The Neuroanatomy of the Habenular Complex and Its Role in the Regulation of Affective Behaviors
Abstract
:1. Neuroanatomy of the Habenular Complex
2. Main Input and Output Circuitries
3. The Anti-Reward Properties of the Habenular Complex
4. The Role of the Habenular Complex in Affective Disorders
4.1. Depression
4.2. Stress and Anxiety
4.3. Nociception
5. Newly Identified Circuitries Involved in Female Parental Behavior
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sutherland, R.J. The dorsal diencephalic conduction system: A review of the anatomy and functions of the habenular complex. Neurosci. Biobehav. Rev. 1982, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bianco, I.H.; Wilson, S.W. The habenular nuclei: A conserved asymmetric relay station in the vertebrate brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1005–1020. [Google Scholar] [CrossRef] [PubMed]
- Hikosaka, O. The habenula: From stress evasion to value-based decision-making. Nat. Rev. Neurosci. 2010, 11, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Savitz, J.B.; Nugent, A.C.; Bogers, W.; Roiser, J.P.; Bain, E.E.; Neumeister, A.; Zarate, C.A., Jr.; Manji, H.K.; Cannon, D.M.; Marrett, S.; et al. Habenula volume in bipolar disorder and major depressive disorder: A high-resolution magnetic resonance imaging study. Biol. Psychiatry 2011, 69, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Díaz, E.; Bravo, D.; Rojas, X.; Concha, M.L. Morphologic and immunohistochemical organization of the human habenular complex. J. Comp. Neurol. 2011, 519, 3727–3747. [Google Scholar] [CrossRef] [PubMed]
- Belin, M.; Aguera, M.; Nanopoulos, D.; Gamrani, H.; Maitre, M.; Calas, A.; Pujol, J. A radioautographic and immunocytochemical study of the GABA systems of the habenula complex in the rat. Neurochem. Int. 1982, 4, 303–312. [Google Scholar] [CrossRef]
- Bhuiyan, P.S.; Rajgopal, L.; Shyamkishore, K. Inderbir Singh’s Textbook of Human Neuroanatomy: (Fundamental & Clinical); Jaypee Brothers Medical Publishers Pvt. Limited: New Delhi, India, 2017. [Google Scholar]
- Concha, M.L.; Wilson, S.W. Asymmetry in the epithalamus of vertebrates. J. Anat. 2001, 199, 63–84. [Google Scholar] [CrossRef] [PubMed]
- Ahumada-Galleguillos, P.; Lemus, C.G.; Díaz, E.; Osorio-Reich, M.; Härtel, S.; Concha, M.L. Directional asymmetry in the volume of the human habenula. Brain Struct. Funct. 2017, 222, 1087–1092. [Google Scholar] [CrossRef]
- Watanabe, T.; Radulovic, J.; Boretius, S.; Frahm, J.; Michaelis, T. Mapping of the habenulo-interpeduncular pathway in living mice using manganese-enhanced 3D MRI. Magn. Reson. Imaging 2006, 24, 209–215. [Google Scholar] [CrossRef]
- Ranft, K.; Dobrowolny, H.; Krell, D.; Bielau, H.; Bogerts, B.; Bernstein, H.-G. Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol. Med. 2010, 40, 557–567. [Google Scholar] [CrossRef]
- Zilles, K.; Schleicher, A.; Wingert, F. Quantitative growth analysis of limbic nuclei areas fresh volume in diencephalon and mesencephalon of an albino mouse ontogenic series. I. Nucleus habenulare. J. Hirnforsch. 1976, 17, 1–10. [Google Scholar] [PubMed]
- Weiss, T.; Veh, R.W. Morphological and electrophysiological characteristics of neurons within identified subnuclei of the lateral habenula in rat brain slices. Neuroscience 2011, 172, 74–93. [Google Scholar] [CrossRef] [PubMed]
- Geisler, S.; Andres, K.H.; Veh, R.W. Morphologic and cytochemical criteria for the identification and delineation of individual subnuclei within the lateral habenular complex of the rat. J. Comp. Neurol. 2003, 458, 78–97. [Google Scholar] [CrossRef] [PubMed]
- Kowski, A.B.; Veh, R.W.; Weiss, T. Dopaminergic activation excites rat lateral habenular neurons in vivo. Neuroscience 2009, 161, 1154–1165. [Google Scholar] [CrossRef] [PubMed]
- Hashikawa, Y.; Hashikawa, K.; Rossi, M.A.; Basiri, M.L.; Liu, Y.; Johnston, N.L.; Ahmad, O.R.; Stuber, G.D. Transcriptional and Spatial Resolution of Cell Types in the Mammalian Habenula. Neuron 2020, 106, 743–758.e5. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.L.; Huang, K.W.; Hochbaum, D.; Hyun, M.; Radeljic, G.; Sabatini, B.L. Anatomical and single-cell transcriptional profiling of the murine habenular complex. Elife 2020, 9, e51271. [Google Scholar] [CrossRef]
- Aizawa, H.; Kobayashi, M.; Tanaka, S.; Fukai, T.; Okamoto, H. Molecular characterization of the subnuclei in rat habenula. J. Comp. Neurol. 2012, 520, 4051–4066. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, H.; Zhu, M. Toward an understanding of the habenula’s various roles in human depression. Psychiatry Clin. Neurosci. 2019, 73, 607–612. [Google Scholar] [CrossRef]
- Fakhoury, M. The dorsal diencephalic conduction system in reward processing: Spotlight on the anatomy and functions of the habenular complex. Behav. Brain Res. 2018, 348, 115–126. [Google Scholar] [CrossRef]
- Schmidt, E.R.E.; Brignani, S.; Adolfs, Y.; Lemstra, S.; Demmers, J.; Vidaki, M.; Donahoo, A.S.; Lilleväli, K.; Vasar, E.; Richards, L.J.; et al. Subdomain-mediated axon-axon signaling and chemoattraction cooperate to regulate afferent innervation of the lateral habenula. Neuron 2014, 83, 372–387. [Google Scholar] [CrossRef]
- Hikosaka, O.; Sesack, S.R.; Lecourtier, L.; Shepard, P.D. Habenula: Crossroad between the basal ganglia and the limbic system. J. Neurosci. 2008, 28, 11825–11829. [Google Scholar] [CrossRef] [PubMed]
- Roman, E.; Weininger, J.; Lim, B.; Roman, M.; Barry, D.; Tierney, P.; O’Hanlon, E.; Levins, K.; O’Keane, V.; Roddy, D. Untangling the dorsal diencephalic conduction system: A review of structure and function of the stria medullaris, habenula and fasciculus retroflexus. Brain Struct. Funct. 2020, 225, 1437–1458. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Leal, I.; Carretero-Rodríguez, E.; Almagro-García, F.; Martínez, S.; Echevarría, D.; Puelles, E. Stria medullaris innervation follows the transcriptomic division of the habenula. Sci. Rep. 2022, 12, 10118. [Google Scholar] [CrossRef]
- Abuduaini, Y.; Pu, Y.; Thompson, P.M.; Kong, X.Z. Significant heterogeneity in structural asymmetry of the habenula in the human brain: A systematic review and meta-analysis. Hum. Brain Mapp. 2023, 44, 4165–4182. [Google Scholar] [CrossRef]
- Geeraedts, L.M.; Nieuwenhuys, R.; Veening, J.G. Medial forebrain bundle of the rat: IV. Cytoarchitecture of the caudal (lateral hypothalamic) part of the medial forebrain bundle bed nucleus. J. Comp. Neurol. 1990, 294, 537–568. [Google Scholar] [CrossRef] [PubMed]
- Klemm, W.R. Habenular and interpeduncularis nuclei: Shared components in multiple-function networks. Med. Sci. Monit. 2004, 10, Ra261–Ra273. [Google Scholar]
- Sartorius, A.; Henn, F.A. Deep brain stimulation of the lateral habenula in treatment resistant major depression. Med. Hypotheses 2007, 69, 1305–1308. [Google Scholar] [CrossRef]
- Aizawa, H.; Amo, R.; Okamoto, H. Phylogeny and ontogeny of the habenular structure. Front. Neurosci. 2011, 5, 138. [Google Scholar] [CrossRef]
- Ables, J.L.; Park, K.; Ibañez-Tallon, I. Understanding the habenula: A major node in circuits regulating emotion and motivation. Pharmacol. Res. 2023, 190, 106734. [Google Scholar] [CrossRef]
- Ellison, G. Neural degeneration following chronic stimulant abuse reveals a weak link in brain, fasciculus retroflexus, implying the loss of forebrain control circuitry. Eur. Neuropsychopharmacol. 2002, 12, 287–297. [Google Scholar] [CrossRef]
- Lima, L.B.; Bueno, D.; Leite, F.; Souza, S.; Gonçalves, L.; Furigo, I.C.; Donato, J., Jr.; Metzger, M. Afferent and efferent connections of the interpeduncular nucleus with special reference to circuits involving the habenula and raphe nuclei. J. Comp. Neurol. 2017, 525, 2411–2442. [Google Scholar] [CrossRef] [PubMed]
- Coenen, V.A.; Panksepp, J.; Hurwitz, T.A.; Urbach, H.; Mädler, B. Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): Imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression. J. Neuropsychiatry Clin. Neurosci. 2012, 24, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Herkenham, M.; Nauta, W. Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J. Comp. Neurol. 1977, 173, 123–146. [Google Scholar] [CrossRef] [PubMed]
- Döbrössy, M.D.; Furlanetti, L.L.; Coenen, V.A. Electrical stimulation of the medial forebrain bundle in pre-clinical studies of psychiatric disorders. Neurosci. Biobehav. Rev. 2015, 49, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Veening, J.G.; Swanson, L.W.; Cowan, W.M.; Nieuwenhuys, R.; Geeraedts, L.M. The medial forebrain bundle of the rat. II. An autoradiographic study of the topography of the major descending and ascending components. J. Comp. Neurol. 1982, 206, 82–108. [Google Scholar] [CrossRef] [PubMed]
- Coenen, V.A.; Schumacher, L.V.; Kaller, C.; Schlaepfer, T.E.; Reinacher, P.C.; Egger, K.; Urbach, H.; Reisert, M. The anatomy of the human medial forebrain bundle: Ventral tegmental area connections to reward-associated subcortical and frontal lobe regions. Neuroimage Clin. 2018, 18, 770–783. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.; Lee, T. Topography of descending projections from anterior insular and medial prefrontal regions to the lateral habenula of the epithalamus in the rat. Eur. J. Neurosci. 2012, 35, 1253–1269. [Google Scholar] [CrossRef]
- Balcita-Pedicino, J.J.; Omelchenko, N.; Bell, R.; Sesack, S.R. The inhibitory influence of the lateral habenula on midbrain dopamine cells: Ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. J. Comp. Neurol. 2011, 519, 1143–1164. [Google Scholar] [CrossRef]
- Koob, G.F.; Le Moal, M. Drug abuse: Hedonic homeostatic dysregulation. Science 1997, 278, 52–58. [Google Scholar] [CrossRef]
- Ranaldi, R. Dopamine and reward seeking: The role of ventral tegmental area. Rev. Neurosci. 2014, 25, 621–630. [Google Scholar] [CrossRef]
- Mathon, D.S.; Kamal, A.; Smidt, M.P.; Ramakers, G.M. Modulation of cellular activity and synaptic transmission in the ventral tegmental area. Eur. J. Pharmacol. 2003, 480, 97–115. [Google Scholar] [CrossRef] [PubMed]
- Arias-Carrión, O.; Stamelou, M.; Murillo-Rodríguez, E.; Menéndez-González, M.; Pöppel, E. Dopaminergic reward system: A short integrative review. Int. Arch. Med. 2010, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Shumake, J.; Edwards, E.; Gonzalez-Lima, F. Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior. Brain Res. 2003, 963, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Phillipson, O.T.; Pycock, C.J. Dopamine neurones of the ventral tegmentum project to both medial and lateral habenula. Some implications for habenular function. Exp. Brain Res. 1982, 45, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 2007, 447, 1111–1115. [Google Scholar] [CrossRef]
- Friedman, A.; Lax, E.; Dikshtein, Y.; Abraham, L.; Flaumenhaft, Y.; Sudai, E.; Ben-Tzion, M.; Yadid, G. Electrical stimulation of the lateral habenula produces an inhibitory effect on sucrose self-administration. Neuropharmacology 2011, 60, 381–387. [Google Scholar] [CrossRef]
- Weidacker, K.; Kim, S.G.; Nord, C.L.; Rua, C.; Rodgers, C.T.; Voon, V. Avoiding monetary loss: A human habenula functional MRI ultra-high field study. Cortex 2021, 142, 62–73. [Google Scholar] [CrossRef]
- Matsumoto, M.; Hikosaka, O. Negative motivational control of saccadic eye movement by the lateral habenula. Prog. Brain Res. 2008, 171, 399–402. [Google Scholar] [CrossRef]
- Hennigan, K.; D’Ardenne, K.; McClure, S.M. Distinct midbrain and habenula pathways are involved in processing aversive events in humans. J. Neurosci. 2015, 35, 198–208. [Google Scholar] [CrossRef]
- Thornton, E.W.; Bradbury, G.E. Effort and stress influence the effect of lesion of the habenula complex in one-way active avoidance learning. Physiol. Behav. 1989, 45, 929–935. [Google Scholar] [CrossRef]
- Furman, D.J.; Gotlib, I.H. Habenula responses to potential and actual loss in major depression: Preliminary evidence for lateralized dysfunction. Soc. Cogn. Affect. Neurosci. 2016, 11, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Lawson, R.P.; Drevets, W.C.; Roiser, J.P. Defining the habenula in human neuroimaging studies. Neuroimage 2013, 64, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Hétu, S.; Luo, Y.; Saez, I.; D’Ardenne, K.; Lohrenz, T.; Montague, P.R. Asymmetry in functional connectivity of the human habenula revealed by high-resolution cardiac-gated resting state imaging. Hum. Brain Mapp. 2016, 37, 2602–2615. [Google Scholar] [CrossRef] [PubMed]
- Baxter, M.G.; Croxson, P.L. Facing the role of the amygdala in emotional information processing. Proc. Natl. Acad. Sci. USA 2012, 109, 21180–21181. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Zhao, N.; Deng, X.P.; Feng, Z.J.; Huang, G.F.; Meng, M.; Zang, Y.F.; Wang, J. Pregenual or subgenual anterior cingulate cortex as potential effective region for brain stimulation of depression. Brain Behav. 2020, 10, e01591. [Google Scholar] [CrossRef] [PubMed]
- Morris, L.S.; Costi, S.; Tan, A.; Stern, E.R.; Charney, D.S.; Murrough, J.W. Ketamine normalizes subgenual cingulate cortex hyper-activity in depression. Neuropsychopharmacology 2020, 45, 975–981. [Google Scholar] [CrossRef]
- Campbell, S.; MacQueen, G. The role of the hippocampus in the pathophysiology of major depression. J. Psychiatry Neurosci. 2004, 29, 417–426. [Google Scholar]
- White, T.; Cullen, K.; Rohrer, L.M.; Karatekin, C.; Luciana, M.; Schmidt, M.; Hongwanishkul, D.; Kumra, S.; Charles Schulz, S.; Lim, K.O. Limbic structures and networks in children and adolescents with schizophrenia. Schizophr. Bull. 2008, 34, 18–29. [Google Scholar] [CrossRef]
- Proulx, C.D.; Hikosaka, O.; Malinow, R. Reward processing by the lateral habenula in normal and depressive behaviors. Nat. Neurosci. 2014, 17, 1146–1152. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Hu, J.; Hu, H. Lateral habenula in the pathophysiology of depression. Curr. Opin. Neurobiol. 2018, 48, 90–96. [Google Scholar] [CrossRef]
- Morris, J.; Smith, K.; Cowen, P.; Friston, K.; Dolan, R.J. Covariation of activity in habenula and dorsal raphe nuclei following tryptophan depletion. Neuroimage 1999, 10, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Caldecott-Hazard, S.; Mazziotta, J.; Phelps, M. Cerebral correlates of depressed behavior in rats, visualized using 14C-2-deoxyglucose autoradiography. J. Neurosci. 1988, 8, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Piriz, J.; Mirrione, M.; Chung, C.; Proulx, C.D.; Schulz, D.; Henn, F.; Malinow, R. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 2011, 470, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Guo, C.; Li, M.; Yang, L.; Liu, P.; Zhang, X.; Liu, Y.; Guo, X.; Cao, S.; Dong, Y.; et al. Hypothalamus-habenula potentiation encodes chronic stress experience and drives depression onset. Neuron 2022, 110, 1400–1415.e6. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, P.; Li, Z.; da Silva, B.S.; Zheng, W.; Xiang, Z.; He, Y.; Xu, T.; Cordeiro, C.; Deng, L.; et al. Lateral septum adenosine A(2A) receptors control stress-induced depressive-like behaviors via signaling to the hypothalamus and habenula. Nat. Commun. 2023, 14, 1880. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Chang, J.; Liang, Y.; Zhu, H.; Zhang, C.; Zheng, D.; Wang, J.; Xu, Y.; Li, Q.J.; Hu, H. Neural mechanism underlying depressive-like state associated with social status loss. Cell 2023, 186, 560–576.e517. [Google Scholar] [CrossRef] [PubMed]
- Howland, R.H. Update on deep brain stimulation. J. Psychosoc. Nurs. Ment. Health Serv. 2014, 52, 23–26. [Google Scholar] [CrossRef]
- Shumake, J.; Gonzalez-Lima, F. Brain systems underlying susceptibility to helplessness and depression. Behav. Cogn. Neurosci. Rev. 2003, 2, 198–221. [Google Scholar] [CrossRef]
- Baker, P.M.; Mathis, V.; Lecourtier, L.; Simmons, S.C.; Nugent, F.S.; Hill, S.; Mizumori, S.J. Lateral habenula beyond avoidance: Roles in stress, memory, and decision-making with implications for psychiatric disorders. Front. Syst. Neurosci. 2022, 16, 826475. [Google Scholar] [CrossRef]
- Ootsuka, Y.; Mohammed, M. Activation of the habenula complex evokes autonomic physiological responses similar to those associated with emotional stress. Physiol. Rep. 2015, 3, e12297. [Google Scholar] [CrossRef]
- Wirtshafter, D.; Asin, K.E.; Pitzer, M.R. Dopamine agonists and stress produce different patterns of Fos-like immunoreactivity in the lateral habenula. Brain Res. 1994, 633, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hernández, V.S.; Vázquez-Juárez, E.; Chay, F.K.; Barrio, R.A. Thirst is associated with suppression of habenula output and active stress coping: Is there a role for a non-canonical vasopressin-glutamate pathway? Front. Neural Circuits 2016, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Durieux, L.; Mathis, V.; Herbeaux, K.; Muller, M.A.; Barbelivien, A.; Mathis, C.; Schlichter, R.; Hugel, S.; Majchrzak, M.; Lecourtier, L. Involvement of the lateral habenula in fear memory. Brain Struct. Funct. 2020, 225, 2029–2044. [Google Scholar] [CrossRef] [PubMed]
- Seligman, M.E. Learned helplessness. Annu. Rev. Med. 1972, 23, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Chaouloff, F.; Berton, O.; Mormède, P. Serotonin and stress. Neuropsychopharmacology 1999, 21, 28–32. [Google Scholar] [CrossRef]
- Bambico, F.R.; Nguyen, N.-T.; Gobbi, G. Decline in serotonergic firing activity and desensitization of 5-HT1A autoreceptors after chronic unpredictable stress. Eur. Neuropsychopharmacol. 2009, 19, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Sachs, B.D.; Ni, J.R.; Caron, M.G. Brain 5-HT deficiency increases stress vulnerability and impairs antidepressant responses following psychosocial stress. Proc. Natl. Acad. Sci. USA 2015, 112, 2557–2562. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Danjo, T.; Pastan, I.; Hikida, T.; Nakanishi, S. Distinct roles of segregated transmission of the septo-habenular pathway in anxiety and fear. Neuron 2013, 78, 537–544. [Google Scholar] [CrossRef]
- Sugama, S.; Cho, B.P.; Baker, H.; Joh, T.H.; Lucero, J.; Conti, B. Neurons of the superior nucleus of the medial habenula and ependymal cells express IL-18 in rat CNS. Brain Res. 2002, 958, 1–9. [Google Scholar] [CrossRef]
- Cirulli, F.; Pistillo, L.; de Acetis, L.; Alleva, E.; Aloe, L. Increased number of mast cells in the central nervous system of adult male mice following chronic subordination stress. Brain Behav. Immun. 1998, 12, 123–133. [Google Scholar] [CrossRef]
- Metzger, M.; Bueno, D.; Lima, L.B. The lateral habenula and the serotonergic system. Pharmacol. Biochem. Behav. 2017, 162, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Merskey, H.; Bogduk, N. Part III: Pain Terms, A Current List with Definitions and Notes on Usage. In Classification of Chronic Pain: Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms; IASP Press: Seattle, WA, USA, 1994; pp. 209–214. [Google Scholar]
- Reddan, M.C.; Wager, T.D. Modeling pain using fMRI: From regions to biomarkers. Neurosci. Bull. 2018, 34, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Hoffman, D.; Benabid, A. Simultaneous recording of spontaneous activities and nociceptive responses from neurons in the pars compacta of substantia nigra and in the lateral habenula. Eur. J. Neurosci. 1996, 8, 1474–1478. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.-P.; Shi, Y.-S.; Han, J.-S. Further studies on interactions between periaqueductal gray, nucleus accumbens and habenula in antinociception. Brain Res. 1992, 583, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Shelton, L.; Becerra, L.; Borsook, D. Unmasking the mysteries of the habenula in pain and analgesia. Progress Neurobiol. 2012, 96, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Dafny, N.; Dong, W.Q.; Prieto-Gomez, C.; Reyes-Vazquez, C.; Stanford, J.; Qiao, J.T. Lateral hypothalamus: Site involved in pain modulation. Neuroscience 1996, 70, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Siemian, J.N.; Arenivar, M.A.; Sarsfield, S.; Borja, C.B.; Erbaugh, L.J.; Eagle, A.L.; Robison, A.J.; Leinninger, G.; Aponte, Y. An excitatory lateral hypothalamic circuit orchestrating pain behaviors in mice. Elife 2021, 10, e66446. [Google Scholar] [CrossRef]
- Hillerer, K.M.; Neumann, I.D.; Slattery, D.A. From stress to postpartum mood and anxiety disorders: How chronic peripartum stress can impair maternal adaptations. Neuroendocrinology 2012, 95, 22–38. [Google Scholar] [CrossRef]
- Kim, P. How stress can influence brain adaptations to motherhood. Front. Neuroendocrinol. 2021, 60, 100875. [Google Scholar] [CrossRef]
- Lecca, S.; Meye, F.J.; Mameli, M. The lateral habenula in addiction and depression: An anatomical, synaptic and behavioral overview. Eur. J. Neurosci. 2014, 39, 1170–1178. [Google Scholar] [CrossRef]
- Wallin, C.M.; Bowen, S.E.; Brummelte, S. Opioid use during pregnancy can impair maternal behavior and the Maternal Brain Network: A literature review. Neurotoxicol. Teratol. 2021, 86, 106976. [Google Scholar] [CrossRef] [PubMed]
- Numan, M. Medial preoptic area and maternal behavior in the female rat. J. Comp. Physiol. Psychol. 1974, 87, 746. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, C.D.; Terkel, J.; Gorski, R.A.; Sawyer, C.H. Effects of small medial preoptic area lesions on maternal behavior: Retreiving and nest building in the rat. Brain Res. 1980, 194, 471–478. [Google Scholar] [CrossRef]
- Barofsky, A.-L.; Taylor, J.; Tizabi, Y.; Kumar, R.; Jones-Quartey, K. Specific neurotoxin lesions of median raphe serotonergic neurons disrupt maternal behavior in the lactating rat. Endocrinology 1983, 113, 1884–1893. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Paiva, C.M.; Ribeiro-Barbosa, E.R.; Canteras, N.S.; Felicio, L.F. A role for the periaqueductal grey in opioidergic inhibition of maternal behaviour. Eur. J. Neurosci. 2003, 18, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Numan, M.; Stolzenberg, D.S.; Dellevigne, A.A.; Correnti, C.M.; Numan, M.J. Temporary inactivation of ventral tegmental area neurons with either muscimol or baclofen reversibly disrupts maternal behavior in rats through different underlying mechanisms. Behav. Neurosci. 2009, 123, 740. [Google Scholar] [CrossRef] [PubMed]
- Li, M. Lateral habenula neurocircuits mediate the maternal disruptive effect of maternal stress: A hypothesis. Zool. Res. 2022, 43, 166. [Google Scholar] [CrossRef]
- Andersson, L.; Sundström-Poromaa, I.; Wulff, M.; Åström, M.; Bixo, M. Depression and anxiety during pregnancy and six months postpartum: A follow-up study. Acta Obstet. Gynecol. Scand. 2006, 85, 937–944. [Google Scholar] [CrossRef]
- Beck, C.T. Postpartum Depression: It isn’t just the blues. AJN Am. J. Nurs. 2006, 106, 40–50. [Google Scholar] [CrossRef]
- Jones, I.; Heron, J.; Blackmore, E.R.; Craddock, N. Incidence of hospitalization for postpartum psychotic and bipolar episodes. Arch. General. Psychiatry 2008, 65, 356. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piper, J.A.; Musumeci, G.; Castorina, A. The Neuroanatomy of the Habenular Complex and Its Role in the Regulation of Affective Behaviors. J. Funct. Morphol. Kinesiol. 2024, 9, 14. https://doi.org/10.3390/jfmk9010014
Piper JA, Musumeci G, Castorina A. The Neuroanatomy of the Habenular Complex and Its Role in the Regulation of Affective Behaviors. Journal of Functional Morphology and Kinesiology. 2024; 9(1):14. https://doi.org/10.3390/jfmk9010014
Chicago/Turabian StylePiper, Jordan Allan, Giuseppe Musumeci, and Alessandro Castorina. 2024. "The Neuroanatomy of the Habenular Complex and Its Role in the Regulation of Affective Behaviors" Journal of Functional Morphology and Kinesiology 9, no. 1: 14. https://doi.org/10.3390/jfmk9010014
APA StylePiper, J. A., Musumeci, G., & Castorina, A. (2024). The Neuroanatomy of the Habenular Complex and Its Role in the Regulation of Affective Behaviors. Journal of Functional Morphology and Kinesiology, 9(1), 14. https://doi.org/10.3390/jfmk9010014