A Comparative Study of Corneal Topography in Children with Autism Spectrum Disorder: A Cross-Sectional Study
Abstract
:1. Purpose
2. Material and Methods
3. Results
Corneal Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Ozonoff, S.; Heung, K.; Byrd, R.; Hansen, R.; Hertz-Picciotto, I. The onset of autism: Patterns of symptom emergence in the first years of life. Autism Res. 2008, 1, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Lord, C.; Risi, S.; DiLavore, P.S.; Shulman, C.; Thurm, A.; Pickles, A. Autism from 2 to 9 years of age. Arch. Gen. Psychiatry 2006, 63, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, E.; Zwaigenbaum, L.; Szatmari, P.; Fombonne, E.; Fernandez, B.A.; Woodbury-Smith, M.; Brian, J.; Bryson, S.; Smith, I.M.; Drmic, I.; et al. Autism spectrum disorder: Advances in evidence-based practice. Cmaj 2014, 186, 509–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwaigenbaum, L.; Bryson, S.E.; Szatmari, P.; Brian, J.; Smith, I.M.; Roberts, W.; Vaillancourt, T.; Roncadin, C. Sex Differences in Children with Autism Spectrum Disorder Identified Within a High-Risk Infant Cohort. J. Autism Dev. Disord. 2012, 42, 2585–2596. [Google Scholar] [CrossRef] [PubMed]
- Al-Salehi, S.M.; Al-Hifthy, E.H.; Ghaziuddin, M. Autism in Saudi Arabia: Presentation, Clinical Correlates and Comorbidity. Transcult. Psychiatry 2009, 46, 340–347. [Google Scholar] [CrossRef]
- Hedley, D.; Young, R.; Brewer, N. Using Eye Movements as an Index of Implicit Face Recognition in Autism Spectrum Disorder. Autism Res. 2012, 5, 363–379. [Google Scholar] [CrossRef]
- Wegiel, J.; Kuchna, I.; Nowicki, K.; Imaki, H.; Wegiel, J.; Ma, S.Y.; Azmitia, E.C.; Banerjee, P.; Flory, M.; Cohen, I.L. Contribution of olivofloccular circuitry developmental defects to atypical gaze in autism. Brain Res. 2013, 1512, 106–122. [Google Scholar] [CrossRef] [Green Version]
- Rosenhall, U.; Johansson, E.; Gillberg, C. Oculomotor findings in autistic children. J. Laryngol. Otol. 1988, 102, 435–439. [Google Scholar] [CrossRef]
- Wilkes, B.J.; Carson, T.B.; Patel, K.P.; Lewis, M.H.; White, K.D. Oculomotor performance in children with high-functioning Autism Spectrum Disorders. Res. Dev. Disabil. 2015, 38, 338–344. [Google Scholar] [CrossRef]
- Leat, S.J.; Mohr, A. Accommodative Response in Pre-presbyopes with Visual Impairment and Its Clinical Implications. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3888–3896. [Google Scholar] [CrossRef]
- Millodot, M. The effect of refractive error on the accommodative response gradient: A summary and update. Ophthalmic Physiol. Opt. 2015, 35, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, C. Low Vision: Principles and Practice, 4th ed.; Butterworth-Heineman: Oxford, UK, 1998. [Google Scholar]
- Schwiegerling, J.; Greivenkamp, J.E. Keratoconus detection based on videokeratoscopic height data. Optom. Vis. Sci. 1996, 73, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, M.A.; Stuart, G.W.; Falkmer, M.; Ordqvist, A.; Leung, D.; Foster, J.K.; Falkmer, T. Brief Report: Visual Acuity in Children with Autism Spectrum Disorders. J. Autism Dev. Disord. 2014, 44, 2369–2374. [Google Scholar] [CrossRef] [PubMed]
- Anketell, P.M.; Saunders, K.J.; Gallagher, S.M.; Bailey, C.; Little, J.-A. Brief Report: Vision in Children with Autism Spectrum Disorder: What Should Clinicians Expect? J. Autism Dev. Disord. 2015, 45, 3041–3047. [Google Scholar] [CrossRef] [PubMed]
- Manh, V.; Chen, A.M.; Tarczy-Hornoch, K.; Cotter, S.A.; Candy, T.R. Accommodative Performance of Children with Unilateral Amblyopia. Investig. Ophtalmol. Vis. Sci. 2015, 56, 1193–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrmann, M.; Thomas, C.; Humphreys, K. Seeing it differently: Visual processing in autism. Trends Cogn. Sci. 2006, 10, 258–264. [Google Scholar] [CrossRef]
- Bertone, A.; Mottron, L.; Jelenic, P.; Faubert, J. Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain 2005, 128, 2430–2441. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.A.O.; Bockbrader, M.A.; Murphy, R.R.; Hetrick, W.P.; O’Donnell, B.F. Subjective Perceptual Distortions and Visual Dysfunction in Children with Autism. J. Autism Dev. Disord. 2006, 36, 199–210. [Google Scholar] [CrossRef]
- Guy, J.; Mottron, L.; Berthiaume, C.; Bertone, A. The developmental trajectory of contrast sensitivity in autism spectrum disorder. Autism Res. 2016, 9, 866–878. [Google Scholar] [CrossRef]
- Franklin, A.; Sowden, P.; Burley, R.; Notman, L.; Alder, E. Color perception in children with autism. J. Autism Dev. Disord. 2008, 38, 1837–1847. [Google Scholar] [CrossRef]
- Rhodes, G.; Ewing, L.; Jeffery, L.; Avard, E.; Taylor, L. Reduced adaptability, but no fundamental disruption, of norm-based face-coding mechanisms in cognitively able children and adolescents with autism. Neuropsychologia 2014, 62, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Denis, D.; Burillon, C.; Livet, M.O.; Burguiere, O. Ophthalmologic signs in children with autism. J. Fr. Ophtalmol. 1997, 20, 103–110. [Google Scholar] [PubMed]
- Anketell, P.M.; Saunders, K.J.; Gallagher, S.; Bailey, C.; Little, J.A. Profile of refractive errors in European Caucasian children with Autistic Spectrum Disorder; increased prevalence and magnitude of astigmatism. Ophthalmic Physiol. Opt. 2016, 36, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Heydarian, S.; Hooshmand, E.; Saatchi, M.; Yekta, A.; Aghamirsalim, M.; Valadkhan, M.; Mortazavi, M.; Hashemi, A.; Khabazkhoob, M. The Prevalence and Risk Factors for Keratoconus: A Systematic Review and Meta-Analysis. Cornea 2020, 39, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, R.; Smith, G.; Atchison, D.A. Descriptors of Corneal Shape. Optom. Vis. Sci. 1998, 75, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Cavas-Martínez, F.; De la Cruz Sánchez, E.; Nieto Martínez, J.; Fernández Cañavate, F.J.; Fernández-Pacheco, D.G. Corneal topography in keratoconus: State of the art. Eye Vis. 2016, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Maeda, N.; Klyce, S.D.; Smolek, M.K.; Thompson, H.W. Automated keratoconus screening with corneal topography analysis. Investig. Ophthalmol. Vis. Sci. 1994, 35, 2749–2757. [Google Scholar]
- Carlson, N.; Kurtz, D. Clinical Procedures for Ocular Examination; McGraw-Hill Education/Medical: Washington, DC, USA, 2015. [Google Scholar]
- Dougherty, B.E.; Flom, R.E.; Bullimore, M.A. An Evaluation of the Mars Letter Contrast Sensitivity Test. Optom. Vis. Sci. 2005, 82, 970–975. [Google Scholar] [CrossRef] [Green Version]
- Yalcin, E.; Sultan, P.; Yilmaz, S.; Pallikaris, I.G. A Comparison of Refraction Defects in Childhood Measured Using Plusoptix S09, 2WIN Photorefractometer, Benchtop Autorefractometer, and Cycloplegic Retinoscopy. Semin. Ophthalmol. 2017, 32, 422–427. [Google Scholar] [CrossRef]
- Thibos, L.N.; Wheeler, W.; Horner, D. Power Vectors: An Application of Fourier Analysis to the Description and Statistical Analysis of Refractive Error. Optom. Vis. Sci. 1997, 74, 367–375. [Google Scholar] [CrossRef]
- EyeSys Vista. Available online: http://eyesys.com/index.html (accessed on 1 March 2019).
- Wang, Q.; Savini, G.; Hoffer, K.J.; Xu, Z.; Feng, Y.; Wen, D.; Hua, Y.; Yang, F.; Pan, C.; Huang, J. A Comprehensive Assessment of the Precision and Agreement of Anterior Corneal Power Measurements Obtained Using 8 Different Devices. PLoS ONE 2012, 7, e45607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmanson, J.P.; Martinez, J.G. Size does matter: What is the corneo-limbal diameter? Clin. Exp. Optom. 2017, 100, 522–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VasanthaKumar, P.; Kumar, P.; Rao, M. Anthropometric Analysis of Palpebral Fissure Dimensions and its Position in South Indian Ethnic Adults. Oman Med. J. 2013, 28, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Montalbán, R.; Piñero, D.P.; Javaloy, J.; Alió, J.L. Correlation of the corneal toricity between anterior and posterior corneal surfaces in the normal human eye. Cornea 2013, 32, 791–798. [Google Scholar] [CrossRef]
- Montalbán, R.; Piñero, D.P.; Javaloy, J.; Alió, J.L. Scheimpflug photography–based clinical characterization of the correlation of the corneal shape between the anterior and posterior corneal surfaces in the normal human eye. J. Cataract Refract. Surg. 2012, 38, 1925–1933. [Google Scholar] [CrossRef]
- Godefrooij, D.A.; De Wit, G.A.; Uiterwaal, C.S.; Imhof, S.M.; Wisse, R.P.L. Age-specific Incidence and Prevalence of Keratoconus: A Nationwide Registration Study. Am. J. Ophthalmol. 2017, 175, 169–172. [Google Scholar] [CrossRef]
- Netto, E.A.T.; Al-Otaibi, W.M.; Hafezi, N.L.; Kling, S.; Al-Farhan, H.M.; Randleman, J.B.; Hafezi, F. Prevalence of keratoconus in paediatric patients in Riyadh, Saudi Arabia. Br. J. Ophthalmol. 2018, 102, 1436–1441. [Google Scholar] [CrossRef]
- Helsmoortel, C.; Silfhout, A.T.V.-V.; Coe, B.P.; Vandeweyer, G.; Rooms, L.; Ende, J.V.D.; Schuurs-Hoeijmakers, J.H.; Marcelis, C.L.; Willemsen, M.H.; Vissers, L.E.; et al. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat. Genet. 2014, 46, 380–384. [Google Scholar] [CrossRef] [Green Version]
- Read, S.A.; Collins, M.J.; Carney, L.G.; Iskander, D.R. The morphology of the palpebral fissure in different directions of vertical gaze. Optom. Vis. Sci. 2006, 83, 715–722. [Google Scholar] [CrossRef]
- Léoni-Mesplié, S.; Mortemousque, B.; Mesplié, N.; Touboul, D.; Praud, D.; Malet, F.; Colin, J. Epidemiological aspects of keratoconus in children. J. Fr. Ophtalmol. 2012, 35, 776–785. [Google Scholar] [CrossRef]
- Chen, M.-H.; Su, T.-P.; Chen, Y.-S.; Hsu, J.-W.; Huang, K.-L.; Chang, W.-H.; Chen, T.-J.; Pan, T.-L.; Bai, Y.-M. Is atopy in early childhood a risk factor for ADHD and ASD? A longitudinal study. J. Psychosom. Res. 2014, 77, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.; Gazzard, G.; Chan, Y.-H.; Fong, A.; Kotecha, A.; Sim, E.-L.; Tan, D.; Tong, L.; Saw, S.-M. Cornea Biomechanical Characteristics and Their Correlates with Refractive Error in Singaporean Children. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3852–3857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezegwui, I.; Lawrence, L.; Aghaji, A.; Okoye, O.; Onwasigwe, E.; Ebigbo, P. Refractive errors in children with autism in a developing country. Niger. J. Clin. Pr. 2014, 17, 467–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.J.; Wu, H.; Wu, J.F.; Hu, Y.Y.; Lu, T.L.; Sun, W.; Guo, D.D.; Wang, X.R.; Bi, H.; Jonas, J.B. Corneal diameter and associated parameters in Chinese children: The Shandong Children Eye Study. Clin. Exp. Ophthalmol. 2016, 45, 112–119. [Google Scholar] [CrossRef]
- Matsuda, L.M.; Woldorff, C.L.; Kame, R.T.; Hayashida, J.K. Clinical comparison of corneal diameter and curvature in Asian eyes with those of Caucasian eyes. Optom. Vis. Sci. 1992, 69, 51–54. [Google Scholar] [CrossRef]
- Little, J.; Woodhouse, J.M.; Saunders, K.J. Corneal Power and Astigmatism in Down Syndrome. Optom. Vis. Sci. 2009, 86, 748–754. [Google Scholar] [CrossRef]
- Davis, W.R.; Raasch, T.W.; Mitchell, G.L.; Mutti, D.O.; Zadnik, K. Corneal asphericity and apical curvature in children: A cross-sectional and longitudinal evaluation. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1899–1906. [Google Scholar] [CrossRef] [Green Version]
- Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 2012, 96, 614–618. [Google Scholar] [CrossRef] [Green Version]
- Congdon, N.G.; O’Colmain, B.; Klaver, C.C.W.; Klein, R.; Muñoz, B.; Friedman, D.S.; Kempen, J.; Taylor, H.R.; Mitchell, P.; Eye Diseases Prevalence Research Group. Causes and Prevalence of Visual Impairment Among Adults in the United States. Arch. Ophthalmol. 2004, 122, 477–485. [Google Scholar]
Variables | ASD Group Mean ± SD | TD Group Mean ± SD | Independent t-Test |
---|---|---|---|
Age (years) | 12.78 ± 4.49 (n = 31) | 13.65 ± 3.56 (n = 60) | t = −2.084, p = 0.075 |
Gender (male/female) | M = 21, F = 10 | M = 33, F = 27 | — |
VA without correction (logMAR) | 0.28 ± 0.29 (n = 26) | 0.33 ± 0.37 (n = 60) | t = −0.35, p = 0.32 |
Spherical equivalent (diopters) | −0.76 ± 1.66 (n = 27) | 0.96 ± 1.69 (n = 60) | t = 1.15, p = 0.15 |
Cylindrical component (diopters) | J0: −0.2 ± 0.47 J45: −0.35 ± 0.48 (n = 31) | J0: −0.10 ± 0.20 J45: −0.19 ± 0.18 (n = 60) | t = −1.22, p < 0.0001 * t = −0.54, p = 0.004 * |
Group Characteristics | ASD Group | TD Group |
---|---|---|
Emmtropia (n, %) | 2 of 31, 6.45% | 4 of 60, 6.6% |
Simple myopia (n, %) | 1 of 31, 3.22% | None |
Anisometropia (n, %) | 4 of 31, 12.90% | None |
Compound hyperopic astigmatism (n, %) | 9 of 31, 29.03% | 17of 60, 28.33% |
Compound myopic astigmatism (n, %) | 8 of 31, 25.80% | 27 of 60, 45% |
Simple astigmatism (n, %) | 5 of 31, 16.12% | 10 of 60, 16.66% |
Mixed astigmatism (n, %) | 1 of 31, 3.22% | None |
Spherical component (mean ± SD) | −0.13 ± 1.58 | −0.67 ± 1.68 |
Cylindrical component (mean ± SD) | J0: −0.2 ± 0.47 J45: −0.35 ± 0.48 | J0: −0.10 ± 0.2 J45: −0.19 ± 0.18 |
LogCS (mean ± SD) | OD: 1.61 ± 0.11 OU: 1.70 ± 0.08 | OD: 1.65 ± 0.07 OU: 1.76 ± 0.05 |
Variables | Children with ASD (Mean ± SD) | TD Participants (Mean ± SD) | Independent t-Test |
---|---|---|---|
PA (mm) | 9.89 ± 1.04 | 10.78 ± 0.45 | t = −6.859, p < 0.0001 * |
HVID (mm) | 11.44 ± 0.55 | 11.80 ± 0.40 | t = −4.731, p = 0.003 * |
Steep-K (diopters) | 43.31 ± 2.39 | 43.10 ± 1.92 | t = 075, p = 0.28 |
Flat-K (diopters) | 42.21 ± 2.29 | 42.11 ± 1.96 | t = 0.42, p = 0.33 |
Delta-K (diopters) | 1.1 ± 0.59 | 0.99 ± 0.53 | t = 1.33, p = 0.21 |
Average-K (diopters) | 43.20 ± 2.36 | 42.59 ± 1.92 | t = 1.12, p = 0.39 |
Q-value | −0.18 ± 0.36 | −0.11 ± 0.32 | t = −1.43, p = 0.38 |
IS | −0.24 ± 0.79 | −0.17 ± 1.1 | t = −0.88, p = 0.51 |
OSI | 0.35 ± 0.54 | 0.20 ± 0.54 | t = 1.12, p = 0.94 |
DSI | 0.81 ± 0.81 | 0.63 ± 0.69 | t = 0.96, p = 0.35 |
CSI | 0.10 ± 0.03 | 0.11 ± 0.02 | t = 0.17, p = 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
ALGarzaie, M.A.; Alsaqr, A.M. A Comparative Study of Corneal Topography in Children with Autism Spectrum Disorder: A Cross-Sectional Study. Vision 2021, 5, 4. https://doi.org/10.3390/vision5010004
ALGarzaie MA, Alsaqr AM. A Comparative Study of Corneal Topography in Children with Autism Spectrum Disorder: A Cross-Sectional Study. Vision. 2021; 5(1):4. https://doi.org/10.3390/vision5010004
Chicago/Turabian StyleALGarzaie, Maha A., and Ali M. Alsaqr. 2021. "A Comparative Study of Corneal Topography in Children with Autism Spectrum Disorder: A Cross-Sectional Study" Vision 5, no. 1: 4. https://doi.org/10.3390/vision5010004
APA StyleALGarzaie, M. A., & Alsaqr, A. M. (2021). A Comparative Study of Corneal Topography in Children with Autism Spectrum Disorder: A Cross-Sectional Study. Vision, 5(1), 4. https://doi.org/10.3390/vision5010004