Functional Tests of the Abdominal Wall Muscles in Normal Subjects and in Patients with Diastasis and Oblique Inguinal Hernias in a Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Motor Tests Used
2.3. Study of EMG Activity
2.4. Ultrasound Imaging of the Abdominal Muscles
2.5. Statistical Processing
3. Results
3.1. EMG Study
3.2. Ultrasonography
3.3. Analysis of Variance
3.3.1. EMG
3.3.2. US Examination
3.3.3. Method Comparability
3.3.4. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jourdan, A.; Rapacchi, S.; Guye, M.; Bendahan, D.; Masson, C.; Bège, T. Dynamic-MRI quantification of abdominal wall mo- tion and deformation during breathing and muscular contraction. Comput. Methods Programs Biomed. 2022, 217, 106667. [Google Scholar] [CrossRef] [PubMed]
- Abebe, M.S.; Tareke, A.A.; Alem, A.; Debebe, W.; Beyene, A. Worldwide magnitude of inguinal hernia: Systematic review and meta-analysis of population-based studies. SAGE Open Med. 2022, 10, 20503121221139150. [Google Scholar] [CrossRef]
- Chernykh, V.; Krainukov, P.; Efremov, K.; Bondareva, N. Inguinal hernias: Etiology and treatment. Bull. Pirogov Natl. Med. Surg. Cent. 2021, 16, 116–123. (In Russian) [Google Scholar] [CrossRef]
- Cavalli, M.; Aiolfi, A.; Bruni, P.G.; Manfredini, L.; Lombardo, F.; Bonfanti, M.T.; Bona, D.; Campanelli, G. Prevalence and risk factors for diastasis recti abdominis: A review and proposal of a new anatomical variation. Hernia 2021, 25, 883–890. [Google Scholar] [CrossRef]
- Śmietański, M.; Śmietańska, I.A.; Zamkowski, M. Post-partum abdominal wall insufficiency syndrome (PPAWIS): Lessons learned from a single surgeon’s experience based on 200 cases. BMC Surg. 2022, 22, 305. [Google Scholar] [CrossRef] [PubMed]
- Daurova, T.T.; Zhigalkina, I.Y.; Belyaev, V.I. Recovery of electrical activity of anterior abdominal wall muscles after prolonged atrophy. Bull. Exp. Biol. Med. 1978, 87, 299–301. [Google Scholar] [CrossRef]
- Sreenath, G.S. Assessment of Abdominal Muscle’s Maximal Force of Contraction Using Surface E MG in Inguinal Hernia Pa- tients. J. Clin. Diagn. Res. 2016, 10, PC10–PC13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Montes, A.M.; Baptista, J.; Crasto, C.; de Melo, C.A.; Santos, R.; Vilas-Boas, J.P. Abdominal muscle activity during breathing with and without inspiratory and expiratory loads in healthy subjects. J. Electromyogr. Kinesiol. 2016, 30, 143–150. [Google Scholar] [CrossRef]
- Belokonev, V.I.; Fedorina, T.A.; Kovaleva, Z.V. Pathogenesis and Surgical Treatment of Postoperative Ventral Her-Nias; State Enter- Prise “Perspective”: Samara, Russia, 2005; 208p. [Google Scholar]
- Shah, S.; Vaishali, K.; Prasad, S.S.; Babu, A.S. Altered patterns of abdominal muscle activation during forced exhalation fol- lowing elective laparotomy: An experimental research. Ann. Med. Surg. 2020, 61, 198–204. [Google Scholar] [CrossRef]
- Charles, J.; Kissane, R.; Hoehfurtner, T.; Bates, K.T. From fibre to function: Are we accurately representing muscle architecture and performance? Biol. Rev. 2022, 97, 1640–1676. [Google Scholar] [CrossRef]
- Jensen, K.K.; Oma, E.; Kjaer, M.; Jørgensen, L.N.; Andersen, J.L. Histology and Function of the Rectus Abdominis Muscle in Patients with Incisional Hernia. J. Surg. Res. 2020, 253, 245–251. [Google Scholar] [CrossRef] [PubMed]
- De Silva, G.S.; Krpata, D.M.; Hicks, C.W.; Criss, C.N.; Gao, Y.; Rosen, M.J.; Novitsky, Y.W. Comparative radiographic analysis of changes in the abdominal wall musculature morphology after open posterior component separation or bridging laparo- scopic ventral hernia repair. J. Am. Coll. Surg. 2014, 218, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Wijntjes, J.; van Alfen, N. Muscle ultrasound: Present state and future opportunities. Muscle Nerve. 2021, 63, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Stock, M.S.; Thompson, B.J. Echo intensity as an indicator of skeletal muscle quality: Applications, methodology, and future directions. Eur. J. Appl. Physiol. 2021, 121, 369–380. [Google Scholar] [CrossRef]
- Kulikov, V.P. (Ed.) Ultrasound Diagnosis of Vascular Diseases; STROM: Hamburg, Germany, 2007. (In Russian) [Google Scholar]
- Lasserson, D. Differences in motor activation of voluntary and reflex cough in humans. Thorax 2006, 61, 699–705. [Google Scholar] [CrossRef]
- Yoshiko, A.; Watanabe, K.; Akima, H. Relative contribution of neuromuscular activation, muscle size, and muscle quality to maximum strength output of the thigh muscles in young individuals. Physiol. Rep. 2023, 11, e15563. [Google Scholar] [CrossRef]
- Bigolin, A.V.; Jost, R.T.; Franceschi, R.; Wermann, R.; Falcão, R.; Do-Pinho, A.S.; Plend, R.D.M.; Cavazzola, L.T. What is the best method to assess the abdominal wall? Restoring strength does not mean functional recovery. Abcd-Arquivos Bras. Cir. Dig. Arch. Dig. Surg. 2020, 33, e1487. [Google Scholar] [CrossRef]
- Campbell, E.J.M.; Green, J.H. The expiratory function of the abdominal muscles in man. An electromyographic study. J. Physiol. 1953, 120, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.M.; Lehr, R.P.; Millar, A.B.; Silver, J.R. An electromyographic study of the abdominal muscles during postural and respiratory manoeuvres. J. Neurol. Neurosurg. Psychiatry 1987, 50, 866–869. [Google Scholar] [CrossRef] [PubMed]
- Mier, A.; Brophy, C.; Estenne, M.; Moxham, J.; Green, M.; De Troyer, A.; Koo, P.; Gartman, E.J.; Sethi, J.M.; McCool, F.D.; et al. Action of abdominal muscles on rib cage in humans. J. Appl. Physiol. 1985, 58, 1438–1443. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Nonaka, K.; Ogaya, S.; Oogi, A.; Matsunaka, C.; Horie, J. Surface electromyography activity of the rectus abdominis, internal oblique, and external oblique muscles during forced expiration in healthy adults. J. Electromyogr. Kinesiol. 2016, 28, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Ishida, H.; Suehiro, T.; Kurozumi, C.; Ono, K.; Watanabe, S. Correlation Between Abdominal Muscle Thickness and Maximal Expiratory Pressure. J. Ultrasound Med. 2015, 34, 2001–2005. [Google Scholar] [CrossRef]
- Floyd, W.F.; Silver, P.H. Electromyographic study of patterns of activity of the anterior abdominal wall muscles in man. J. Anat. 1950, 84, 132–145. [Google Scholar] [PubMed]
- Siafakas, N.M.; Mitrouska, I.; Bouros, D.; Georgopoulos, D. Surgery and the respiratory muscles. Thorax 1999, 54, 458–465. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Çiçek, S.; Çeliker Tosun, Ö.; Parlas, M.; Bilgiç, D.; Yavuz, O.; Kurt, S.; Başer Seçer, M.; Tosun, G. Is the function of the core muscles affected during pregnancy? Int. Urogynecology J. 2023, 34, 2725–2736. [Google Scholar] [CrossRef]
- LoMauro, A.; Aliverti, A. Respiratory muscle activation and action during voluntary cough in healthy humans. J. Electromyogr. Kinesiol. 2019, 49, 102359. [Google Scholar] [CrossRef] [PubMed]
- Rankin, G.; Stokes, M.; Newham, D.J. Abdominal muscle size and symmetry in normal subjects. Muscle Nerve 2006, 34, 320–326. [Google Scholar] [CrossRef]
- Gabrielsen, D.A.; Carney, M.J.; Weissler, J.M.; Lanni, M.A.; Hernandez, J.; Sultan, L.R.; Enriquez, F.; Sehgal, C.M.; Fischer, J.P.; Chauhan, A. Application of ARFI-SWV in Stiffness Measurement of the Abdominal Wall Musculature: A Pilot Feasibility Study. Ultrasound Med. Biol. 2018, 44, 1978–1985. [Google Scholar] [CrossRef]
- Du, X.; Sun, P.; Yan, Y.; Gong, X.; Lian, Y.; Pan, Z. Low CT attenuation and high fatty infiltration rate of psoas are risk factors for incisional hernias after appendicectomy: A cross-sectional single-center study from China. BMC Musculoskelet. Disord. 2021, 22, 646. [Google Scholar] [CrossRef]
- Nagayoshi, K.; Nagai, S.; Hisano, K.; Mizuuchi, Y.; Fujita, H.; Nakamura, M. Atrophic change of the abdominal rectus muscle significantly influences the onset of parastomal hernias beyond existing risk factors after end colostomy. Hernia 2021, 25, 141–148. [Google Scholar] [CrossRef]
- McAuliffe, P.B.B.; Desai, A.A.; Talwar, A.A.M.; Broach, R.B.; Hsu, J.Y.; Serletti, J.M.; Liu, T.; Tong, Y.; Udupa, J.K.; Torigian, D.A.M.; et al. Preoperative Computed Tomography Morphological Features Indicative of Incisional Hernia Formation After Abdominal Surgery. Ann. Surg. 2022, 276, 616–625. [Google Scholar] [CrossRef] [PubMed]
- Romero-Morales, C.; Martín-Llantino, P.; Calvo-Lobo, C.; San-Antolín, M.; López-López, D.; Blanco-Morales, M.; Rodríguez-Sanz, D. Ultrasound Imaging of the Abdominal Wall and Trunk Muscles in Patients with Achilles Tendinopathy versus Healthy Participants. Diagnostics 2019, 10, 17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whittaker, J.L.; Warner, M.B.; Stokes, M. Comparison of the Sonographic Features of the Abdominal Wall Muscles and Con- nective Tissues in Individuals with and without Lumbopelvic Pain. J. Orthop. Sports Phys. Ther. 2013, 43, 11–19. [Google Scholar] [CrossRef] [PubMed]
Parameter | Control | Diastasis | Ing. Hern | p |
---|---|---|---|---|
Age (years) | 29 [26; 35] | 39 [38; 43] | 73 [64; 75] | 0.02 |
Gender (M:F) | 4:2 | 2:3 | 4:0 | |
Height, (m) | 1.6 [1.7; 1.9] | 1.6 [1.6; 1.7] | 1.8 [1.8; 1.8] | 0.07 |
Weight, (kg) | 82 [65; 106] | 64 [51; 80] | 82 [77; 88] | 0.3 |
BMI (kg/m2) | 27.1 [22.8; 31.3] | 26.0 [20.2; 27.0] | 25.5 [23.5; 28.1] | 0.5 |
Subcutaneous adipose tissue thickness, (cm) | 2.1 [1.1; 3.1] | 1.0 [1.0; 1.4] | 2.0 [1.8; 2.0] | 0.8 |
Muscle | Parameter | Control | Diastasis | Ing. Hern | p |
---|---|---|---|---|---|
RA right | A | 27.5 [25.6; 27.9] | 85.0 [75.0; 97.7] | 44.0 [37.5; 48.5] | 0.13 |
T | 0.3 [0.2; 0.7] | 0.3 [0.3; 0.8] | 0.3 [0.3; 0.4] | 0.70 | |
RA left | A | 40.4 [32.3; 54.2] | 83.7 [75.0; 97.7] | 39.4 [31.3; 46.3] | 0.75 |
T | 0.3 [0.2; 0.4] | 0.3 [0.2; 0.5] | 0.2 [0.2; 0.3] | 0.53 | |
OE right | A | 63.7 [43.7; 94.8] | 102.3 [83.0; 154.7] | 59.0 [44.5; 92.0] | 0.14 |
T | 0.4 [0.3; 0.5] | 0.7 [0.7; 0.7] | 0.4 [0.5; 0.5] | 0.23 | |
OE left | A | 68.3 [45.8; 117.6] | 94.3 [93.7; 129.0] | 72.2 [49.4; 106.3] | 0.40 |
T | 0.3 [0.2; 0.4] | 0.4 [0.3; 0.7] | 0.4 [0.4; 0.5] | 0.39 |
Muscle | Side | Control | Diastasis | Ing. Hern | p |
---|---|---|---|---|---|
RA | Right | 193 [153; 214] | 269 [124; 282] | 167 [118; 218] | 0.68 |
Left | 161 [121; 196] | 184 [160; 207] | 156 [107; 205] | 0.89 | |
OE | Right | 110 [43; 192] | 83 [83; 168] | 88 [71; 124] | 0.99 |
Left | 119 [32; 204] | 124 [70; 173] | 83 [66; 105] | 0.89 |
Muscle | Side | Control | Diastasis | Ing. Hern |
---|---|---|---|---|
RA | Right | 1.3 [1.1; 1.5] | 0.7 [0.7; 0.8] | 0.9 [0.8; 1.1] |
Left | 1.2 [1.1; 1.4] | 0.8 [0.7; 1.0] | 0.8 [0.7; 1.0] | |
OE | Right | 0.5 [0.4; 1.0] | 0.5 [0.5; 0.6] | 0.5 [0.5; 0.6] |
Left | 0.6 [0.5; 0.9] | 0.5 [0.5; 0.5] | 0.5 [0.4; 0.6] | |
OI | Right | 0.9 [0.6; 1.1] | 0.6 [0.6; 0.8] | 1.2 [1.0; 1.3] |
Left | 1.0 [0.7; 1.1] | 0.6 [0.6; 0.7] | 1.1 [1.0; 1.2] | |
TA | Right | 0.5 [0.3; 0.6] | 0.3 [0.3; 0.5] | 0.4 [0.3; 0.6] |
Left | 0.5 [0.3; 0.6] | 0.3 [0.3; 0.4] | 0.5 [0.4; 0.6] | |
SUM | Right | 1.9 [1.5; 2.5] | 1.5 [1.4; 1.8] | 2.1 [2.0; 2.2] |
Left | 2.0 [1.7; 2.6] | 1.4 [1.3; 1.6] | 2.1 [1.7; 2.5] |
Muscle | Side | Control | Diastasis | Ing. Hern |
---|---|---|---|---|
RA | Right | 30 [21; 45] | 58 [53; 64] | 41 [36; 52] |
Left | 34 [26; 38] | 51 [49; 53] | 40 [29; 54] | |
OE | Right | 60 [49; 67] | 62 [50; 73] | 66 [64; 71] |
Left | 48 [42; 53] | 51 [47; 77] | 65 [61; 70] |
Parameter Item | Cough | Cough Duration | Body Lift | Muscle Thickness | Echo Intensity | |||||
---|---|---|---|---|---|---|---|---|---|---|
RA | OE | RA | OE | RA | OE | RA | OE | RA | OE | |
Control | 0.74 | 0.78 | 0.96 | 0.95 | 0.69 | 0.95 | 0.93 | 0.86 | 0.95 | 0.86 |
Diastasis | 0.74 | 0.84 | 0.76 | −0.53 | 0.91 | 0.86 | 0.83 | 0.03 | 0.33 | 0.93 |
Ing. Hern | 0.99 | 0.99 | 0.88 | −0.22 | 0.97 | 0.95 | 0.92 | 1.00 | 0.95 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skvortsov, D.; Cherepanin, A.; Fadeeva, Y.; Timonin, A.; Nosenko, N. Functional Tests of the Abdominal Wall Muscles in Normal Subjects and in Patients with Diastasis and Oblique Inguinal Hernias in a Pilot Study. J. Funct. Morphol. Kinesiol. 2024, 9, 164. https://doi.org/10.3390/jfmk9030164
Skvortsov D, Cherepanin A, Fadeeva Y, Timonin A, Nosenko N. Functional Tests of the Abdominal Wall Muscles in Normal Subjects and in Patients with Diastasis and Oblique Inguinal Hernias in a Pilot Study. Journal of Functional Morphology and Kinesiology. 2024; 9(3):164. https://doi.org/10.3390/jfmk9030164
Chicago/Turabian StyleSkvortsov, Dmitry, Andrei Cherepanin, Yulia Fadeeva, Andrey Timonin, and Nataly Nosenko. 2024. "Functional Tests of the Abdominal Wall Muscles in Normal Subjects and in Patients with Diastasis and Oblique Inguinal Hernias in a Pilot Study" Journal of Functional Morphology and Kinesiology 9, no. 3: 164. https://doi.org/10.3390/jfmk9030164
APA StyleSkvortsov, D., Cherepanin, A., Fadeeva, Y., Timonin, A., & Nosenko, N. (2024). Functional Tests of the Abdominal Wall Muscles in Normal Subjects and in Patients with Diastasis and Oblique Inguinal Hernias in a Pilot Study. Journal of Functional Morphology and Kinesiology, 9(3), 164. https://doi.org/10.3390/jfmk9030164