Relevance of Tibial Fixation during Tibiotarsal Joint Traction: Descriptive Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Sample
2.3. Experimental Procedure
2.4. Reliability of Ultrasound Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goost, H.; Wimmer, M.D.; Barg, A.; Kabir, K.; Valderrabano, V.; Burger, C. Fractures of the Ankle Joint. Dtsch. Arztebl. Int. 2014, 111, 377–388. [Google Scholar] [CrossRef]
- Elsoe, R.; Ostgaard, S.E.; Larsen, P. Population-Based Epidemiology of 9767 Ankle Fractures. Foot Ankle Surg. 2018, 24, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, N.; Davis, M.L.; Jupiter, D.C. Epidemiology of Foot and Ankle Fractures in the United States: An Analysis of the National Trauma Data Bank (2007 to 2011). J. Foot Ankle Surg. 2014, 53, 606–608. [Google Scholar] [CrossRef] [PubMed]
- Doherty, C.; Delahunt, E.; Caulfield, B.; Hertel, J.; Ryan, J.; Bleakley, C. The Incidence and Prevalence of Ankle Sprain Injury: A Systematic Review and Meta-Analysis of Prospective Epidemiological Studies. Sport. Med. 2014, 44, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Attenborough, A.S.; Hiller, C.E.; Smith, R.M.; Stuelcken, M.; Greene, A.; Sinclair, P.J. Chronic Ankle Instability in Sporting Populations. Sport. Med. 2014, 44, 1545–1556. [Google Scholar] [CrossRef] [PubMed]
- Roos, K.G.; Kerr, Z.Y.; Mauntel, T.C.; Djoko, A.; Dompier, T.P.; Wikstrom, E.A. The Epidemiology of Lateral Ligament Complex Ankle Sprains in National Collegiate Athletic Association Sports. Am. J. Sports Med. 2017, 45, 201–209. [Google Scholar] [CrossRef]
- Waterman, B.R.; Owens, B.D.; Davey, S.; Zacchilli, M.A.; Belmont, P.J. The Epidemiology of Ankle Sprains in the United States. J. Bone Jt. Surg. 2010, 92, 2279–2284. [Google Scholar] [CrossRef]
- Gerber, J.P.; Williams, G.N.; Scoville, C.R.; Arciero, R.A.; Taylor, D.C. Persistent Disability Associated with Ankle Sprains: A Prospective Examination of an Athletic Population. Foot Ankle Int. 1998, 19, 653–660. [Google Scholar] [CrossRef]
- Franklin, B.A.; Billecke, S. Putting the Benefits and Risks of Aerobic Exercise in Perspective. Curr. Sports Med. Rep. 2012, 11, 201–208. [Google Scholar] [CrossRef]
- FINCH, C.; OWEN, N.; PRICE, R. Current Injury or Disability as a Barrier to Being More Physically Active. Med. Sci. Sports Exerc. 2001, 33, 778–782. [Google Scholar] [CrossRef]
- Powers, R.T.; Dowd, T.C.; Giza, E. Surgical Treatment for Osteochondral Lesions of the Talus. Arthrosc. J. Arthrosc. Relat. Surg. 2021, 37, 3393–3396. [Google Scholar] [CrossRef] [PubMed]
- Lui, T.H. Arthroscopic Management of Posteromedial Ankle Impingement. Arthrosc. Tech. 2015, 4, e425–e427. [Google Scholar] [CrossRef] [PubMed]
- Christine Lin, C.-W.; Haas, M.; Moseley, A.M.; Herbert, R.D.; Refshauge, K.M. Cost and Utilisation of Healthcare Resources during Rehabilitation after Ankle Fracture Are Not Linked to Health Insurance, Income, Gender, or Pain: An Observational Study. Aust. J. Physiother. 2008, 54, 201–208. [Google Scholar] [CrossRef]
- Murray, A.M.; McDonald, S.E.; Archbold, P.; Crealey, G.E. Cost Description of Inpatient Treatment for Ankle Fracture. Injury 2011, 42, 1226–1229. [Google Scholar] [CrossRef]
- Nguyen, A.P.; Pitance, L.; Mahaudens, P.; Detrembleur, C.; David, Y.; Hall, T.; Hidalgo, B. Effects of Mulligan Mobilization with Movement in Subacute Lateral Ankle Sprains: A Pragmatic Randomized Trial. J. Man. Manip. Ther. 2021, 29, 341–352. [Google Scholar] [CrossRef]
- Collins, N.; Teys, P.; Vicenzino, B. The Initial Effects of a Mulligan’s Mobilization with Movement Technique on Dorsiflexion and Pain in Subacute Ankle Sprains. Man. Ther. 2004, 9, 77–82. [Google Scholar] [CrossRef]
- Hengeveld, E.; Banks, K. Maitland’s Peripheral Manipulation, 4th ed.; Elsevier Butterworth Heinman: London, UK, 2005. [Google Scholar]
- Kaltenborn, F.; Evjenth, O.; Kaltenborn, T.; Morgan, D.V.E. Manual Mobilization of the Joints. Volume I: Joint Examination and Basic Treatment: The Extremities; Norli Libris: Stavanger, Norway, 2015. [Google Scholar]
- Hoch, M.C.; Mullineaux, D.R.; Andreatta, R.D.; English, R.A.; Medina-McKeon, J.M.; Mattacola, C.G.; McKeon, P.O. Effect of a 2-Week Joint Mobilization Intervention on Single-Limb Balance and Ankle Arthrokinematics in Those with Chronic Ankle Instability. J. Sport Rehabil. 2014, 23, 18–26. [Google Scholar] [CrossRef]
- Fryer, G.A.; Mudge, J.M.; McLaughlin, P.A. The Effect of Talocrural Joint Manipulation on Range of Motion at the Ankle. J. Manip. Physiol. Ther. 2002, 25, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Davenport, T.E.; Kulig, K.; Fisher, B.E. Ankle Manual Therapy for Individuals with Post-Acute Ankle Sprains: Description of a Randomized, Placebo-Controlled Clinical Trial. BMC Complement. Altern. Med. 2010, 10, 59. [Google Scholar] [CrossRef]
- Iammarino, K.; Marrie, J.; Selhorst, M.; Lowes, L.P. Efficacy of the stretch band ankle traction technique in the treatment of pediatric patients with acute ankle sprains: A randomized control trial. Int. J. Sports Phys. Ther. 2018, 13, 1–11. [Google Scholar] [CrossRef]
- Estébanez-de-Miguel, E.; Fortún-Agud, M.; Jimenez-del-Barrio, S.; Caudevilla-Polo, S.; Bueno-Gracia, E.; Tricás-Moreno, J.M. Comparison of High, Medium and Low Mobilization Forces for Increasing Range of Motion in Patients with Hip Osteoarthritis: A Randomized Controlled Trial. Musculoskelet. Sci. Pract. 2018, 36, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Estébanez-de-Miguel, E.; Jimenez-del-Barrio, S.; Fortún- Agud, M.; Bueno-Gracia, E.; Caudevilla-Polo, S.; Malo-Urriés, M.; Ceballos-Laita, L. Comparison of High, Medium and Low Mobilization Forces for Reducing Pain and Improving Physical Function in Patients with Hip Osteoarthritis: Secondary Analysis of a Randomized Controlled Trial. Musculoskelet. Sci. Pract. 2019, 41, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Bialosky, J.E.; Beneciuk, J.M.; Bishop, M.D.; Coronado, R.A.; Penza, C.W.; Simon, C.B.; George, S.Z. Unraveling the Mechanisms of Manual Therapy: Modeling an Approach. J. Orthop. Sports Phys. Ther. 2018, 48, 8–18. [Google Scholar] [CrossRef]
- Sato, T.; Sato, N.; Masui, K.; Hirano, Y. Immediate Effects of Manual Traction on Radiographically Determined Joint Space Width in the Hip Joint. J. Manip. Physiol. Ther. 2014, 37, 580–585. [Google Scholar] [CrossRef]
- Estébanez-de-Miguel, E.; Caudevilla-Polo, S.; González-Rueda, V.; Bueno-Gracia, E.; Pérez-Bellmunt, A.; López-de-Celis, C. Ultrasound Measurement of the Effects of High, Medium and Low Hip Long-Axis Distraction Mobilization Forces on the Joint Space Width and Its Correlation with the Joint Strain. Musculoskelet. Sci. Pract. 2020, 50, 102225. [Google Scholar] [CrossRef] [PubMed]
- Hsu, A.-T.; Hedman, T.; Chang, J.H.; Vo, C.; Ho, L.; Ho, S.; Chang, G.-L. Changes in Abduction and Rotation Range of Motion in Response to Simulated Dorsal and Ventral Translational Mobilization of the Glenohumeral Joint. Phys. Ther. 2002, 82, 544–556. [Google Scholar] [CrossRef]
- Hurschler, C.; Loitz-Ramage, B.; Vanderby, R.J. A Structurally Based Stress-Stretch Relationship for Tendon and Ligament. J. Biomech. Eng. 1997, 119, 392–399. [Google Scholar] [CrossRef]
- Provenzano, P.; Lakes, R.; Keenan, T.; Vanderby, R.J. Nonlinear Ligament Viscoelasticity. Ann. Biomed. Eng. 2001, 29, 908–914. [Google Scholar] [CrossRef]
- Lee, R.K.L.; Griffith, J.F.; Law, E.K.C.; Ng, A.W.H.; Yeung, D.K.W. Ankle Traction During MRI of Talar Dome Osteochondral Lesions. Am. J. Roentgenol. 2017, 209, 874–882. [Google Scholar] [CrossRef]
- Jungmann, P.M.; Baum, T.; Schaeffeler, C.; Sauerschnig, M.; Brucker, P.U.; Mann, A.; Ganter, C.; Bieri, O.; Rummeny, E.J.; Woertler, K.; et al. 3.0 T MR Imaging of the Ankle: Axial Traction for Morphological Cartilage Evaluation, Quantitative T2 Mapping and Cartilage Diffusion Imaging—A Preliminary Study. Eur. J. Radiol. 2015, 84, 1546–1554. [Google Scholar] [CrossRef]
- Unangst, A.; Martin, K.D. Simple 1-Step Ankle Arthroscopy Distraction. Arthrosc. Tech. 2015, 4, e873–e876. [Google Scholar] [CrossRef]
- Altbuch, T.; Ayzenberg, M.; Bloze, A.E.; Ferkel, R.D. The Effects of Noninvasive Traction on SSEPs During Ankle Arthroscopy. Foot Ankle Int. 2020, 41, 1355–1359. [Google Scholar] [CrossRef] [PubMed]
- Powden, C.J.; Hogan, K.K.; Wikstrom, E.A.; Hoch, M.C. The Effect of 2 Forms of Talocrural Joint Traction on Dorsiflexion Range of Motion and Postural Control in Those with Chronic Ankle Instability. J. Sport Rehabil. 2017, 26, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Estébanez-de-Miguel, E.; González-Rueda, V.; Bueno-Gracia, E.; Pérez-Bellmunt, A.; López-de-Celis, C.; Caudevilla-Polo, S. The Immediate Effects of 5-Minute High-Force Long Axis Distraction Mobilization on the Strain on the Inferior Ilio-Femoral Ligament and Hip Range of Motion: A Cadaveric Study. Musculoskelet. Sci. Pract. 2020, 50, 102262. [Google Scholar] [CrossRef] [PubMed]
- Estébanez-de-Miguel, E.; López-de-Celis, C.; Caudevilla-Polo, S.; González-Rueda, V.; Bueno-Gracia, E.; Pérez-Bellmunt, A. The Effect of High, Medium and Low Mobilization Forces Applied during a Hip Long-Axis Distraction Mobilization on the Strain on the Inferior Ilio-Femoral Ligament and Psoas Muscle: A Cadaveric Study. Musculoskelet. Sci. Pract. 2020, 47, 3–7. [Google Scholar] [CrossRef]
- López-de-Celis, C.; Estébanez-de-Miguel, E.; Pérez-Bellmunt, A.; Caudevilla-Polo, S.; González-Rueda, V.; Bueno-Gracia, E. The Effect of Scapular Fixation on Scapular and Humeral Head Movements during Glenohumeral Axial Distraction Mobilization. Medicina 2022, 58, 454. [Google Scholar] [CrossRef]
- Guerra-Rodríguez, D.; Rozo, L.; Basilio, D.; Guerrero-Henriquez, J. In Vivo Measurements of Glenohumeral Distraction Technique Performed in Three Different Joint Positions. J. Man. Manip. Ther. 2021, 29, 353–359. [Google Scholar] [CrossRef]
- López-de-Celis, C.; Caudevilla-Polo, S.; Pérez-Bellmunt, A.; González-Rueda, V.; Bueno-Gracia, E.; Estébanez-de-Miguel, E. Effect of Scapular Fixation on Lateral Movement and Scapular Rotation during Glenohumeral Lateral Distraction Mobilisation. Healthcare 2023, 11, 1829. [Google Scholar] [CrossRef] [PubMed]
- Zordão, C.C.; Mendonça Junior, E.S.; Valério, P.M.; Perez, C.S.; Ferro, A.P.; Guirro, E.C. de O. Immediate Effect of Manual Therapy on Tibiotarsal Joint Mobility and Static Balance in Individuals with Diabetes. J. Chiropr. Med. 2021, 20, 128–137. [Google Scholar] [CrossRef]
- Marrón-Gómez, D.; Rodríguez-Fernández, Á.L.; Martín-Urrialde, J.A. The Effect of Two Mobilization Techniques on Dorsiflexion in People with Chronic Ankle Instability. Phys. Ther. Sport 2015, 16, 10–15. [Google Scholar] [CrossRef]
- Molyneux, P.; Bowen, C.; Ellis, R.; Rome, K.; Fitzgerald, K.; Clark, P.; Carroll, M. Reliability of an Ultrasound Imaging Acquisition Procedure for Examining Osteoarthritis in the First Metatarsophalangeal Joint. J. Foot Ankle Res. 2024, 17, e12002. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Thong, I.S.K.; Jensen, M.P.; Miró, J.; Tan, G. The Validity of Pain Intensity Measures: What Do the NRS, VAS, VRS, and FPS-R Measure? Scand. J. Pain 2018, 18, 99–107. [Google Scholar] [CrossRef]
- Morrison, R.S.S.; Ahronheim, J.C.; Morrison, G.R.R.; Darling, E.; Baskin, S.A.; Morris, J.; Choi, C.; Meier, D.E. Pain and Discomfort Associated with Common Hospital Procedures and Experiences. J. Pain Symptom Manag. 1998, 15, 91–101. [Google Scholar] [CrossRef]
- Zhou, Y.; Petpichetchian, W.; Kitrungrote, L. Psychometric Properties of Pain Intensity Scales Comparing among Postoperative Adult Patients, Elderly Patients without and with Mild Cognitive Impairment in China. Int. J. Nurs. Stud. 2011, 48, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R.A. When to Use the Bonferroni Correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Hillsdale, MI, USA, 1988. [Google Scholar]
- Baer, T.E.; Stolley, M.P.; Thedens, D.R.; Brown, T.D.; Saltzman, C.L. Clinical Tip: Development of an Ankle Distraction Device Compatible with MRI and Radiography. Foot Ankle Int. 2006, 27, 472–474. [Google Scholar] [CrossRef]
- Dowdy, P.A.; Warson, B.V.; Annunziato, A.; Brown, J.D. Noninvasive Ankle Distraction: Relationship between Force, Magnitude of Distraction, and Nerve Conduction Abnormalities. Arthrosc. J. Arthrosc. Relat. Surg. 1996, 12, 64–69. [Google Scholar] [CrossRef]
- Witt, D.W.; Talbott, N.R. In-Vivo Measurements of Force and Humeral Movement during Inferior Glenohumeral Mobilizations. Man. Ther. 2016, 21, 198–203. [Google Scholar] [CrossRef]
- Vermeulen, H.M.; Rozing, P.M.; Obermann, W.R.; le Cessie, S.; Vliet Vlieland, T.P.M. Comparison of High-Grade and Low-Grade Mobilization Techniques in the Management of Adhesive Capsulitis of the Shoulder: Randomized Controlled Trial. Phys. Ther. 2006, 86, 355–368. [Google Scholar] [CrossRef]
- Maher, S.; Creighton, D.; Kondratek, M.; Krauss, J.; Qu, X. The Effect of Tibio-Femoral Traction Mobilization on Passive Knee Flexion Motion Impairment and Pain: A Case Series. J. Man. Manip. Ther. 2010, 18, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Courtney, C.A.; Steffen, A.D.; Fernández-de-las-Pñas, C.; Kim, J.; Chmell, S.J. Joint Mobilization Enhances Mechanisms of Conditioned Pain Modulation in Individuals with Osteoarthritis of the Knee. J. Orthop. Sport. Phys. Ther. 2016, 46, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Courtney, C.A.; Witte, P.O.; Chmell, S.J.; Hornby, T.G. Heightened Flexor Withdrawal Response in Individuals with Knee Osteoarthritis Is Modulated by Joint Compression and Joint Mobilization. J. Pain 2010, 11, 179–185. [Google Scholar] [CrossRef]
- Park, S.-S.; Kim, B.-K.; Moon, O.-K.; Choi, W.-S. Effects of Joint Position on the Distraction Distance during Grade III Glenohumeral Joint Distraction in Healthy Individuals. J. Phys. Ther. Sci. 2015, 27, 3279–3281. [Google Scholar] [CrossRef]
- Do Moon, G.; Lim, J.Y.; Kim, D.Y.; Kim, T.H. Comparison of Maitland and Kaltenborn Mobilization Techniques for Improving Shoulder Pain and Range of Motion in Frozen Shoulders. J. Phys. Ther. Sci. 2015, 27, 1391–1395. [Google Scholar] [CrossRef]
- Agarwal, S.; Raza, S.; Moiz, J.A.; Anwer, S.; Alghadir, A.H. Effects of Two Different Mobilization Techniques on Pain, Range of Motion and Functional Disability in Patients with Adhesive Capsulitis: A Comparative Study. J. Phys. Ther. Sci. 2016, 28, 3342–3349. [Google Scholar] [CrossRef]
- Sarkari, E.; Dhakshinamoorthy, P.; Multani, N.K. Comparison of Caudal and Antero-Posterior Glide Mobilisation for the Improvement of Abduction Range of Motion. J. Exerc. Sci. Physiother. 2006, 2, 59–65. [Google Scholar]
- Szucs, K.A.; Borstad, J.D. Gender Differences between Muscle Activation and Onset Timing of the Four Subdivisions of Trapezius during Humerothoracic Elevation. Hum. Mov. Sci. 2013, 32, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.E.; Chorneyko, A.; Heinrichs, V. Comparing and Characterizing Scapular Muscle Activation Ratios in Males and Females during Execution of Common Functional Movements. PeerJ 2024, 12, e17728. [Google Scholar] [CrossRef]
- Llurda-Almuzara, L.; Pérez-Bellmunt, A.; Labata-Lezaun, N.; López-de-Celis, C.; Moran, J.; Clark, N.C. Sex Differences in Pre-Season Anthropometric, Balance and Range-of-Motion Characteristics in Elite Youth Soccer Players. Healthcare 2022, 10, 819. [Google Scholar] [CrossRef]
- Hahn, T.; Foldspang, A.; Vestergaard, E.; Ingemann-Hansen, T. Active Knee Joint Flexibility and Sports Activity. Scand. J. Med. Sci. Sports 1999, 9, 74–80. [Google Scholar] [CrossRef] [PubMed]
Magnitude of Force | ICC3,1 | 95% CI | SEM | MDC95 |
---|---|---|---|---|
Baseline | 0.996 | 0.968–1.000 | 0.12 | 0.34 |
Low-force TATT | 0.993 | 0.938–0.999 | 0.20 | 0.57 |
Medium-force TATT | 0.995 | 0.951–0.999 | 0.16 | 0.44 |
High-force TATT | 0.991 | 0.923–0.999 | 0.27 | 0.76 |
Mean ± SD or n (%) | |
---|---|
Age (year) | 24.3 ± 5.6 |
Gender | |
Men | 8 (53.3%) |
Women | 7 (46.7%) |
Lower Extremity | |
Right | 15 (50%) |
Left | 15 (50%) |
Height (cm) | 173.8 ± 11.0 |
Weight (kg) | 69.0 ± 12.2 |
BMI (kg/m2) | 22.7 ± 3.1 |
Magnitude of TATT Force | Tibial Fixation | Non-Tibial Fixation | Mean Difference (95% CI) | ES | p-Value |
---|---|---|---|---|---|
Low-force (50.41 ± 11.8N) | 1.27 ± 0.59 mm | 0.90 ± 0.39 mm | 0.38 mm (0.131; 0.623) p = 0.004 | 0.74 | F = 102.693 p < 0.001 |
Medium-force (145.2 ± 24.8N) | 2.75 ± 0.81 mm | 1.33 ± 0.60 mm | 1.43 mm (1.058; 1.797) p < 0.001 | 1.99 | |
High-force (190.1 ± 27.6N) | 3.62 ± 0.81 mm | 1.63 ± 0.66 mm | 2.00 mm (1.615; 2.379) p < 0.001 | 2.69 |
Magnitude of Force | ICC3,1 | 95% CI | SEM | MDC95 |
---|---|---|---|---|
Low-force TATT | 0.746 | 0.041–0.916 | 3.48 | 9.65 |
Medium-force TATT | 0.884 | 0.770–0.944 | 4.56 | 12.63 |
High-force TATT | 0.919 | 0.839–0.961 | 3.80 | 10.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-de-Celis, C.; Rodríguez-Sanz, J.; Gassó-Villarejo, S.; García-Ribell, E.; González-Rueda, V.; Estébanez-de-Miguel, E.; Bueno-Gracia, E. Relevance of Tibial Fixation during Tibiotarsal Joint Traction: Descriptive Cross-Sectional Study. J. Funct. Morphol. Kinesiol. 2024, 9, 163. https://doi.org/10.3390/jfmk9030163
López-de-Celis C, Rodríguez-Sanz J, Gassó-Villarejo S, García-Ribell E, González-Rueda V, Estébanez-de-Miguel E, Bueno-Gracia E. Relevance of Tibial Fixation during Tibiotarsal Joint Traction: Descriptive Cross-Sectional Study. Journal of Functional Morphology and Kinesiology. 2024; 9(3):163. https://doi.org/10.3390/jfmk9030163
Chicago/Turabian StyleLópez-de-Celis, Carlos, Jacobo Rodríguez-Sanz, Sergi Gassó-Villarejo, Erik García-Ribell, Vanessa González-Rueda, Elena Estébanez-de-Miguel, and Elena Bueno-Gracia. 2024. "Relevance of Tibial Fixation during Tibiotarsal Joint Traction: Descriptive Cross-Sectional Study" Journal of Functional Morphology and Kinesiology 9, no. 3: 163. https://doi.org/10.3390/jfmk9030163
APA StyleLópez-de-Celis, C., Rodríguez-Sanz, J., Gassó-Villarejo, S., García-Ribell, E., González-Rueda, V., Estébanez-de-Miguel, E., & Bueno-Gracia, E. (2024). Relevance of Tibial Fixation during Tibiotarsal Joint Traction: Descriptive Cross-Sectional Study. Journal of Functional Morphology and Kinesiology, 9(3), 163. https://doi.org/10.3390/jfmk9030163