A Comparison between Core Stability Exercises and Muscle Thickness Using Two Different Activation Maneuvers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Ultrasound Muscles Thickness Measurements
2.4. Exercise Protocol
- (a)
- The plank exercise with elbow support and one arm extended: this variation of the traditional plank exercise primarily targets the core muscles, including the rectus abdominis, internal and external obliques, erector spinae, transverse abdominis, and lumbar multifidus.
- (b)
- The bird dog exercise: this bodyweight exercise targets the muscles of the back, abdominals, hips, and glutes.
- (c)
- The shoulder bridge exercise with one leg extended: this variation of the traditional shoulder bridge exercise targets the lower back, abs, glutes, and hamstrings.
- (d)
- The Pilates toe tap exercise: this well-known Pilates exercise targets the transverse abdominis, rectus abdominis, and obliques, working to strengthen the core.
- (e)
- The dead bug exercise: this bodyweight exercise targets several muscles, including the rectus abdominis, internal obliques, external obliques, transverse abdominis, multifidus, erector spinae, and the pelvic floor.
- (f)
- The beast crawling exercise: this exercise is a variation of the static Beast Hold exercise. It targets the core muscles, including the transverse abdominis, rectus abdominis, internal and external obliques, erector spinae, and spinal back muscles, as well as the shoulders and quads.
- (g)
- The side plank exercise with extended arm: this variation of the traditional side plank exercise targets the oblique abdominal and lateral hip muscles.
2.5. Statistical Analysis
3. Results
Ultrasound Relative Thickness
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ben Kibler, W.; Press, J.; Sciascia, A. The Role of Core Stability in Athletic Function. Sport. Med. 2006, 36, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Yu, T.; Chun, B. Effects of Core Training on Sport-Specific Performance of Athletes: A Meta-Analysis of Randomized Controlled Trials. Behav. Sci. 2023, 13, 148. [Google Scholar] [CrossRef]
- Coulombe, B.J.; Games, K.E.; Neil, E.R.; Eberman, L.E. Core Stability Exercise Versus General Exercise for Chronic Low Back Pain. J. Athl. Train. 2017, 52, 71–72. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, P.B. Masterclass. Lumbar Segmental ‘Instability’: Clinical Presentation and Specific Stabilizing Exercise Management. Man. Ther. 2000, 5, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Tse, M.A.; McManus, A.M.; Masters, R.S. Development and Validation of a Core Endurance Intervention Program: Implications for Performance in College-Age Rowers. J. Strength Cond. Res. 2005, 19, 547. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.; Dudley, G.A.; Iosia, M.; Stanforth, D.; Steuerwald, B. Core Strength Training. Sport. Sci. Exch. Roundtable 2002, 13, 27–29. [Google Scholar]
- Liemohn, W.; Pariser, G. Core Strength: Implications for Fitness and Low Back Pain. ACSMs Health Fit. J. 2002, 6, 10–16. [Google Scholar]
- Frizziero, A.; Pellizzon, G.; Vittadini, F.; Bigliardi, D.; Costantino, C. Efficacy of Core Stability in Non-Specific Chronic Low Back Pain. J. Funct. Morphol. Kinesiol. 2021, 6, 37. [Google Scholar] [CrossRef]
- Hodges, P.W. Core Stability Exercise in Chronic Low Back Pain. Orthop. Clin. N. Am. 2003, 34, 245–254. [Google Scholar] [CrossRef]
- Stuber, K.J.; Bruno, P.; Sajko, S.; Hayden, J.A. Core Stability Exercises for Low Back Pain in Athletes. Clin. J. Sport Med. 2014, 24, 448–456. [Google Scholar] [CrossRef]
- Park, S. doo Reliability of Ultrasound Imaging of the Transversus Deep Abdominial, Internal Oblique and External Oblique Muscles of Patients with Low Back Pain Performing the Drawing-in Maneuver. J. Phys. Ther. Sci. 2013, 25, 845–847. [Google Scholar] [CrossRef]
- Costa, L.O.P.; Maher, C.G.; Latimer, J.; Smeets, R.J.E.M. Reproducibility of Rehabilitative Ultrasound Imaging for the Measurement of Abdominal Muscle Activity: A Systematic Review. Phys. Ther. 2009, 89, 756–769. [Google Scholar] [CrossRef]
- Kellis, E.; Ellinoudis, A.; Intziegianni, K.; Kofotolis, N. Muscle Thickness During Core Stability Exercises in Children and Adults. J. Hum. Kinet. 2020, 71, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, N.; Ghaffari, M.S.; Noormohammadpour, P.; Rostam, M.; Zarei, M.; Moosavi, M.; Kordi, R. Comparison of the Recruitment of Transverse Abdominis through Drawing-in and Bracing in Different Core Stability Training Positions. J. Exerc. Rehabil. 2019, 15, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Tsartsapakis, I.; Gerou, M.; Zafeiroudi, A.; Kellis, E. Transversus Abdominis Ultrasound Thickness during Popular Trunk–Pilates Exercises in Young and Middle-Aged Women. J. Funct. Morphol. Kinesiol. 2023, 8, 110. [Google Scholar] [CrossRef]
- Okubo, Y.; Kaneoka, K.; Mai, A.; Shiina, I.; Tatsumura, M.; Izumi, S.; Miyakawa, S.; Imai, A.; Shiina, I.; Tatsumura, M.; et al. Electromyographic Analysis of Transversus Abdominis and Lumbar Multifidus Using Wire Electrodes during Lumbar Stabilization Exercises. J. Orthop. Sport. Phys. Ther. 2010, 40, 743–750. [Google Scholar] [CrossRef]
- Emami, F.; Pirouzi, S.; Taghizadeh, S. Comparison of Abdominal and Lumbar Muscles Electromyography Activity During Two Types of Stabilization Exercises. Zahedan J. Res. Med. Sci. 2015, 17, 1–7. [Google Scholar] [CrossRef]
- García-Jaén, M.; Cortell-Tormo, J.M.; Hernández-Sánchez, S.; Tortosa-Martínez, J. Influence of Abdominal Hollowing Maneuver on the Core Musculature Activation during the Prone Plank Exercise. Int. J. Environ. Res. Public Health 2020, 17, 7410. [Google Scholar] [CrossRef]
- Imai, A.; Kaneoka, K.; Okubo, Y.; Shiina, I.; Tatsumura, M.; Izumi, S.; Shiraki, H. Trunk Muscle Activity During Lumbar Stabilization Exercises on Both a Stable and Unstable Surface. J. Orthop. Sport. Phys. Ther. 2010, 40, 369–375. [Google Scholar] [CrossRef]
- Barnett, F.; Gilleard, W. The Use of Lumbar Spinal Stabilization Techniques during the Performance of Abdominal Strengthening Exercise Variations. J. Sports Med. Phys. Fit. 2005, 45, 38–43. [Google Scholar]
- Grenier, S.G.; McGill, S.M. Quantification of Lumbar Stability by Using 2 Different Abdominal Activation Strategies. Arch. Phys. Med. Rehabil. 2007, 88, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Arab, A.M.; Chehrehrazi, M. Ultrasound Measurement of Abdominal Muscles Activity during Abdominal Hollowing and Bracing in Women with and without Stress Urinary Incontinence. Man. Ther. 2011, 16, 596–601. [Google Scholar] [CrossRef]
- Madokoro, S.; Yokogawa, M.; Miaki, H. Effect of the Abdominal Draw-in Maneuver and Bracing on Abdominal Muscle Thickness and the Associated Subjective Difficulty in Healthy Individuals. Healthcare 2020, 8, 496. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, Y.; Oh, S.; Suh, D.; Eun, S.-D.; Yoon, B. Abdominal Hollowing and Bracing Strategies Increase Joint Stability in the Trunk Region during Sudden Support Surface Translation but Not in the Lower Extremities. J. Back Musculoskelet. Rehabil. 2016, 29, 317–325. [Google Scholar] [CrossRef]
- Urquhart, D.M.; Hodges, P.W.; Allen, T.J.; Story, I.H. Abdominal Muscle Recruitment during a Range of Voluntary Exercises. Man. Ther. 2005, 10, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Vaičienė, G.; Berškienė, K.; Slapsinskaite, A.; Mauricienė, V.; Razon, S. Not Only Static: Stabilization Manoeuvres in Dynamic Exercises—A Pilot Study. PLoS ONE 2018, 13, e0201017. [Google Scholar] [CrossRef] [PubMed]
- Stanton, T.; Kawchuk, G. The Effect of Abdominal Stabilization Contractions on Posteroanterior Spinal Stiffness. Spine 2008, 33, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Ando, F.; Terashima, T.; Takahashi, H.; Kurita, H.; Takayama, A.; Endo, Y. Trunk Muscle Thickness During Supine and Crawling Exercises. Int. J. Exerc. Sci. 2023, 16, 1103–1112. [Google Scholar]
- Bae, Y.; Jung, S.; Jeon, J.; Hong, J.; Yu, J.; Kim, J.; Lee, D. Comparison of Trunk Muscle Thickness during Bridge and Plank Exercise According to Surface. J. ReAttach Ther. Dev. Divers. 2023, 6, 71–76. [Google Scholar]
- Afzal, S.; Zahid, M.; Rehan, Z.A.; Shakir, H.M.F.; Javed, H.; Aljohani, M.M.H.; Mustafa, S.K.; Ahmad, M.; Hassan, M.M. Preparation and Evaluation of Polymer-Based Ultrasound Gel and Its Application in Ultrasonography. Gels 2022, 8, 42. [Google Scholar] [CrossRef]
- Endo, Y.; Ito, A.; Hotta, S.; Yakabi, A.; Onoda, K.; Tani, H.; Kubo, A. Intraclass Correlation Coefficient of Trunk Muscle Thicknesses in Different Positions Measured Using Ultrasonography. J. Phys. Ther. Sci. 2021, 33, 283–287. [Google Scholar] [CrossRef]
- Tsartsapakis, I.; Pantazi, G.-A.; Konstantinidou, A.; Zafeiroudi, A.; Kellis, E. Spinal Muscle Thickness and Activation during Abdominal Hollowing and Bracing in CrossFit® Athletes. Sports 2023, 11, 159. [Google Scholar] [CrossRef] [PubMed]
- Akuthota, V.; Ferreiro, A.; Moore, T.; Fredericson, M. Core Stability Exercise Principles. Curr. Sport. Med. Rep. 2008, 7, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Huxel Bliven, K.C.; Anderson, B.E. Core Stability Training for Injury Prevention. Sport Health 2013, 5, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Ehsani, F.; Sahebi, N.; Shanbehzadeh, S.; Arab, A.M.; ShahAli, S. Stabilization Exercise Affects Function of Transverse Abdominis and Pelvic Floor Muscles in Women with Postpartum Lumbo-Pelvic Pain: A Double-Blinded Randomized Clinical Trial Study. Int. Urogynecol. J. 2020, 31, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.L.; Lay, B.; Allison, G.T. Corset Hypothesis Rebutted—Transversus Abdominis Does Not Co-Contract in Unison Prior to Rapid Arm Movements. Clin. Biomech. 2012, 27, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, O.; Arab, A.M.; Amiri, M.; Jaberzadeh, S. Ultrasound Measurement of Deep Abdominal Muscle Activity in Sitting Positions with Different Stability Levels in Subjects with and without Chronic Low Back Pain. Man. Ther. 2011, 16, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Abe, H.; Tojima, M.; Yoshimoto, M.; Takahira, N.; Torii, S. Ultrasonography of the Deep Abdominal Muscles at Rest and during the Drawing-in Maneuver: A Comparative Study of Japanese Adolescent vs. Adult Soccer Players. Isokinet. Exerc. Sci. 2013, 21, 187–193. [Google Scholar] [CrossRef]
- Pinto, R.Z.; Ferreira, P.H.; Franco, M.R.; Ferreira, M.C.; Ferreira, M.L.; Teixeira-Salmela, L.F.; Oliveira, V.C.; Maher, C. The Effect of Lumbar Posture on Abdominal Muscle Thickness during an Isometric Leg Task in People with and without Non-Specific Low Back Pain. Man. Ther. 2011, 16, 578–584. [Google Scholar] [CrossRef]
- McGill, S.M.; Karpowicz, A. Exercises for Spine Stabilization: Motion/Motor Patterns, Stability Progressions, and Clinical Technique. Arch. Phys. Med. Rehabil. 2009, 90, 118–126. [Google Scholar] [CrossRef]
- Queiroz, B.C.; Cagliari, M.F.; Amorim, C.F.; Sacco, I.C. Muscle Activation During Four Pilates Core Stability Exercises in Quadruped Position. Arch. Phys. Med. Rehabil. 2010, 91, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Youdas, J.W.; Boor, M.M.P.; Darfler, A.L.; Koenig, M.K.; Mills, K.M.; Hollman, J.H. Surface Electromyographic Analysis of Core Trunk and Hip Muscles During Selected Rehabilitation Exercises in the Side-Bridge to Neutral Spine Position. Sport. Health Multidiscip. Approach 2014, 6, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P. Lumbopelvic Stability: A Functional Model of the Biomechanics and Motor Control. In Therapeutic Exercise for Lumbopelvic Stabilization; Elsevier: Amsterdam, The Netherlands, 2004; pp. 13–28. [Google Scholar]
- Ekstrom, R.A.; Donatelli, R.A.; Carp, K.C. Electromyographic Analysis of Core Trunk, Hip, and Thigh Muscles During 9 Rehabilitation Exercises. J. Orthop. Sports Phys. Ther. 2007, 37, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, J.; Casaña, J.; Martín, F.; Jakobsen, M.D.; Colado, J.C.; Andersen, L.L. Progression of Core Stability Exercises Based on the Extent of Muscle Activity. Am. J. Phys. Med. Rehabil. 2017, 96, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Lehman, G.J.; Hoda, W.; Oliver, S. Trunk Muscle Activity during Bridging Exercises on and off a Swissball. Chiropr. Osteopat. 2005, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Machado, P.M.; Alves, M.C.; Hendler, K.G.; Benetti, V.B.; de Souza Neto, R.J.; Barbosa, R.I.; Marcolino, A.M.; Kuriki, H.U. Effectiveness of the Pilates Method for Individuals with Nonspecific Low Back Pain: Clinical and Electromyographic Aspects. Mot. Rev. Educ. Física 2018, 23, 1–8. [Google Scholar] [CrossRef]
- Pirouzi, S.; Emami, F.; Taghizadeh, S.; Ghanbari, A. Is Abdominal Muscle Activity Different from Lumbar Muscle Activity during Four-Point Kneeling? Iran. J. Med. Sci. 2013, 38, 327. [Google Scholar] [PubMed]
- Seyed Hoseinpoor, T.; Kahrizi, S.; Mobini, B.; Naji, M. A Comparison of Abdominal Muscle Thickness Changes After a Lifting Task in Subjects with and without Chronic Low-Back Pain. Hum. Factors J. Hum. Factors Ergon. Soc. 2015, 57, 208–217. [Google Scholar] [CrossRef]
- ShahAli, S.; Shanbehzadeh, S.; ShahAli, S.; Ebrahimi Takamjani, I. Application of Ultrasonography in the Assessment of Abdominal and Lumbar Trunk Muscle Activity in Participants with and without Low Back Pain: A Systematic Review. J. Manip. Physiol. Ther. 2019, 42, 541–550. [Google Scholar] [CrossRef]
- Tahan, N.; Khademi-Kalantari, K.; Mohseni-Bandpei, M.A.; Mikaili, S.; Baghban, A.A.; Jaberzadeh, S. Measurement of Superficial and Deep Abdominal Muscle Thickness: An Ultrasonography Study. J. Physiol. Anthropol. 2016, 35, 17. [Google Scholar] [CrossRef]
- Teyhen, D.S.; Miltenberger, C.E.; Deiters, H.M.; Del Toro, Y.M.; Pulliam, J.N.; Childs, J.D.; Boyles, R.E.; Flynn, T.W. The Use of Ultrasound Imaging of the Abdominal Drawing-in Maneuver in Subjects with Low Back Pain. J. Orthop. Sport. Phys. Ther. 2005, 35, 346–355. [Google Scholar] [CrossRef]
- Richardson, C.; Hodges, P.; Hides, J. Therapeutic Exercise for Lumbopelvic Stabilization; Elsevier: Amsterdam, The Netherlands, 2004; Volume 2004, ISBN 9780443072932. [Google Scholar]
- Hodges, P. Transversus Abdominis: A Different View of the Elephant. Br. J. Sport. Med. 2007, 42, 941–944. [Google Scholar] [CrossRef] [PubMed]
- Boyd, K. Low Back Disorders: Evidence-Based Prevention and Rehabilitation. Physiother. Can. 2003, 55, 124. [Google Scholar] [CrossRef]
- Vera-Garcia, F.J.; Elvira, J.L.L.L.; Brown, S.H.M.M.; McGill, S.M. Effects of Abdominal Stabilization Maneuvers on the Control of Spine Motion and Stability against Sudden Trunk Perturbations. J. Electromyogr. Kinesiol. 2007, 17, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Koh, H.-W.; Cho, S.-H.; Kim, C.-Y. Comparison of the Effects of Hollowing and Bracing Exercises on Cross-Sectional Areas of Abdominal Muscles in Middle-Aged Women. J. Phys. Ther. Sci. 2014, 26, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Oshikawa, T.; Adachi, G.; Akuzawa, H.; Okubo, Y.; Kaneoka, K. Electromyographic Analysis of Abdominal Muscles during Abdominal Bracing and Hollowing among Six Different Positions. J. Phys. Fit. Sport. Med. 2020, 9, 157–163. [Google Scholar] [CrossRef]
- Lafond, D.; Dimmock, M.; Champagne, A.; Descarreaux, M. Intrasession Reliability and Influence of Breathing during Clinical Assessment of Lumbar Spine Postural Control. Physiother. Theory Pract. 2009, 25, 218–227. [Google Scholar] [CrossRef]
- Malik Slosberg, D.C. Core Stabilization Strategies: Abdominal Hollowing vs. Bracing. Available online: https://dynamicchiropractic.com/article/54160-core-stabilization-strategies-abdominal-hollowing-vs-bracing (accessed on 1 February 2024).
- Cervera-Cano, M.; López-González, L.; Valcárcel-Linares, D.; Fernández-Carnero, S.; Achalandabaso-Ochoa, A.; Andrés-Sanz, V.; Pecos-Martín, D. Core Synergies Measured with Ultrasound in Subjects with Chronic Non-Specific Low Back Pain and Healthy Subjects: A Systematic Review. Sensors 2022, 22, 8684. [Google Scholar] [CrossRef]
Age | Height | Weight | BMI | ||
---|---|---|---|---|---|
M ± SD | M ± SD | M ± SD | M ± SD | ||
Total Sample | N = 44 | 27.0 ± 3.03 | 1.71 ± 0.08 | 64.4 ± 11.4 | 21.9 ± 2.34 |
Male | N = 18 | 28.3 ± 3.05 | 1.78 ± 0.05 | 74.8 ± 8.51 | 23.5 ± 2.10 |
Female | N = 26 | 26.1 ± 10.0 | 1.65 ± 0.06 | 57.2 ± 6.43 | 20.8 ± 1.82 |
Exercise | Muscle | Bracing | Hollowing |
---|---|---|---|
Plank | TrA | 75.4 ± 27.5 | 90.1 ± 31.8 * |
IO | 37.6 ± 15.0 # | 47.5 ± 17.4 *# | |
LM Total | 19.4 ± 6.77 ˆ 44.1 ± 11.2 | 22.7 ± 7.80 *ˆ 53.7 ± 13.2 * | |
Bird Dog | TrA | 87.1 ± 20.1 | 106. ± 24.5 * |
IO | 45.5 ± 16.4 # | 54.8 ± 18.4 *# | |
LM Total | 19.9 ± 9.69 ˆ 50.8 ± 9.54 | 24.5 ± 9.93 *ˆ 61.9 ± 12.1 * | |
Bridge | TrA | 79.2 ± 22.9 | 91.1 ± 23.5 * |
IO | 36.2 ± 14.6 # | 45.4 ± 16.8 *# | |
LM Total | 22.1 ± 9.49 ˆ 45.8 ± 11.1 | 26.7 ± 9.97 *ˆ 54.4 ± 12.4 * | |
Toe Tap | TrA | 81.3 ± 23.4 | 91.9 ± 22.2 * |
IO | 40.2 ± 16.1 # | 44.6 ± 16.5 *# | |
LM Total | 21.4 ± 7.99 ˆ 47.6 ± 10.2 | 26.3 ± 9.16*ˆ 54.3 ± 11.4 * | |
Dead Bug | TrA | 82.9 ± 26.1 | 99.6 ± 24.2 * |
IO | 36.4 ± 15.9 # | 45.0 ± 15.8 *# | |
LM Total | 22.8 ± 9.68 ˆ 47.4 ± 13.5 | 28.3 ± 11.1 *ˆ 57.6 ± 11.3 * | |
Beast Crawl | TrA | 78.1 ± 17.9 | 97.7 ± 22.9 * |
IO | 45.6 ± 17.3 # | 54.4 ± 17.8 *# | |
LM Total | 18.7 ± 7.40 ˆ 47.5 ± 8.69 | 23.6 ± 11.1 *ˆ 58.6 ± 10.6 * | |
Side Plank | TrA | 84.8 ± 23.6 | 98.7 ± 24.1 * |
IO | 48.3 ± 17.9 # | 59.4 ± 19.4 *# | |
LM Total | 24.2 ± 9.85 ˆ 52.4 ± 11.9 | 27.5 ± 10.5 *ˆ 61.9 ± 13.3 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsartsapakis, I.; Bagioka, I.; Fountoukidou, F.; Kellis, E. A Comparison between Core Stability Exercises and Muscle Thickness Using Two Different Activation Maneuvers. J. Funct. Morphol. Kinesiol. 2024, 9, 70. https://doi.org/10.3390/jfmk9020070
Tsartsapakis I, Bagioka I, Fountoukidou F, Kellis E. A Comparison between Core Stability Exercises and Muscle Thickness Using Two Different Activation Maneuvers. Journal of Functional Morphology and Kinesiology. 2024; 9(2):70. https://doi.org/10.3390/jfmk9020070
Chicago/Turabian StyleTsartsapakis, Ioannis, Ioanna Bagioka, Flora Fountoukidou, and Eleftherios Kellis. 2024. "A Comparison between Core Stability Exercises and Muscle Thickness Using Two Different Activation Maneuvers" Journal of Functional Morphology and Kinesiology 9, no. 2: 70. https://doi.org/10.3390/jfmk9020070
APA StyleTsartsapakis, I., Bagioka, I., Fountoukidou, F., & Kellis, E. (2024). A Comparison between Core Stability Exercises and Muscle Thickness Using Two Different Activation Maneuvers. Journal of Functional Morphology and Kinesiology, 9(2), 70. https://doi.org/10.3390/jfmk9020070