.97) | 10.4 (6.66) | 0.029 † | −7.19 to −0.36 |
CDVA logMAR, median (IQR) Snellen, median (range) | 0.3 (0.16) 20/40 (20/132 to 20/28) | 0.4 (0.2) 20/50 (20/200 to 20/28) | 0.15 † | −0.06 to 0.18 |
IOP mmHg, mean ± SD | 16.1 ± 3.5 | 16.3 ± 3.8 | 0.85 ** | −1.8 to 2.2 |
PGA-On Group (n = 22) | PGA-Off Group (n = 33) | p-Value | 95% CI | |
---|---|---|---|---|
CMT baseline μm, mean ± SD | 250.5 ± 30.1 | 247.3 ± 23.6 | 0.66 * | −17.8 to 11.3 |
CMT 1st week μm, mean ± SD | 253.4 ± 27.6 | 247.5 ± 23.7 | 0.40 * | −15 to 8 |
p-value vs. baseline | 0.68 ‡ | 0.40 ‡ | ||
95% CI | −3.0 to 7.5 | −3 to 1.5 | ||
CMT 1st month μm, mean ± SD | 259.7 ± 30.1 | 251.8 ± 25.2 | 0.32 * | −23.6 to 7.8 |
p-value vs. baseline | 0.032 ⁑ | 0.018 ⁑ | ||
95% CI | 0.5 to 15.0 | 0.8 to 8.2 | ||
CMT 3rd month mmHg, mean ± SD | 265.1 ± 25.7 | 255.7 ± 25.4 | 0.18 * | −23.6 to 4.6 |
p-value vs. baseline | <0.001 ‡ | <0.001 ‡ | ||
95% CI | 5.5 to 20.2 | 3.5 to 11.5 | ||
AMT baseline μm, median, IQR | 266.0, 13.8 | 258.0, 24.0 | 0.55 † | −15 to 8 |
AMT 1st week μm, median, IQR | 273, 22 | 270, 21 | 0.99 † | −10.3 to 10.1 |
p-value vs. baseline | 0.11 ‡ | <0.001 ‡ | ||
95% CI | −2.0 to 13.5 | 2.5 to 12.5 | ||
AMT 1st month μm, median, IQR | 273.5, 21.5 | 271, 24 | 0.48 † | −14 to 7 |
p-value vs. baseline | 0.001 ‡ | <0.001 ‡ | ||
95% CI | 3.5 to 22.0 | 5.5 to 15.5 | ||
AMT 3rd month μm, median, IQR | 277, 18.8 | 276, 22 | 0.71 † | −11.8 to 8.0 |
p-value vs. baseline | 0.002 ‡ | <0.001 ‡ | ||
95% CI | 5.5 to 20.0 | 7.5 to 19.5 |
CDVA | PGA-On Group (n = 22) | PGA-Off Group (n = 33) | p-Value | 95% CI |
---|---|---|---|---|
Baseline logMAR, median (IQR) Snellen, median (range) | 0.3 (0.16) 20/40 (20/132 to 20/28) | 0.4 (0.2) 20/50 (20/200 to 20/28) | 0.15 † | −0.06 to 0.18 |
1st week logMAR, median (IQR) Snellen, median (range) | 0.24 (0.24) 20/35 (20/50 to 20/20) | 0.14 (0.14) 20/28 (20/100 to 20/20) | 0.044 † | −0.14 to 0 |
p-value vs. baseline | 0.0075 ‡ | <0.001 ‡ | ||
95% CI | −0.18 to −0.06 | −0.37 to −0.21 | ||
1st month logMAR, median (IQR) Snellen, median (range) | 0.12 (0.23) 20/26 (20/50 to 20/20) | 0.14 (0.1) 20/28 (20/50 to 20/20) | 0.82 † | −0.1 to 0.4 |
p-value vs. baseline | <0.001 ‡ | <0.001 ‡ | ||
95% CI | −0.28 to −0.16 | −0.41 to −0.27 | ||
3rd month logMAR, median (IQR) Snellen, median (range) | 0.04 (0.13) 20/22 (20/40 to 20/20) | 0.1 (0.1) 20/25 (20/40 to 20/20) | 0.83 † | −0.04 to 0.6 |
p-value vs. baseline | <0.001 ‡ | <0.001 ‡ | ||
95% CI | −0.33 to −0.19 | −0.41 to −0.28 |
Intraocular Pressure | PGA-On Group (n = 22) | PGA-Off Group (n = 33) | p-Value | 95% CI |
---|---|---|---|---|
Baseline mmHg, mean ± SD | 16.1 ± 3.5 | 16.3 ± 3.8 | 0.85 * | −1.8 to 2.2 |
1st week mmHg, mean ± SD | 17.4 ± 6.0 | 17.5 ± 4.1 | 0.93 * | −2.6 to 2.9 |
p-value vs. baseline | 0.31 ⁑ | 0.15 ⁑ | ||
95% CI | −1.2 to 3.7 | −0.45 to 2.8 | ||
1st month mmHg, median(IQR) | 15.5 (4.8) | 16.0 (4.0) | 0.88 † | −3 to 3 |
p-value vs. baseline | 0.94 ⁑ | 0.67 ⁑ | ||
95% CI | −2.6 to 2.4 | −2.3 to 1.5 | ||
3rd month mmHg, mean ± SD | 13.2 ± 2.4 | 13.0 ± 2.8 | 0.72 * | −1.7 to 1.2 |
p-value vs. baseline | <0.001 ⁑ | <0.001 ⁑ | ||
95% CI | −4.2 to −1.6 | −6.0 to −1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasopoulos, E.; Koronis, S.; Matsou, A.; Dermenoudi, M.; Ziakas, N.; Tzamalis, A. Safety and Efficacy of Prostaglandin Analogues in the Immediate Postoperative Period after Uneventful Phacoemulsification. Vision 2023, 7, 45. https://doi.org/10.3390/vision7020045
Anastasopoulos E, Koronis S, Matsou A, Dermenoudi M, Ziakas N, Tzamalis A. Safety and Efficacy of Prostaglandin Analogues in the Immediate Postoperative Period after Uneventful Phacoemulsification. Vision. 2023; 7(2):45. https://doi.org/10.3390/vision7020045
Chicago/Turabian StyleAnastasopoulos, Eleftherios, Spyridon Koronis, Artemis Matsou, Maria Dermenoudi, Nikolaos Ziakas, and Argyrios Tzamalis. 2023. "Safety and Efficacy of Prostaglandin Analogues in the Immediate Postoperative Period after Uneventful Phacoemulsification" Vision 7, no. 2: 45. https://doi.org/10.3390/vision7020045
APA StyleAnastasopoulos, E., Koronis, S., Matsou, A., Dermenoudi, M., Ziakas, N., & Tzamalis, A. (2023). Safety and Efficacy of Prostaglandin Analogues in the Immediate Postoperative Period after Uneventful Phacoemulsification. Vision, 7(2), 45. https://doi.org/10.3390/vision7020045