Variations in Postmenopausal Body Composition: A Cross-Sectional Comparison between Physical Activity Practitioners and Sedentary Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants (Selection of Subjects, Inclusion Criteria, Exclusion, and Losses)
2.3. Data Collection
2.4. Variables
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Khoudary, S.R.; Aggarwal, B.; Beckie, T.M.; Hodis, H.N.; Johnson, A.E.; Langer, R.D.; Limacher, M.C.; Manson, J.E.; Stefanick, M.L.; Allison, M.A.; et al. Menopause Transition and Cardiovascular Disease Risk: Implications for Timing of Early Prevention: A Scientific Statement from the American Heart Association. Circulation 2020, 142, e506–e532. [Google Scholar] [CrossRef] [PubMed]
- Ambikairajah, A.; Walsh, E.; Cherbuin, N. A Review of Menopause Nomenclature. Reprod. Health 2022, 19, 29. [Google Scholar] [CrossRef] [PubMed]
- Marlatt, K.L.; Pitynski-Miller, D.R.; Gavin, K.M.; Moreau, K.L.; Melanson, E.L.; Santoro, N.; Kohrt, W.M. Body Composition and Cardiometabolic Health across the Menopause Transition. Obesity 2022, 30, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, L.; Sun, X.; Yang, X. Analysis of the Long-Term Beneficial Effects of Menopausal Hormone Therapy on Sleep Quality and Menopausal Symptoms. Exp. Ther. Med. 2019, 18, 3905–3912. [Google Scholar] [CrossRef] [PubMed]
- Honigberg, M.C.; Zekavat, S.M.; Niroula, A.; Griffin, G.K.; Bick, A.G.; Pirruccello, J.P.; Nakao, T.; Whitsel, E.A.; Farland, L.V.; Laurie, C.; et al. Premature Menopause, Clonal Hematopoiesis, and Coronary Artery Disease in Postmenopausal Women. Circulation 2021, 143, 410–423. [Google Scholar] [CrossRef]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, 73, 3168–3209. [Google Scholar] [CrossRef] [PubMed]
- Guedes, D.P. Procedimentos clínicos utilizados para análise da composição corporal. Rev. Bras. Cineantropom. Desempenho Hum. 2013, 15, 113–129. [Google Scholar] [CrossRef]
- Alencar, M.; Melo, M.; Sousa, R.; Campos, C.; Meneses, A.; Sepúlveda, L.; Nunes, I. Perdas de Massa Muscular e Adiposa Após Institucionalização: Atenção Aos Mais Idosos. Geriatr. Gerontol. Aging 2015, 9, 150–155. [Google Scholar] [CrossRef]
- Costa, K.B.C.; de Pontes Pessoa, D.C.N.; Perrier-Mel, R.J.; de Brito-Gomes, J.L.; Guimarães, F.J.d.S.P.; da Cunha Costa, M. Composição corporal da fita métrica à pesagem hidrostática: Uma análise de dois componentes. Rev. Bras. Ciênc. Mov. 2015, 23, 105–112. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Mason, C.; de Dieu Tapsoba, J.; Duggan, C.; Wang, C.-Y.; Alfano, C.M.; McTiernan, A. Eating Behaviors and Weight Loss Outcomes in a 12-Month Randomized Trial of Diet and/or Exercise Intervention in Postmenopausal Women. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 113. [Google Scholar] [CrossRef] [PubMed]
- Sipilä, S.; Törmäkangas, T.; Sillanpää, E.; Aukee, P.; Kujala, U.M.; Kovanen, V.; Laakkonen, E.K. Muscle and Bone Mass in Middle-aged Women: Role of Menopausal Status and Physical Activity. J. Cachexia Sarcopenia Muscle 2020, 11, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Bondarev, D.; Finni, T.; Kokko, K.; Kujala, U.M.; Aukee, P.; Kovanen, V.; Laakkonen, E.K.; Sipilä, S. Physical Performance During the Menopausal Transition and the Role of Physical Activity. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.F.D.; Iwamoto, J.M.; Filho, D.M.P.; Monteiro, H.L.; Villar, R.; Zago, A.S. A Cross-Sectional Analysis of Risk Factors for Cardiovascular Diseases in Older Females: Association between Body Fat Distribution and Physical Fitness. J. Women Aging 2022, 34, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Kodoth, V.; Scaccia, S.; Aggarwal, B. Adverse Changes in Body Composition During the Menopausal Transition and Relation to Cardiovascular Risk: A Contemporary Review. Womens Health Rep. 2022, 3, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, M.; Juppi, H.-K.; Taskinen, S.; Karppinen, J.E.; Karvinen, S.; Tammelin, T.H.; Kovanen, V.; Aukee, P.; Kujala, U.M.; Rantalainen, T.; et al. Metabolic Health, Menopause, and Physical Activity-a 4-Year Follow-up Study. Int. J. Obes. 2022, 46, 544–554. [Google Scholar] [CrossRef]
- Rao, P.; Belanger, M.J.; Robbins, J.M. Exercise, Physical Activity, and Cardiometabolic Health: Insights into the Prevention and Treatment of Cardiometabolic Diseases. Cardiol. Rev. 2022, 30, 167–178. [Google Scholar] [CrossRef]
- Karvinen, S.; Jergenson, M.J.; Hyvärinen, M.; Aukee, P.; Tammelin, T.; Sipilä, S.; Kovanen, V.; Kujala, U.M.; Laakkonen, E.K. Menopausal Status and Physical Activity Are Independently Associated With Cardiovascular Risk Factors of Healthy Middle-Aged Women: Cross-Sectional and Longitudinal Evidence. Front. Endocrinol. 2019, 10, 589. [Google Scholar] [CrossRef]
- Tamariz-Ellemann, A.; Wickham, K.A.; Nørregaard, L.B.; Gliemann, L.; Hellsten, Y. The Time Is Now: Regular Exercise Maintains Vascular Health in Ageing Women. J. Physiol. 2023, 601, 2085–2098. [Google Scholar] [CrossRef]
- Rosique-Esteban, N.; Babio, N.; Díaz-López, A.; Romaguera, D.; Alfredo Martínez, J.; Sanchez, V.M.; Schröder, H.; Estruch, R.; Vidal, J.; Buil-Cosiales, P.; et al. Leisure-Time Physical Activity at Moderate and High Intensity Is Associated with Parameters of Body Composition, Muscle Strength and Sarcopenia in Aged Adults with Obesity and Metabolic Syndrome from the PREDIMED-Plus Study. Clin. Nutr. 2019, 38, 1324–1331. [Google Scholar] [CrossRef]
- Dempsey, P.C.; Rowlands, A.V.; Strain, T.; Zaccardi, F.; Dawkins, N.; Razieh, C.; Davies, M.J.; Khunti, K.K.; Edwardson, C.L.; Wijndaele, K.; et al. Physical Activity Volume, Intensity, and Incident Cardiovascular Disease. Eur. Heart J. 2022, 43, 4789–4800. [Google Scholar] [CrossRef] [PubMed]
- Bendinelli, B.; Pastore, E.; Fontana, M.; Ermini, I.; Assedi, M.; Facchini, L.; Querci, A.; Caini, S.; Masala, G. A Priori Dietary Patterns, Physical Activity Level, and Body Composition in Postmenopausal Women: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 6747. [Google Scholar] [CrossRef] [PubMed]
- González-Rocha, A.; Mendez-Sanchez, L.; Ortíz-Rodríguez, M.A.; Denova-Gutiérrez, E. Effect Of Exercise on Muscle Mass, Fat Mass, Bone Mass, Muscular Strength and Physical Performance in Community Dwelling Older Adults: Systematic Review and Meta-Analysis. Aging Dis. 2022, 13, 1421–1435. [Google Scholar] [CrossRef] [PubMed]
Variable | Physical Activity | p Value | PR (CI 95% LCI; UCI) | |
---|---|---|---|---|
Active N (%) | Sedentary N (%) | |||
Body mass index (BMI) | ||||
Normal | 82 (36.61) | 76 (42.94) | 0.048 | 0.73 (0.55; 0.97) |
Overweight | 80 (35.71) | 43 (24.29) | 1.00 (0.76; 1.31) | |
Obesity | 62 (27.68) | 58 (32.77) | ||
Bone mass | ||||
Normal | 122 (60.10) | 89 (54.60) | ||
Osteopenia | 48 (23.65) | 65 (39.88) | 0.000 | 1.49 (1.10; 2.02) |
Osteoporosis | 33 (16.26) | 9 (5.52) | 0.43 (0.21; 0.86) |
Variable | Physical Activity | p Value | PR (CI 95% LCI; UCI) | |
---|---|---|---|---|
Active N (%) | Sedentary N (%) | |||
Waist-to-height ratio (WHtR) | ||||
Low risk | 22 (14.97) | 10 (7.52) | 0.050 | 1.08 (1.00; 1.18) |
High risk | 125 (85.03) | 123 (92.48) | ||
Bone mass | ||||
Normal | 33 (22.92) | 46 (35.11) | ||
Osteopenia | 63 (43.75) | 39 (29.77) | 0.027 | 0.69 (0.53; 0.91) |
Osteoporosis | 48 (33.33) | 46 (35.11) | 0.84 (0.64; 1.10) |
Physiological | Premature | Precocious | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Physical Activity | p Value | Physical Activity | p Value | Physical Activity | p Value | |||
Active N (%) | Sedentary N (%) | Active N (%) | Sedentary N (%) | Active N (%) | Sedentary N (%) | ||||
Waist Circumference (WC) | 0.407 | 0.032 | 0.519 | ||||||
Risk-free | 16 (20.00) | 10 (13.70) | 6 (25.00) | 0 (0.00) | 7 (17.07) | 5 (13.16) | |||
High risk | 38 (47.50) | 42 (57.53) | 12 (50.00) | 17 (77.27) | 25 (60.98) | 20 (52.63) | |||
Very high risk | 26 (32.50) | 21 (28.77) | 6 (25.00) | 5 (22.73) | 9 (21.95) | 13 (34.21) |
Variable | PR (CI 95% LCI; UCI) * | PR (CI 95% LCI; UCI) ** | PR (CI 95% LCI; UCI) *** |
---|---|---|---|
Overall Sample | |||
Waist Circumference (WC) | |||
Very high risk | 1.12 (0.85; 1.32) | 1.04 (1.01; 1.24) | 1.12 (0.94; 1.15) |
Did not go through menopause | |||
Bone mass | |||
Osteopenia | 1.52 (1.23; 1.78) | 1.36 (1.09; 1.62) | 1.52 (1.23; 1.78) |
Have already gone through menopause | |||
Waist Circumference (WC) | |||
Very high risk | 1.29 (1.03; 1.55) | 1.28 (1.03; 1.55) | 1.29 (1.04; 1.56) |
Waist-to-height ratio (WHtR) | 1.60 (1.00; 2.20) | 1.64 (1.03; 2.23) | 1.65 (1.04; 2.25) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias Damasceno, C.M.; de Sá Pereira Guimarães, F.J.; Costa, K.B.; Morais Godoy Figueiredo, A.C.; Araújo, R.C.d.; da Cunha Costa, M. Variations in Postmenopausal Body Composition: A Cross-Sectional Comparison between Physical Activity Practitioners and Sedentary Individuals. J. Funct. Morphol. Kinesiol. 2024, 9, 12. https://doi.org/10.3390/jfmk9010012
Dias Damasceno CM, de Sá Pereira Guimarães FJ, Costa KB, Morais Godoy Figueiredo AC, Araújo RCd, da Cunha Costa M. Variations in Postmenopausal Body Composition: A Cross-Sectional Comparison between Physical Activity Practitioners and Sedentary Individuals. Journal of Functional Morphology and Kinesiology. 2024; 9(1):12. https://doi.org/10.3390/jfmk9010012
Chicago/Turabian StyleDias Damasceno, Camila Mahara, Fernando José de Sá Pereira Guimarães, Keyla Brandão Costa, Ana Claudia Morais Godoy Figueiredo, Rodrigo Cappato de Araújo, and Manoel da Cunha Costa. 2024. "Variations in Postmenopausal Body Composition: A Cross-Sectional Comparison between Physical Activity Practitioners and Sedentary Individuals" Journal of Functional Morphology and Kinesiology 9, no. 1: 12. https://doi.org/10.3390/jfmk9010012
APA StyleDias Damasceno, C. M., de Sá Pereira Guimarães, F. J., Costa, K. B., Morais Godoy Figueiredo, A. C., Araújo, R. C. d., & da Cunha Costa, M. (2024). Variations in Postmenopausal Body Composition: A Cross-Sectional Comparison between Physical Activity Practitioners and Sedentary Individuals. Journal of Functional Morphology and Kinesiology, 9(1), 12. https://doi.org/10.3390/jfmk9010012