3D Analysis of Human Movement, Sport, and Health Promotion
Conflicts of Interest
References
- World Health Organization. Constitution of the World Health Organization; WHO: Geneva, Switzerland, 1995. [Google Scholar]
- Fries, J.F.; Harrington, H.; Edwards, R.; Kent, L.A.; Richardson, N. Randomized controlled trial of cost reductions from a health education program: The California Public Employees’ Retirement System (PERS) study. Am. J. Health Promot. 1994, 8, 216–223. [Google Scholar] [CrossRef]
- Galloway, R.D. Health promotion: Causes, beliefs and measurements. Clin. Med. Res. 2003, 1, 249–258. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med. Sci. Sports Exerc. 1998, 30, 975–991. [Google Scholar]
- Ruiz, J.R.; Castro-Piñero, J.; Artero, E.G.; Ortega, F.B.; Sjöström, M.; Suni, J.; Castillo, M.J. Predictive validity of health-related fitness in youth: A systematic review. Br. J. Sports Med. 2009, 43, 909–923. [Google Scholar] [CrossRef] [PubMed]
- Heyward, V.H. Advanced fitness assessment and exercise prescription. Med. Sci. Sports Exerc. 1992, 24, 278. [Google Scholar] [CrossRef]
- Artero, E.; Espana-Romero, V.; Castro-Pinero, J.; Ortega, F.; Suni, J.; Castillo-Garzon, M.; Ruiz, J. Reliability of field-based fitness tests in youth. Int. J. Sports Med. 2011, 32, 159–169. [Google Scholar] [CrossRef]
- Petrigna, L.; Pajaujiene, S.; Delextrat, A.; Gómez-López, M.; Paoli, A.; Palma, A.; Bianco, A. The importance of standard operating procedures in physical fitness assessment: A brief review. Sport Sci. Health 2022, 18, 21–26. [Google Scholar] [CrossRef]
- Roggio, F.; Ravalli, S.; Maugeri, G.; Bianco, A.; Palma, A.; Di Rosa, M.; Musumeci, G. Technological advancements in the analysis of human motion and posture management through digital devices. World J. Orthop. 2021, 12, 467–484. [Google Scholar] [CrossRef]
- Arac, A. Machine learning for 3D kinematic analysis of movements in neurorehabilitation. Curr. Neurol. Neurosci. Rep. 2020, 20, 1–6. [Google Scholar] [CrossRef]
- Alt Murphy, M.; Willén, C.; Sunnerhagen, K.S. Responsiveness of upper extremity kinematic measures and clinical improvement during the first three months after stroke. Neurorehabil. Neural Repair 2013, 27, 844–853. [Google Scholar] [CrossRef]
- Kwakkel, G.; Lannin, N.A.; Borschmann, K.; English, C.; Ali, M.; Churilov, L.; Saposnik, G.; Winstein, C.; van Wegen, E.E.; Wolf, S.L.; et al. Standardized measurement of sensorimotor recovery in stroke trials: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke 2017, 12, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Roggio, F.; Petrigna, L.; Filetti, V.; Vitale, E.; Rapisarda, V.; Musumeci, G. Infrared thermography for the evaluation of adolescent and juvenile idiopathic scoliosis: A systematic review. J. Therm. Biol. 2023, 113, 103524. [Google Scholar] [CrossRef]
- Roggio, F.; Petrigna, L.; Trovato, B.; Zanghì, M.; Sortino, M.; Vitale, E.; Rapisarda, L.; Testa, G.; Pavone, V.; Pavone, P.; et al. Thermography and rasterstereography as a combined infrared method to assess the posture of healthy individuals. Sci. Rep. 2023, 13, 4263. [Google Scholar] [CrossRef] [PubMed]
- Russo, L.; Belli, G.; Di Blasio, A.; Lupu, E.; Larion, A.; Fischetti, F.; Montagnani, E.; Di Biase Arrivabene, P.; De Angelis, M. The Impact of Nordic Walking Pole Length on Gait Kinematic Parameters. J. Funct. Morphol. Kinesiol. 2023, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Belli, G.; Toselli, S.; Mauro, M.; Maietta Latessa, P.; Russo, L. Relation between Photogrammetry and Spinal Mouse for Sagittal Imbalance Assessment in Adolescents with Thoracic Kyphosis. J. Funct. Morphol. Kinesiol. 2023, 8, 68. [Google Scholar] [CrossRef]
- Fortin, C.; Ehrmann Feldman, D.; Cheriet, F.; Labelle, H. Clinical methods for quantifying body segment posture: A literature review. Disabil. Rehabil. 2011, 33, 367–383. [Google Scholar] [CrossRef]
- Ludwig, O.; Dindorf, C.; Schuh, T.; Haab, T.; Marchetti, J.; Fröhlich, M. Effects of Feedback-Supported Online Training during the Coronavirus Lockdown on Posture in Children and Adolescents. J. Funct. Morphol. Kinesiol. 2022, 7, 88. [Google Scholar] [CrossRef]
- Trovato, B.; Roggio, F.; Sortino, M.; Zanghì, M.; Petrigna, L.; Giuffrida, R.; Musumeci, G. Postural Evaluation in Young Healthy Adults through a Digital and Reproducible Method. J. Funct. Morphol. Kinesiol. 2022, 7, 98. [Google Scholar] [CrossRef]
- Camacho, D.M.; Collins, K.M.; Powers, R.K.; Costello, J.C.; Collins, J.J. Next-Generation Machine Learning for Biological Networks. Cell 2018, 173, 1581–1592. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Arac, A.; Zhao, P.; Dobkin, B.H.; Carmichael, S.T.; Golshani, P. DeepBehavior: A Deep Learning Toolbox for Automated Analysis of Animal and Human Behavior Imaging Data. Front Syst. Neurosci. 2019, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Dindorf, C.; Bartaguiz, E.; Dully, J.; Sprenger, M.; Merk, A.; Becker, S.; Fröhlich, M.; Ludwig, O. Evaluation of Influencing Factors on the Maximum Climbing Specific Holding Time: An Inferential Statistics and Machine Learning Approach. J. Funct. Morphol. Kinesiol. 2022, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Petrigna, L.; Musumeci, G. The metaverse: A new challenge for the healthcare system: A scoping review. J. Funct. Morphol. Kinesiol. 2022, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.; Rossi, C.; Petrigna, L.; Messina, G.; Bellafiore, M.; Şahin, F.N.; Proia, P.; Palma, A.; Bianco, A. Evaluation of Posturographic and Neuromuscular Parameters during Upright Stance and Hand Standing: A Pilot Study. J. Funct. Morphol. Kinesiol. 2023, 8, 40. [Google Scholar] [CrossRef]
- Petrigna, L.; Gentile, A.; Mani, D.; Pajaujiene, S.; Zanotto, T.; Thomas, E.; Paoli, A.; Palma, A.; Bianco, A. Dual-task conditions on static postural control in older adults: A systematic review and meta-analysis. J. Aging Phys. Act. 2020, 29, 162–177. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrigna, L.; Musumeci, G. 3D Analysis of Human Movement, Sport, and Health Promotion. J. Funct. Morphol. Kinesiol. 2023, 8, 157. https://doi.org/10.3390/jfmk8040157
Petrigna L, Musumeci G. 3D Analysis of Human Movement, Sport, and Health Promotion. Journal of Functional Morphology and Kinesiology. 2023; 8(4):157. https://doi.org/10.3390/jfmk8040157
Chicago/Turabian StylePetrigna, Luca, and Giuseppe Musumeci. 2023. "3D Analysis of Human Movement, Sport, and Health Promotion" Journal of Functional Morphology and Kinesiology 8, no. 4: 157. https://doi.org/10.3390/jfmk8040157
APA StylePetrigna, L., & Musumeci, G. (2023). 3D Analysis of Human Movement, Sport, and Health Promotion. Journal of Functional Morphology and Kinesiology, 8(4), 157. https://doi.org/10.3390/jfmk8040157