Key Performance Indicators Predictive of Success in Soccer: A Comprehensive Analysis of the Greek Soccer League
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Data Collection and Analysis Procedures—Analysis of Matches
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Almeida, C.H.; Ferreira, A.P.; Volossovitch, A. Effects of match location, match status and quality of opposition on regaining possession in UEFA Champions League. J. Hum. Kinet. 2014, 41, 203. [Google Scholar] [CrossRef]
- Bekris, E.; Mylonis, E.; Sarakinos, A.; Gissis, I.; Gioldasis, A. Offense and defense statistical indicators that determine the Greek Superleague teams placement on the Table 2011-12. J. Phys. Educ. Sport. 2013, 13, 338–347. [Google Scholar] [CrossRef]
- Castellano, J.; Casamichana, D.; Lago, C. The use of match statistics that discriminate between successful and unsuccessful soccer teams. J. Hum. Kinet. 2012, 31, 137–147. [Google Scholar] [CrossRef]
- Fernández-Cortés, J.; Gómez-Carmona, C.D.; Mancha-Triguero, D.; García-Rubio, J.; Ibáñez, S.J. Effect of COVID-19 on Key Performance Indicators of Spanish Professional Soccer League. J. Funct. Morphol. Kinesiol. 2024, 9, 35. [Google Scholar] [CrossRef]
- Hughes, M.; Churchill, S. Attacking profiles of successful and unsuccessful teams in Copa America 2001. In Science and Football V: The Proceedings of the Fifth World Congress on Science and Football; Routledge: Abingdon, UK, 2005; pp. 222–228. [Google Scholar]
- Hook, C.; Hughes, M.D. Patterns of play leading to shots in Euro 2000. Pass. Com. 2001, 1, 295–302. [Google Scholar]
- Hughes, M.; Franks, I. Analysis of passing sequences, shots and goals in soccer. J. Sports Sci. 2005, 23, 509–514. [Google Scholar] [CrossRef]
- Jones, P.D.; James, N.; Mellalieu, S.D. Possession as a performance indicator in soccer. Int. J. Perform. Anal. Sport 2004, 4, 98–102. [Google Scholar] [CrossRef]
- Konefał, M.; Chmura, P.; Zacharko, M.; Baranowski, J.; Andrzejewski, M.; Błażejczyk, K.; Chmura, J. The influence of thermal stress on the physical and technical activities of soccer players: Lessons from the 2018 FIFA World Cup in Russia. Int. J. Biometeorol. 2021, 65, 1291–1298. [Google Scholar] [CrossRef]
- Kubayi, A.; Toriola, A. Match performance indicators that discriminated between winning, drawing and losing teams in the 2017 AFCON Soccer Championship. J. Hum. Kinet. 2020, 72, 215–221. [Google Scholar] [CrossRef]
- Stafylidis, A.; Mandroukas, A.; Papadopoulou, S.D.; Michailidis, Y.; Kyranoudis, A.; Gissis, Ι.; Metaxas, T. Analysis of game-related performance indicators in the Greek soccer league: Insights from the 2020–2021 season. Trends Sport Sci. 2024, 31, 37–44. [Google Scholar] [CrossRef]
- Stafylidis, A.; Michailidis, Y.; Mandroukas, A.; Gissis, I.; Metaxas, T. Analysis of goal scoring and performance indicators in the 2020-2021 Greek soccer league. J. Phys. Educ. Sport 2022, 22, 91–99. [Google Scholar] [CrossRef]
- Stephens, R.; Bosworth, G.; Shepherd, T.A. Playing in the UEFA Europa League Does Not Adversely Affect English Premier League or La Liga Performance. J. Funct. Morphol. Kinesiol. 2018, 4, 2. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, S.; Lorenzo Calvo, A.; Cui, Y. Chinese soccer association super league, 2012–2017: Key performance indicators in balance games. Int. J. Perform. Anal. Sport 2018, 18, 645–656. [Google Scholar] [CrossRef]
- Carling, C.; Williams, A.M.; Reilly, T. Handbook of Soccer Match Analysis: A Systematic Approach to Improving Performance; Routledge: Abingdon, UK, 2007. [Google Scholar] [CrossRef]
- Vardakis, L.; Michailidis, Y.; Mandroukas, A.; Mavrommatis, G.; Christoulas, K.; Metaxas, T. Analysis of the running performance of elite soccer players depending on position in the 1-4-3-3 formation. Ger. J. Exerc. Sport Res. 2020, 50, 241–250. [Google Scholar] [CrossRef]
- Peters, D.M.; O’Donoghue, P. (Eds.) Performance Analysis of Sport IX; Routledge: Abingdon, UK, 2013. [Google Scholar] [CrossRef]
- Plakias, S.; Moustakidis, S.; Kokkotis, C.; Papalexi, M.; Tsatalas, T.; Giakas, G.; Tsaopoulos, D. Identifying soccer players’ playing styles: A systematic review. J. Funct. Morphol. Kinesiol. 2023, 8, 104. [Google Scholar] [CrossRef]
- Broich, H.; Mester, J.; Seifriz, F.; Yue, Z. Statistical analysis for the First Bundesliga in the current soccer season. Prog. Appl. Math. 2014, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Choi, M.S.; Bang, S.Y.; Park, J.K. Analysis of shots on target and goals scored in soccer matches: Implications for coaching and training goalkeepers. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2016, 38, 123–137. [Google Scholar]
- Rathke, A. An examination of expected goals and shot efficiency in soccer. J. Hum. Sport Exerc. 2017, 12, 514–529. [Google Scholar] [CrossRef]
- Barreira, J.; Vendite, C.; Vendite, L.L. Analysis of shots and passing sequence of a soccer team and its opponents during 2014 Brazilian championship. Int. J. Sports Sci. 2016, 6, 163–167. [Google Scholar] [CrossRef]
- Yue, Z.; Broich, H.; Mester, J. Statistical analysis for the soccer matches of the first Bundesliga. Int. J. Sports Sci. Coach. 2014, 9, 553–560. [Google Scholar] [CrossRef]
- Gómez, M.Á.; Mitrotasios, M.; Armatas, V.; Lago-Peñas, C. Analysis of playing styles according to team quality and match location in Greek professional soccer. Int. J. Perform. Anal. Sport 2018, 18, 986–997. [Google Scholar] [CrossRef]
- González-Rodenas, J.; Aranda, R.; Tudela-Desantes, A.; Calabuig Moreno, F.; Sanjurjo, C.A.C.; Aranda, R. Effect of match location, team ranking, match status and tactical dimenions on the offensive performance in Spanish’ La Liga’soccer matches. Front. Psychol. 2019, 10, 2089. [Google Scholar] [CrossRef] [PubMed]
- González-Rodenas, J.; Aranda-Malaves, R.; Tudela-Desantes, A.; Nieto, F.; Usó, F.; Aranda, R. Playing tactics, contextual variables and offensive effectiveness in English Premier League soccer matches. A multilevel analysis. PLoS ONE 2020, 15, e0226978. [Google Scholar] [CrossRef] [PubMed]
- González-Ródenas, J.; López-Bondia, I.; Aranda-Malavés, R.; Tudela Desantes, A.; Sanz-Ramírez, E.; Aranda, R. Technical, tactical and spatial indicators related to goal scoring in European elite soccer. J. Hum. Sport Exerc. 2019, 15, 186–201. [Google Scholar] [CrossRef]
- González-Rodenas, J.; Lopez-Bondia, I.; Calabuig, F.; Pérez-Turpin, J.A.; Aranda, R. Association between playing tactics and creating scoring opportunities in counterattacks from United States Major League Soccer games. Int. J. Perform. Anal. Sport 2016, 16, 737–752. [Google Scholar] [CrossRef]
- González-Rodenas, J.; Mitrotasios, M.; Aranda, R.; Armatas, V. Combined effects of tactical, technical and contextual factors on shooting effectiveness in European professional soccer. Int. J. Perform. Anal. Sport 2020, 20, 280–293. [Google Scholar] [CrossRef]
- Vergonis, A.; Michailidis, Y.; Mikikis, D.; Semaltianou, E.; Mavrommatis, G.; Christoulas, K.; Metaxas, T. Technical and tactical analysis of goal scoring patterns in the 2018 FIFA World Cup in Russia. Facta Univ. Ser. Phys. Educ. Sport 2019, 17, 181–193. [Google Scholar] [CrossRef]
- Casamichana, D.; Castellano, J.; Calleja-Gonzalez, J.; San Roman, J. Differences between winning, drawing and losing teams in the 2010 World Cup. In Science and Football VII; Routledge: Abingdon, UK, 2013; pp. 211–216. [Google Scholar]
- Fernandez-Navarro, J.; Fradua, L.; Zubillaga, A.; McRobert, A.P. Evaluating the effectiveness of styles of play in elite soccer. Int. J. Sports Sci. Coach. 2019, 14, 514–527. [Google Scholar] [CrossRef]
- Liu, H.; Gomez, M.Á.; Lago-Peñas, C.; Sampaio, J. Match statistics related to winning in the group stage of 2014 Brazil FIFA World Cup. J. Sports Sci. 2015, 33, 1205–1213. [Google Scholar] [CrossRef]
- Vantarakis, A.; Stafylidis, A. Attributes of crosses and their impact on goal scoring in soccer leagues. J. Phys. Educ. Sport 2023, 23, 3084–3090. [Google Scholar] [CrossRef]
- Altarriba-Bartés, A.; Calle, M.L.; Susín, A.; Gonçalves, B.; Vives, M.; Sampaio, J.; Peña, J. Analysis of the winning probability and the scoring actions in the American professional soccer championship. RICYDE Rev. Int. Cienc. Deporte. 2019, 16, 67–84. [Google Scholar] [CrossRef]
- Link, D.; Kolbinger, O.; Weber, H.; Stöckl, M. A topography of free kicks in soccer. J. Sports Sci. 2016, 34, 2312–2320. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, J.P.A.; Rochael, M.; de Andrade, A.G.P.; Bredt, S.G.; Praça, G.M. How reaching the pitch’s final third is related to scoring opportunities in soccer? Retos Nuevas Tend. Educ. Física Deporte Recreación 2022, 43, 171–176. [Google Scholar]
- Lago-Peñas, C.; Lago-Ballesteros, J.; Dellal, A.; Gómez, M. Game-related statistics that discriminated winning, drawing and losing teams from the Spanish soccer league. J. Sports Sci. Med. 2010, 9, 288. [Google Scholar] [PubMed]
- Lago-Peñas, C.; Lago-Ballesteros, J. Game location and team quality effects on performance profiles in professional soccer. J. Sports Sci. Med. 2011, 10, 465. [Google Scholar] [PubMed]
- Konefał, M.; Chmura, P.; Zacharko, M.; Chmura, J.; Rokita, A.; Andrzejewski, M. Match outcome vs match status and frequency of selected technical activities of soccer players during UEFA Euro 2016. Int. J. Perform. Anal. Sport 2018, 18, 568–581. [Google Scholar] [CrossRef]
- Michailidis, Y.; Mandroukas, A.; Vardakis, L.; Metaxas, T. Evaluation of the goals scoring patterns and the relation between time and goal scoring of four UEFA champions league tournaments. Facta Univ. Ser. Phys. Educ. Sport 2018, 16, 329–336. [Google Scholar] [CrossRef]
- Michailidis, Y.; Nenos, I.; Metaxas, I.; Mandroukas, A.; Metaxas, T. Correlations of passes and playing formations with technical-tactical elements during the 2022 FIFA World Cup. J. Sports Med. Phys. Fit. 2023, 63, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Michailidis, Y.; Papadopoulos, P.; Mandroukas, A.; Metaxas, I.; Metaxas, T. The characteristics of counterattacks in the Spanish league (La Liga) in 2021–2022. J. Sports Med. Phys. Fit. 2023, 64, 37–44. [Google Scholar] [CrossRef]
- Paixão, P.; Sampaio, J.; Almeida, C.H.; Duarte, R. How does match status affects the passing sequences of top-level European soccer teams? Int. J. Perform. Anal. Sport 2015, 15, 229–240. [Google Scholar] [CrossRef]
- Pulling, C.; Eldridge, D.; Ringshall, E.; Robins, M.T. Analysis of crossing at the 2014 FIFA World Cup. Int. J. Perform. Anal. Sport 2018, 18, 657–677. [Google Scholar] [CrossRef]
- Redwood-Brown, A. Passing patterns before and after goal scoring in F.A. Premier League Soccer. Int. J. Perform. Anal. Sport 2008, 8, 172–182. [Google Scholar] [CrossRef]
- Lago-Peñas, C.; Gomez, M.Á.; Pollard, R. Home advantage in elite soccer matches. A transient effect? Int. J. Perform. Anal. Sport 2017, 17, 86–95. [Google Scholar] [CrossRef]
- Tenga, A.; Holme, I.; Ronglan, L.T.; Bahr, R. Effect of playing tactics on goal scoring in Norwegian professional soccer. J. Sports Sci. 2010, 28, 237–244. [Google Scholar] [CrossRef]
- Tenga, A.; Ronglan, L.T.; Bahr, R. Measuring the effectiveness of offensive match-play in professional soccer. Eur. J. Sport Sci. 2010, 10, 269–277. [Google Scholar] [CrossRef]
- Harrop, K.; Nevill, A. Performance indicators that predict success in an English professional League One soccer team. Int. J. Perform. Anal. Sport 2014, 14, 907–920. [Google Scholar] [CrossRef]
- Carpita, M.; Golia, S. Discovering associations between players’ performance indicators and matches’ results in the European Soccer Leagues. J. Appl. Stat. 2020, 48, 1696–1711. [Google Scholar] [CrossRef]
- Carpita, M.; Ciavolino, E.; Pasca, P. Exploring and modelling team performances of the Kaggle European Soccer database. Stat. Model. 2019, 19, 74–101. [Google Scholar] [CrossRef]
- Kite, C.S.; Nevill, A. The predictors and determinants of inter-seasonal success in a professional soccer team. J. Hum. Kinet. 2017, 58, 157–167. [Google Scholar] [CrossRef]
- Pappalardo, L.; Cintia, P.; Ferragina, P.; Massucco, E.; Pedreschi, D.; Giannotti, F. PlayeRank: Data-driven performance evaluation and player ranking in soccer via a machine learning approach. ACM Trans. Intell. Syst. Technol. (TIST) 2019, 10, 1–27. [Google Scholar] [CrossRef]
- Beaudouin, F.; aus der Fünten, K.; Tröß, T.; Reinsberger, C.; Meyer, T. Time trends of head injuries over multiple seasons in professional male football (Soccer). Sports Med. Int. Open 2019, 3, E6–E11. [Google Scholar] [CrossRef] [PubMed]
- Bransen, L.; Van Haaren, J.; van de Velden, M. Measuring soccer players’ contributions to chance creation by valuing their passes. J. Quant. Anal. Sports 2019, 15, 97–116. [Google Scholar] [CrossRef]
- Della Villa, F.; Buckthorpe, M.; Grassi, A.; Nabiuzzi, A.; Tosarelli, F.; Zaffagnini, S.; Della Villa, S. Systematic video analysis of ACL injuries in professional male football (soccer): Injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br. J. Sports Med. 2020, 54, 1423–1432. [Google Scholar] [CrossRef]
- González-Rodenas, J.; Lopez-Bondia, I.; Calabuig, F.; Pérez-Turpin, J.A.; Aranda, R. Creation of goal scoring opportunities by means of different types of offensive actions in U.S. major league soccer. Hum. Mov. Spec. Issues 2017, 18, 106–116. [Google Scholar] [CrossRef]
- González-Rodenas, J.; Lopez-Bondia, I.; Calabuig, F.; Pérez-Turpin, J.A.; Aranda, R. The effects of playing tactics on creating scoring opportunities in random matches from US Major League Soccer. Int. J. Perform. Anal. Sport 2015, 15, 851–872. [Google Scholar] [CrossRef]
- Martín-González, J.M.; Díaz-Díaz, R.; Ramos-Verde, E.; Arriaga-Ardales, E.; da Silva-Grigoletto, M.E.; García-Manso, J.M. Topological properties and dynamics of nets game shown by France and Portugal in the final of European soccer cup 2016. Motricidade 2017, 13, 101–112. [Google Scholar]
- SPSS. Corp IBM SPSS Statistics for Windows, Version 26.0; IBM Corp: Armonk, NY, USA, 2018. [Google Scholar]
- Cohen, J. Statistical power analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Cohen, J. STATISTICAL Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Redwood-Brown, A.J.; O’Donoghue, P.G.; Nevill, A.M.; Saward, C.; Sunderland, C. Effects of playing position, pitch location, opposition ability and team ability on the technical performance of elite soccer players in different score line states. PLoS ONE 2019, 14, e0211707. [Google Scholar] [CrossRef]
- Plakias, S.; Mandroukas, A.; Kokkotis, C.; Michailidis, Y.; Mavromatis, G.; Metaxas, T. The correlation of the penetrative pass on offensive third with the possession of the ball in high level soccer. Gazz. Medica Ital.-Arch. Sci. Mediche 2022, 181, 633–638. [Google Scholar] [CrossRef]
- Freitas, R.; Volossovitch, A.; Almeida, C.H.; Vleck, V. Elite-level defensive performance in football: A systematic review. Ger. J. Exerc. Sport Res. 2023, 53, 458–470. [Google Scholar] [CrossRef]
- Tenga, A.; Sigmundstad, E. Characteristics of goal-scoring possessions in open play: Comparing the top, in-between and bottom teams from professional soccer league. Int. J. Perform. Anal. Sport 2011, 11, 545–552. [Google Scholar] [CrossRef]
- Gouveia, V.; Duarte, J.P.; Nóbrega, A.; Sarmento, H.; Pimenta, E.; Domingos, F.; Araújo, I. Notational Analysis on Goal Scoring and Comparison in Two of the Most Important Soccer Leagues: Spanish La Liga and English Premier League. Appl. Sci. 2023, 13, 6903. [Google Scholar] [CrossRef]
Variable | Win (n = 65) | Draw (n = 52) | Lose (n = 65) | H | p | η2 |
---|---|---|---|---|---|---|
M ± SD | M ± SD | M ± SD | ||||
Goals scored | 2.09 ± 1.07 | 1.15 ± 0.82 | 0.46 ± 0.81 | 81.687 | 0.001 *†‡ | 0.451 |
Shots | 11.29± 4.73 | 9.57 ± 3.95 | 8.01 ± 3.45 | 18.516 | 0.001 *† | 0.102 |
Shots on target | 5.27 ± 2.80 | 3.69 ± 2.05 | 2.49 ± 1.67 | 42.488 | 0.001 *†‡ | 0.234 |
Shots/Shots on target (ratio) | 44.68 ± 14.52 | 38.73 ± 16.91 | 31.53 ± 16.65 | 21.337 | 0.001 *† | 0.117 |
Shots from outside the penalty area | 4.82 ± 5.53 | 3.90 ± 2.04 | 3.40 ± 1.81 | 3.322 | 0.190 | 0.018 |
Shots from outside the penalty area on target | 1.29 ± 1.33 | 0.96 ± 1.06 | 0.76 ± 0.93 | 6.076 | 0.048 † | 0.033 |
Average shot distance | 16.89 ± 2.76 | 17.51 ± 3.64 | 18.65 ± 3.04 | 11.571 | 0.003 † | 0.063 |
Ball possession | 52.65 ± 9.11 | 50.00 ± 8.73 | 47.51 ± 8.33 | 11.244 | 0.004 † | 0.062 |
Average passes per possession | 4.01 ± 1.93 | 3.35 ± 0.84 | 3.31 ± 0.72 | 9.942 | 0.007 †‡ | 0.054 |
Positional attacks | 28.45 ± 8.90 | 26.36 ± 8.82 | 24.21 ± 8.08 | 7.848 | 0.020 † | 0.043 |
Positional attacks with shots | 6.15 ± 3.81 | 4.57 ± 2.47 | 4.36 ± 2.48 | 8.116 | 0.017 † | 0.044 |
Counterattacks | 2.90 ± 2.76 | 2.26 ± 1.51 | 1.70 ± 1.63 | 9.178 | 0.010 † | 0.050 |
Counterattacks with shots | 1.03 ± 1.52 | 0.71 ± 0.75 | 0.32 ± 0.64 | 15.683 | 0.001 *† | 0.086 |
Penalty area entries: runs | 3.40 ± 2.60 | 2.67 ± 1.84 | 2.18 ± 1.81 | 11.239 | 0.004 † | 0.062 |
Penalty area entries: crosses | 8.38 ± 4.51 | 9.05 ± 5.48 | 8.12 ± 3.87 | 0.275 | 0.871 † | 0.001 |
Touches in the penalty area | 16.75 ± 7.88 | 13.94 ± 7.00 | 11.63 ± 5.84 | 15.552 | 0.001 † | 0.085 |
Passes | 409.35 ± 107.74 | 369.80 ± 90.74 | 360.87 ± 75.98 | 8.775 | 0.012 † | 0.048 |
Passes accurate | 343.09 ± 95.75 | 297.02 ± 85.73 | 289.68 ± 70.70 | 8.775 | 0.012 †‡ | 0.048 |
Passes accurate (%) | 83.61 ± 5.30 | 80.31 ± 4.74 | 80.27 ± 3.88 | 11.126 | 0.004 †‡ | 0.061 |
Deep completed passes | 7.23 ± 4.81 | 5.17 ± 3.43 | 3.75 ± 2.48 | 8.461 | 0.015 *†‡ | 0.046 |
Forward passes | 141.57 ± 30.12 | 132.31 ± 21.37 | 133.31 ± 20.06 | 22.764 | 0.001 ‡ | 0.125 |
Forward passes accurate | 105.69 ± 25.76 | 92.79 ± 19.78 | 93.48 ± 17.85 | 6.094 | 0.047 †‡ | 0.033 |
Back passes | 59.99 ± 15.08 | 50.06 ± 12.95 | 51.15 ± 13.20 | 8.506 | 0.014 †‡ | 0.046 |
Back passes accurate | 55.17 ± 14.70 | 46.65 ± 12.73 | 47.45 ± 12.46 | 15.115 | 0.001†‡ | 0.083 |
Lateral passes | 150.85 ± 54.28 | 135.38 ± 53.77 | 124.80 ± 44.49 | 11.795 | 0.003 † | 0.065 |
Lateral passes accurate | 134.66 ± 50.74 | 116.73 ± 50.24 | 108.43 ± 41.37 | 7.737 | 0.021 †‡ | 0.042 |
Long passes | 46.98 ± 11.50 | 50.88 ± 9.18 | 48.06 ± 8.53 | 9.365 | 0.009 ‡ | 0.051 |
Long passes accurate | 27.29 ± 7.58 | 28.85 ± 6.99 | 27.46 ± 6.25 | 5.354 | 0.069 | 0.029 |
Passes to final third | 52.39 ± 13.35 | 51.06 ± 13.70 | 46.15 ± 12.82 | 2.073 | 0.355 | 0.011 |
Passes to final third accurate | 37.12 ± 12.62 | 33.63 ± 12.04 | 29.80 ± 9.62 | 7.123 | 0.028 † | 0.039 |
Progressive passes | 72.94 ± 12.89 | 69.35 ± 13.34 | 66.51 ± 12.77 | 11.750 | 0.003 † | 0.064 |
Progressive passes accurate | 54.78 ± 14.44 | 50.42 ± 14.00 | 47.14 ± 12.49 | 8.046 | 0.018 † | 0.044 |
Smart passes | 6.65 ± 8.87 | 3.77 ± 2.74 | 3.89 ± 2.43 | 9.225 | 0.010 †‡ | 0.050 |
Smart passes accurate | 2.40 ± 2.03 | 1.48 ± 1.59 | 1.48 ± 1.30 | 11.232 | 0.004 †‡ | 0.062 |
Average pass length | 19.84 ± 1.32 | 20.58 ± 1.12 | 20.06 ± 1.22 | 9.299 | 0.010 *‡ | 0.051 |
Crosses | 15.95 ± 12.38 | 14.63 ± 7.72 | 12.71 ± 5.94 | 4.193 | 0.120 | 0.023 |
Crosses accurate | 4.77 ± 2.89 | 4.88 ± 3.34 | 3.82 ± 2.38 | 4.439 | 0.100 | 0.024 |
Deep completed crosses | 5.14 ± 4.78 | 4.71 ± 3.24 | 4.23 ± 2.59 | 1.080 | 0.580 | 0.005 |
Penalty area entries: runs, crosses | 21.66 ± 8.64 | 20.19 ± 8.69 | 18.18 ± 6.33 | 5.506 | 0.060 | 0.030 |
Penalty area entries: crosses | 8.38 ± 4.52 | 9.06 ± 5.49 | 8.12 ± 3.88 | 0.275 | 0.870 | 0.001 |
Pressing intensity (PPDA) | 8.26 ± 3.16 | 8.98 ± 3.47 | 9.94 ± 4.44 | 5.827 | 0.050 † | 0.032 |
Variable | Win (n = 65) | Draw (n = 52) | Lose (n = 65) | H | p | η2 |
---|---|---|---|---|---|---|
M ± SD | M ± SD | M ± SD | ||||
Fouls | 18.80 ± 4.74 | 18.75 ± 4.73 | 17.26 ± 4.54 | 3.008 | 0.222 | 0.016 |
Set pieces | 28.68 ± 5.28 | 30.28 ± 5.43 | 29.36 ± 5.23 | 3.328 | 0.189 | 0.018 |
Set pieces with shots | 4.13 ± 3.88 | 3.19 ± 2.23 | 2.75 ± 1.80 | 8.160 | 0.017 † | 0.045 |
Corners | 5.15 ± 3.37 | 4.61 ± 3.04 | 3.63 ± 2.42 | 7.524 | 0.023 † | 0.041 |
Corners with shots | 1.72 ± 1.46 | 1.30 ± 1.36 | 1.04 ± 1.17 | 8.170 | 0.017 † | 0.045 |
Penalties | 0.37 ± 0.51 | 0.25 ± 0.46 | 0.15 ± 0.36 | 6.28 | 0.040 † | 0.034 |
Penalties converted | 0.38 ± 0.52 | 0.15 ± 0.41 | 0.07 ± 0.26 | 19.080 | 0.001 †‡ | 0.105 |
Free kicks | 4.24 ± 12.16 | 3.92 ± 2.16 | 3.66 ± 2.25 | 7.618 | 0.022 ‡ | 0.042 |
Free kicks with shots | 0.73 ± 0.95 | 0.94 ± 0.97 | 0.67 ± 0.85 | 2.689 | 0.261 | 0.014 |
Offsides | 2.29 ± 5.78 | 1.82 ± 1.46 | 1.707 ± 1.32 | 0.511 | 0.774 | 0.002 |
Variable | Win (n = 65) | Draw (n = 52) | Lose (n = 65) | H | p | η2 |
---|---|---|---|---|---|---|
M ± SD | M ± SD | M ± SD | ||||
Conceded Goals | 0.46 ± 0.81 | 1.15 ± 0.82 | 2.09 ± 1.07 | 81.687 | 0.001 *†‡ | 0.451 |
Losses | 105.98 ± 16.72 | 108.96 ± 15.23 | 108.40 ± 13.80 | 0.970 | 0.615 | 0.005 |
Losses Low | 18.26 ± 12.77 | 18.37 ± 6.95 | 18.71 ± 7.90 | 1.242 | 0.537 | 0.006 |
Losses Medium | 40.86 ± 12.05 | 41.31 ± 8.05 | 42.94 ± 9.43 | 1.232 | 0.540 | 0.006 |
Losses High | 48.40 ± 11.04 | 49.29 ± 11.27 | 46.75 ± 13.64 | 1.294 | 0.523 | 0.007 |
Recoveries | 78.85 ± 12.26 | 79.48 ± 10.54 | 75.38 ± 12.01 | 3.958 | 0.138 | 0.021 |
Recoveries Low | 34.02 ± 10.15 | 35.04 ± 8.31 | 33.71 ± 6.36 | 0.338 | 0.844 | 0.001 |
Recoveries Medium | 33.92 ± 7.97 | 34.31 ± 7.73 | 32.47 ± 9.17 | 3.195 | 0.202 | 0.017 |
Recoveries High | 10.91 ± 6.11 | 10.13 ± 4.61 | 9.20 ± 4.06 | 2.077 | 0.354 | 0.011 |
Duels | 226.92 ± 41.32 | 239.54 ± 26.38 | 230.28 ± 31.21 | 4.355 | 0.113 | 0.024 |
Duels won | 113.42 ± 23.01 | 115.90 ± 16.81 | 111.72 ± 15.21 | 1.716 | 0.424 | 0.009 |
Duels won (%) | 49.21 ± 7.35 | 48.40 ± 4.73 | 48.61 ± 3.07 | 0.210 | 0.900 | 0.001 |
Offensive duels | 73.06 ± 14.39 | 74.87 ± 12.73 | 73.80 ± 13.67 | 0.211 | 0.900 | 0.001 |
Offensive duels won | 31.17 ± 7.29 | 31.63 ± 7.34 | 31.25 ± 6.77 | 0.530 | 0.767 | 0.002 |
Defensive duels | 73.14 ± 14.93 | 74.87 ± 12.73 | 73.82 ± 12.48 | 0.207 | 0.902 | 0.001 |
Defensive duels won | 42.95 ± 10.20 | 43.23 ± 8.90 | 43.18 ± 9.21 | 0.044 | 0.978 | 0.001 |
Offensive duels won (%) | 41.44 ± 5.75 | 42.22 ± 7.04 | 42.58 ± 6.49 | 1.367 | 0.505 | 0.007 |
Defensive duels won (%) | 57.11 ± 6.74 | 57.78 ± 7.04 | 58.31 ± 5.64 | 1.440 | 0.487 | 0.007 |
Aerial duels | 42.13 ± 11.70 | 46.12 ± 12.54 | 41.74 ± 11.47 | 3.710 | 0.156 | 0.020 |
Aerial duels won | 20.98 ± 6.99 | 22.37 ± 7.63 | 19.95 ± 6.60 | 2.769 | 0.250 | 0.015 |
Aerial duels won (%) | 49.24 ± 10.25 | 48.48 ± 10.02 | 47.67 ± 9.23 | 2.592 | 0.274 | 0.014 |
Sliding tackles | 5.95 ± 4.06 | 5.35 ± 2.65 | 5.69 ± 2.69 | 0.496 | 0.780 | 0.002 |
Sliding tackles successful | 2.58 ± 1.79 | 2.38 ± 1.66 | 2.58 ± 1.61 | 0.462 | 0.794 | 0.002 |
Sliding tackles successful (%) | 46.45 ± 26.60 | 44.11 ± 26.85 | 44.14 ± 22.69 | 0.273 | 0.872 | 0.001 |
Interceptions | 42.94 ± 14.35 | 41.25 ± 10.28 | 45.48 ± 10.08 | 4.671 | 0.097 | 0.025 |
Clearances | 16.98 ± 8.32 | 17.52 ± 8.07 | 16.23 ± 7.42 | 0.562 | 0.755 | 0.003 |
Variable | 95% CI for Exp(B) | ||||||
---|---|---|---|---|---|---|---|
B | S.E. | Wald | p | Exp(B) | Lower | Upper | |
Shots on target | 0.526 | 0.119 | 19.560 | 0.001 * | 1.693 | 1.340 | 2.137 |
Losses (medium) | 0.046 | 0.023 | 3.797 | 0.051 | 1.047 | 1.000 | 1.096 |
Counterattacks | 0.270 | 0.117 | 5.305 | 0.021 * | 1.310 | 1.041 | 1.648 |
Free kicks | −0.211 | 0.061 | 12.142 | 0.001 * | 0.810 | 0.719 | 0.912 |
Penalties converted | 1.953 | 0.492 | 15.745 | 0.001 * | 7.051 | 2.687 | 18.504 |
Offensive duels won | −0.081 | 0.034 | 5.629 | 0.018 * | 0.923 | 0.863 | 0.986 |
Back passes | 0.275 | 0.102 | 7.225 | 0.007 * | 1.317 | 1.077 | 1.610 |
Back passes accurate | −0.223 | 0.104 | 4.580 | 0.032 * | 0.800 | 0.653 | 0.981 |
Smart passes | 0.168 | 0.069 | 5.910 | 0.015 * | 1.183 | 1.033 | 1.354 |
Constant | −7.133 | 1.999 | 12.731 | 0.001 * | 0.001 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stafylidis, A.; Mandroukas, A.; Michailidis, Y.; Vardakis, L.; Metaxas, I.; Kyranoudis, A.E.; Metaxas, T.I. Key Performance Indicators Predictive of Success in Soccer: A Comprehensive Analysis of the Greek Soccer League. J. Funct. Morphol. Kinesiol. 2024, 9, 107. https://doi.org/10.3390/jfmk9020107
Stafylidis A, Mandroukas A, Michailidis Y, Vardakis L, Metaxas I, Kyranoudis AE, Metaxas TI. Key Performance Indicators Predictive of Success in Soccer: A Comprehensive Analysis of the Greek Soccer League. Journal of Functional Morphology and Kinesiology. 2024; 9(2):107. https://doi.org/10.3390/jfmk9020107
Chicago/Turabian StyleStafylidis, Andreas, Athanasios Mandroukas, Yiannis Michailidis, Lazaros Vardakis, Ioannis Metaxas, Angelos E. Kyranoudis, and Thomas I. Metaxas. 2024. "Key Performance Indicators Predictive of Success in Soccer: A Comprehensive Analysis of the Greek Soccer League" Journal of Functional Morphology and Kinesiology 9, no. 2: 107. https://doi.org/10.3390/jfmk9020107
APA StyleStafylidis, A., Mandroukas, A., Michailidis, Y., Vardakis, L., Metaxas, I., Kyranoudis, A. E., & Metaxas, T. I. (2024). Key Performance Indicators Predictive of Success in Soccer: A Comprehensive Analysis of the Greek Soccer League. Journal of Functional Morphology and Kinesiology, 9(2), 107. https://doi.org/10.3390/jfmk9020107