Evaluation of the Effectiveness of a Nordic Walking and a Resistance Indoor Training Program: Anthropometric, Body Composition, and Functional Parameters in the Middle-Aged Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Intervention Training Programs
2.3. Anthropometric Characteristics
2.4. Body Composition
2.5. Physical Test
2.6. Statistical Analysis
3. Results
3.1. Training Load of the Participants
3.2. Baseline Characteristics of the Participants
3.3. Effects of Three Months of Training
3.4. Effects of NW and GYM Training on BIVA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Braza, M.; Shoemaker, W.; Seeley, A. Neighborhood Design and Rates of Walking and Biking to Elementary School in 34 California Communities. Am. J. Health Promot. 2004, 19, 128–136. [Google Scholar] [CrossRef]
- Frank, L.D.; Pivo, G. Impacts of Mixed Use and Density on Utilization of Three Modes of Travel: Single-Occupant Vehicle, Transit, and Walking. Transp. Res. Rec. 1994, 1466, 44–52. [Google Scholar]
- Rodríguez, D.A.; Joo, J. The Relationship between Non-Motorized Mode Choice and the Local Physical Environment. Transportation Research Part D: Transport and Environment. Transp. Res. Part D Transp. Environ. 2004, 9, 151–173. [Google Scholar] [CrossRef]
- Lindsey, G.; Han, Y.; Wilson, J.; Yang, J. Neighborhood Correlates of Urban Trail Use. J. Phys. Act. Health 2006, 3, S139–S157. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, M.; Mazzali, G.; Fantin, F.; Rossi, A.; Di Francesco, V. Sarcopenic Obesity: A New Category of Obesity in the Elderly. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 388–395. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7719906/ (accessed on 2 May 2022).
- Tomlinson, D.J.; Erskine, R.M.; Morse, C.I.; Winwood, K.; Onambélé-Pearson, G. The Impact of Obesity on Skeletal Muscle Strength and Structure through Adolescence to Old Age. Biogerontology 2016, 17, 467–483. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization, Regional Office for Europe. ITALY Physical Activity Factsheet. 6. Available online: https://ec.europa.eu/assets/eac/sport/library/factsheets/italy-factsheet_en.pdf (accessed on 5 January 2022).
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Lancet Physical Activity Series Working Group Global Physical Activity Levels: Surveillance Progress, Pitfalls, and Prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- DiBonaventura, M.; Nicolucci, A.; Meincke, H.; Le Lay, A.; Fournier, J. Obesity in Germany and Italy: Prevalence, Comorbidities, and Associations with Patient Outcomes. Clinicoecon Outcomes Res. 2018, 10, 457–475. [Google Scholar] [CrossRef] [Green Version]
- Mytton, O.T.; Townsend, N.; Rutter, H.; Foster, C. Green Space and Physical Activity: An Observational Study Using Health Survey for England Data. Health Place 2012, 18, 1034–1041. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Dai, X.; Wu, J.; Wu, X.; Nie, X. Influence of Urban Green Open Space on Residents’ Physical Activity in China. BMC Public Health 2019, 19, 1093. [Google Scholar] [CrossRef] [Green Version]
- Toselli, S.; Bragonzoni, L.; Dallolio, L.; Alessia, G.; Masini, A.; Marini, S.; Barone, G.; Pinelli, E.; Zinno, R.; Mauro, M.; et al. The Effects of Park Based Interventions on Health: The Italian Project “Moving Parks”. Int. J. Environ. Res. Public Health 2022, 19, 2130. [Google Scholar] [CrossRef]
- Lachowycz, K.; Jones, A.P. Greenspace and Obesity: A Systematic Review of the Evidence. Obes. Rev. 2011, 12, e183–e189. [Google Scholar] [CrossRef]
- Lukaski, H.C.; Vega Diaz, N.; Talluri, A.; Nescolarde, L. Classification of Hydration in Clinical Conditions: Indirect and Direct Approaches Using Bioimpedance. Nutrients 2019, 11, 809. [Google Scholar] [CrossRef] [Green Version]
- Ackland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Müller, W. Current Status of Body Composition Assessment in Sport. Sports Med. 2012, 42, 227–249. [Google Scholar] [CrossRef]
- Gatterer, H.; Schenk, K.; Burtscher, M. Assessment of Human Body Composition Methods and Limitations. In Body Composition; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-351-26000-8. [Google Scholar]
- Campa, F.; Matias, C.; Gatterer, H.; Toselli, S.; Koury, J.C.; Andreoli, A.; Melchiorri, G.; Sardinha, L.B.; Silva, A.M. Classic Bioelectrical Impedance Vector Reference Values for Assessing Body Composition in Male and Female Athletes. Int. J. Environ. Res. Public Health 2019, 16, 5066. [Google Scholar] [CrossRef] [Green Version]
- Marini, E.; Campa, F.; Buffa, R.; Stagi, S.; Matias, C.N.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Phase Angle and Bioelectrical Impedance Vector Analysis in the Evaluation of Body Composition in Athletes. Clin. Nutr. 2020, 39, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Tomeleri, C.M.; Ribeiro, A.S.; Cavaglieri, C.R.; Deminice, R.; Schoenfeld, B.J.; Schiavoni, D.; Dos Santos, L.; de Souza, M.F.; Antunes, M.; Venturini, D.; et al. Correlations between Resistance Training-Induced Changes on Phase Angle and Biochemical Markers in Older Women. Scand. J. Med. Sci. Sports 2018, 28, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.F.; Tomeleri, C.M.; Ribeiro, A.S.; Schoenfeld, B.J.; Silva, A.M.; Sardinha, L.B.; Cyrino, E.S. Effect of Resistance Training on Phase Angle in Older Women: A Randomized Controlled Trial. Scand. J. Med. Sci. Sport 2017, 27, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Grigoletto, A.; Mauro, M.; Oppio, A.; Greco, G.; Fischetti, F.; Cataldi, S.; Toselli, S. Effects of Nordic Walking Training on Anthropometric, Body Composition and Functional Parameters in the Middle-Aged Population. Int. J. Environ. Res. Public Health 2022, 19, 7433. [Google Scholar] [CrossRef] [PubMed]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 20 January 2022).
- Lohman, T.; Roache, A.; Martorell, R. Anthropometric Standardization Reference Manual. Med. Sci. Sports Exerc. 1992, 24, 952. [Google Scholar] [CrossRef] [Green Version]
- Haddad, M.; Stylianides, G.; Djaoui, L.; Dellal, A.; Chamari, K. Session-RPE Method for Training Load Monitoring: Validity, Ecological Usefulness, and Influencing Factors. Front. Neurosci. 2017, 11, 612. [Google Scholar] [CrossRef] [Green Version]
- Durnin, J.V.; Womersley, J. Body Fat Assessed from Total Body Density and Its Estimation from Skinfold Thickness: Measurements on 481 Men and Women Aged from 16 to 72 Years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [Green Version]
- Siri, W.E. Body Composition from Fluid Spaces and Density: Analysis of Methods; University of California: Berkeley, CA, USA, 1956. [Google Scholar]
- Sergi, G.; Bussolotto, M.; Perini, P.; Calliari, I.; Giantin, V.; Ceccon, A.; Scanferla, F.; Bressan, M.; Moschini, G.; Enzi, G. Accuracy of Bioelectrical Impedance Analysis in Estimation of Extracellular Space in Healthy Subjects and in Fluid Retention States. Ann. Nutr. Metab. 1994, 38, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, A.; Rossi, B.; Pillon, L.; Bucciante, G. A New Method for Monitoring Body Fluid Variation by Bioimpedance Analysis: The RXc Graph. Kidney Int. 1994, 46, 534–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukaski, H.C.; Piccoli, A. Bioelectrical Impedance Vector Analysis for Assessment of Hydration in Physiological States and Clinical Conditions. In Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease; Preedy, V.R., Ed.; Springer: New York, NY, USA, 2012; pp. 287–305. ISBN 978-1-4419-1788-1. [Google Scholar]
- Chtourou, H.; Engel, F.A.; Fakhfakh, H.; Fakhfakh, H.; Hammouda, O.; Ammar, A.; Trabelsi, K.; Souissi, N.; Sperlich, B. Diurnal Variation of Short-Term Repetitive Maximal Performance and Psychological Variables in Elite Judo Athletes. Front. Physiol. 2018, 9, 1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rikli, R.E.; Jones, C.J. Senior Fitness Test Manual; Human Kinetics: Champaign, IL, USA, 2013; ISBN 978-1-4504-1118-9. [Google Scholar]
- Karanth, M.S.; Awad, N.T. Six Minute Walk Test: A Tool for Predicting Mortality in Chronic Pulmonary Diseases. J. Clin. Diagn. Res. 2017, 11, OC34–OC38. [Google Scholar] [CrossRef]
- Nolen-Doerr, E.; Crick, K.; Saha, C.; de Groot, M.; Pillay, Y.; Shubrook, J.H.; Donley, D.; Hornsby, W.G. Six-Minute Walk Test as a Predictive Measure of Exercise Capacity in Adults with Type 2 Diabetes. Cardiopulm. Phys. Ther. J. 2018, 29, 124–129. [Google Scholar] [CrossRef]
- Shim, J.; Kwon, H.; Kim, H.; Kim, B.; Jung, J. Comparison of the Effects of Walking with and without Nordic Pole on Upper Extremity and Lower Extremity Muscle Activation. J. Phys. Ther. Sci. 2013, 25, 1553. [Google Scholar] [CrossRef] [Green Version]
- van den Bosch, M.; Ode Sang, Å. Urban Natural Environments as Nature-Based Solutions for Improved Public Health—A Systematic Review of Reviews. Environ. Res. 2017, 158, 373–384. [Google Scholar] [CrossRef]
- Figard-Fabre, H.; Fabre, N.; Leonardi, A.; Schena, F. Physiological and Perceptual Responses to Nordic Walking in Obese Middle-Aged Women in Comparison with the Normal Walk. Eur. J. Appl. Physiol. 2010, 108, 1141–1151. [Google Scholar] [CrossRef]
- Rodgers, C.D.; VanHeest, J.L.; Schachter, C.L. Energy Expenditure during Submaximal Walking with Exerstriders. Med. Sci. Sports Exerc. 1995, 27, 607–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- dos Santos, L.; Ribeiro, A.S.; Gobbo, L.A.; Nunes, J.P.; Cunha, P.M.; Campa, F.; Toselli, S.; Schoenfeld, B.J.; Sardinha, L.B.; Cyrino, E.S. Effects of Resistance Training with Different Pyramid Systems on Bioimpedance Vector Patterns, Body Composition, and Cellular Health in Older Women: A Randomized Controlled Trial. Sustainability 2020, 12, 6658. [Google Scholar] [CrossRef]
- Westcott, W.L. Resistance Training Is Medicine: Effects of Strength Training on Health. Curr. Sports Med. Rep. 2012, 11, 209–216. [Google Scholar] [CrossRef]
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. J. Strength. Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef] [PubMed]
- Kukkonen-Harjula, K.; Hiilloskorpi, H.; Mänttäri, A.; Pasanen, M.; Parkkari, J.; Suni, J.; Fogelholm, M.; Laukkanen, R. Self-Guided Brisk Walking Training with or without Poles: A Randomized-Controlled Trial in Middle-Aged Women. Scand. J. Med. Sci. Sport. 2007, 17, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Toselli, S.; Badicu, G.; Bragonzoni, L.; Spiga, F.; Mazzuca, P.; Campa, F. Comparison of the Effect of Different Resistance Training Frequencies on Phase Angle and Handgrip Strength in Obese Women: A Randomized Controlled Trial. Int. J. Environ. Res. Public. Health 2020, 17, 1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrea, L.; Muscogiuri, G.; Laudisio, D.; Di Somma, C.; Salzano, C.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S. Phase Angle: A Possible Biomarker to Quantify Inflammation in Subjects with Obesity and 25(OH)D Deficiency. Nutrients 2019, 11, 1747. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.S.; Schoenfeld, B.J.; Dos Santos, L.; Nunes, J.P.; Tomeleri, C.M.; Cunha, P.M.; Sardinha, L.B.; Cyrino, E.S. Resistance Training Improves a Cellular Health Parameter in Obese Older Women: A Randomized Controlled Trial. J. Strength. Cond. Res. 2020, 34, 2996–3002. [Google Scholar] [CrossRef]
- Fukuda, D.H.; Stout, J.R.; Moon, J.R.; Smith-Ryan, A.E.; Kendall, K.L.; Hoffman, J.R. Effects of Resistance Training on Classic and Specific Bioelectrical Impedance Vector Analysis in Elderly Women. Exp. Gerontol. 2016, 74, 9–12. [Google Scholar] [CrossRef]
- Takeshima, N.; Rogers, N.L.; Rogers, M.E.; Islam, M.M.; Koizumi, D.; Lee, S. Functional Fitness Gain Varies in Older Adults Depending on Exercise Mode. Med. Sci. Sport. Exerc. 2007, 39, 2036–2043. [Google Scholar] [CrossRef] [PubMed]
- Bojorquez, I.; Ojeda-Revah, L. Urban Public Parks and Mental Health in Adult Women: Mediating and Moderating Factors. Int. J. Soc. Psychiatry 2018, 64, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Church, T.S.; Earnest, C.P.; Morss, G.M. Field Testing of Physiological Responses Associated with Nordic Walking. Res. Q. Exerc. Sport 2002, 73, 296–300. [Google Scholar] [CrossRef] [PubMed]
- van den Bosch, M. Natural Environments, Health, and Well-Being. Available online: https://oxfordre.com/environmentalscience/view/10.1093/acrefore/9780199389414.001.0001/acrefore-9780199389414-e-333 (accessed on 13 July 2022).
- Newton, J. Wellbeing and the Natural Environment: A Brief Overview of the Evidence; University of Bath: Bath, UK, 2007. [Google Scholar]
Week | Day | NW (Mean ± SD) | GYM (Mean ± SD) | F | p |
---|---|---|---|---|---|
Week 1 | Day 1 | 395.36 ± 58.09 | 402.50 ± 57.28 | 0.02 | 0.052 |
Day 2 | 387.86 ± 51.12 | 397.50 ± 55.42 | 0.25 | 0.085 | |
Week 2 | Day 1 | 390.00 ± 67.69 | 382.50 ± 55.42 | 0.56 | 0.753 |
Day 2 | 371.79 ± 56.54 | 397.50 ± 58.18 | 1.46 | 0.652 | |
Week 3 | Day 1 | 381.43 ± 50.43 | 367.40 ± 36.74 | 4.46 | 0.123 |
Day 2 | 397.50 ± 63.25 | 405.00 ± 56.65 | 0.05 | 0.257 | |
Week 4 | Day 1 | 395.36 ± 63.47 | 395.00 ± 63.59 | 1.26 | 0.951 |
Day 2 | 394.29 ± 64.58 | 397.50 ± 60.81 | 1.36 | 0.746 | |
Week 5 | Day 1 | 401.79 ± 57.12 | 382.30 ± 55.42 | 2.65 | 0.563 |
Day 2 | 397.50 ± 56.70 | 397.20 ± 57.36 | 0.08 | 0.452 | |
Week 6 | Day 1 | 380.36 ± 51.52 | 397.80 ± 60.81 | 3.20 | 0.874 |
Day 2 | 401.79 ± 57.12 | 405.00 ± 55.66 | 0.07 | 0.658 | |
Week 7 | Day 1 | 394.29 ± 64.58 | 395.00 ± 65.39 | 5.20 | 0.887 |
Day 2 | 397.50 ± 65.70 | 395.30 ± 68.10 | 3.21 | 0.632 | |
Week 8 | Day 1 | 380.86 ± 52.51 | 372.50 ± 43.26 | 2.03 | 0.358 |
Day 2 | 409.71 ± 57.12 | 406.00 ± 56.65 | 1.02 | 0.742 | |
Week 9 | Day 1 | 380.36 ± 25.16 | 382.50 ± 55.42 | 4.25 | 0.896 |
Day 2 | 407.91 ± 67.50 | 390.00 ± 30.65 | 0.02 | 0.554 | |
Week 10 | Day 1 | 397.50 ± 66.50 | 405.50 ± 56.58 | 0.04 | 0.665 |
Day 2 | 394.27 ± 64.58 | 397.56 ± 55.42 | 0.10 | 0.578 | |
Week 11 | Day 1 | 380.36 ± 51.52 | 382.50 ± 55.58 | 3.89 | 0.832 |
Day 2 | 397.00 ± 57.60 | 395.63 ± 63.59 | 4.02 | 0.752 | |
Week 12 | Day 1 | 401.79 ± 57.12 | 395.00 ± 59.63 | 0.66 | 0.348 |
Day 2 | 394.29 ± 64.58 | 397.50 ± 60.81 | 0.59 | 0.658 |
♀ (n = 70) | ♂ (n = 31) | ANOVA Comparisons | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GYM (n = 14) | NW (n = 56) | GYM (n = 10) | NW (n = 21) | Intervention Effect | Type Effect | Sex Effect | ||||||||
Var | Pre | Post | Pre | Post | Pre | Post | Pre | Post | ||||||
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | F | p | F | p | F | p | |
Weight, kg | 65.65 (11.69) | 65.34 (12.05) | 59.88 (10.69) | 63.41 (14.00) | 84.58 (8.99) | 83.86 (7.53) | 78.40 (7.06) | 76.20 (7.80) | 0.01 | 0.937 | 4.14 | 0.045 * | 0.06 | 0.799 |
BMI, kg/m2 | 24.01 (3.81) | 23.80 (3.89) | 22.54 (3.57) | 23.96 (5.63) | 27.19 (3.02) | 26.97 (2.81) | 24.99 (1.66) | 24.29 (1.98) | 0.02 | 0.881 | 2.61 | 0.109 | 1.42 | 0.236 |
Triceps SK, mm | 20.55 (3.43) | 19.29 (3.85) | 16.07 (3.87) | 16.36 (3.86) | 16.81 (4.86) | 15.90 (4.31) | 9.80 (5.33) | 11.60 (3.34) | 2.53 | 0.115 | 31.24 | <0.001 * | 1.59 | 0.211 |
Biceps SK, mm | 12.57 (4.62) | 11.25 (4.40) | 14.64 (5.30) | 13.29 (3.75) | 10.81 (3.09) | 10.62 (4.09) | 10.00 (3.86) | 9.70 (3.33) | 6.82 | 0.01 * | 1.1 | 0.296 | 1.02 | 0.315 |
Subscapular SK, mm | 17.00 (6.54) | 14.55 (4.66) | 15.00 (3.09) | 15.79 (3.26) | 20.9 (4.65) | 17.14 (4.52) | 15.30 (3.43) | 16.70 (2.75) | 17.62 | <0.001 * | 1.68 | 0.198 | 0.02 | 0.876 |
Supraspinal SK, mm | 19.05 (6.40) | 18.32 (5.34) | 18.71 (4.89) | 18.64 (4.99) | 22.81 (4.88) | 22.00 (4.51) | 21.30 (4.16) | 20.50 (4.09) | 2.3 | 0.133 | 0.25 | 0.621 | 2.3 | 0.133 |
Suprailiac SK, mm | 18.43 (6.07) | 16.89 (5.98) | 18.86 (5.32) | 17.5 (4.72) | 21.57 (5.86) | 19.52 (6.78) | 20.60 (5.10) | 18.50 (4.67) | 12.15 | <0.001 * | 0 | 0.966 | 0.64 | 0.427 |
Arm relaxed circ, cm | 28.38 (3.55) | 28.96 (3.42) | 25.70 (3.13) | 26.08 (3.08) | 30.08 (1.97) | 30.13 (3.48) | 28.83 (2.21) | 29.23 (2.03) | 4.78 | 0.031 * | 8.79 | <0.01 * | 0.14 | 0.712 |
Arm stretched circ, cm | 29.44 (3.42) | 29.54 (3.40) | 26.23 (3.14) | 26.60 (3.12) | 32.09 (2.42) | 31.87 (2.46) | 30.26 (2.11) | 28.65 (7.01) | 0.16 | 0.689 | 15 | <0.001 * | 0 | 0.973 |
Waist circ, cm | 79.66 (11.58) | 78.48 (12.17) | 80.49 (8.27) | 78.79 (6.98) | 96.56 (9.53) | 95.14 (9.42) | 95.69 (6.07) | 94.85 (4.65) | 4.09 | 0.046 * | 0 | 0.953 | 1.04 | 0.309 |
Hip circ, cm | 101.94 (8.69) | 100.72 (8.78) | 98.53 (7.28) | 97.45 (6.17) | 104.68 (4.52) | 104.46 (4.44) | 100.69 (5.29) | 99.84 (4.15) | 9.37 | <0.01 * | 4.68 | 0.033 * | 0 | 0.981 |
Medial calf SK, mm | 17.63 (3.44) | 16.58 (6.00) | 17.88 (7.24) | 15.43 (5.17) | 12.57 (4.32) | 12.68 (7.00) | 11.30 (2.87) | 12.00 (1.05) | 2.2 | 0.141 | 0.41 | 0.522 | 0.56 | 0.458 |
Lateral calf SK, mm | 17.54 (3.61) | 16.76 (6.10) | 13.64 (4.65) | 13.57 (3.99) | 12.57 (4.32) | 12.68 (7.00) | 9.50 (2.27) | 10.00 (2.11) | 0.47 | 0.493 | 11.71 | <0.001 * | 3.01 | 0.086 |
Calf circ, cm | 36.58 (2.62) | 35.60 (5.08) | 31.43 (7.10) | 34.14 (3.41) | 38.15 (3.02) | 37.10 (6.40) | 36.75 (1.92) | 36.92 (1.76) | 0.48 | 0.488 | 8.18 | <0.01 * | 0.04 | 0.84 |
Resistance, Ω | 523.15 (73.63) | 510.87 (66.39) | 579.56 (78.25) | 555.60 (82.39) | 488.03 (52.69) | 473.74 (74.65) | 452.00 (38.43) | 442.72 (41.92) | 2.48 | 0.119 | 1.91 | 0.171 | 0.1 | 0.756 |
Reactance, Ω | 56.67 (6.33) | 55.73 (9.00) | 60.46 (11.93) | 52.96 (6.99) | 52.52 (9.98) | 57.11 (8.97) | 57.37 (8.52) | 57.23 (10.23) | 0.84 | 0.361 | 0.44 | 0.511 | 9.25 | <0.01 * |
Phase angle, ° | 6.28 (0.94) | 7.03 (1.50) | 5.82 (0.53) | 5.51 (0.59) | 6.21 (1.28) | 7.49 (1.23) | 7.27 (0.88) | 7.44 (1.12) | 12.42 | <0.001 * | 2.5 | 0.118 | 8.76 | <0.01 * |
HGS right, kg | 25.77 (5.98) | 26.05 (5.75) | 22.79 (4.61) | 23.93 (4.48) | 42.60 (10.13) | 42.05 (9.72) | 40.20 (7.94) | 40.20 (7.64) | 0.17 | 0.682 | 2.47 | 0.119 | 3.48 | 0.065 |
HGS left, kg | 25.30 (4.9) | 25.43 (5.65) | 23.64 (4.38) | 24.00 (4.24) | 41.90 (8.54) | 41.29 (8.61) | 38.00 (6.7) | 38.70 (6.58) | 0.02 | 0.893 | 2.65 | 0.106 | 1.54 | 0.217 |
Squat, n | 15.73 (3.77) | 17.41 (3.69) | 14.36 (2.76) | 18.50 (3.92) | 14.33 (3.80) | 17.52 (3.63) | 22.00 (6.73) | 24.10 (5.53) | 28.49 | <0.001 * | 9.29 | <0.01 * | 0.24 | 0.625 |
Walk, meters | 541.07 (70.07) | 578.82 (66.21) | 460.61 (50.77) | 481.61 (63.52) | 534.74 (93.65) | 564.02 (66.45) | 592.00 (48.76) | 644.00 (82.13) | 28.06 | <0.001 * | 3.28 | 0.073 | 0.24 | 0.628 |
%F, % | 36.33 (3.89) | 34.95 (3.99) | 36.03 (2.91) | 35.76 (2.46) | 31.13 (3.43) | 29.47 (3.62) | 27.25 (3.15) | 27.49 (2.86) | 18.15 | <0.001 * | 1.36 | 0.246 | 2.46 | 0.119 |
FM, kg | 24.15 (6.35) | 23.15 (6.38) | 21.72 (4.95) | 22.87 (6.21) | 26.42 (4.62) | 24.78 (4.23) | 21.49 (3.99) | 21.05 (3.90) | 4.96 | 0.028 * | 3.7 | 0.057 | 0.38 | 0.537 |
FFM, kg | 41.50 (5.90) | 42.19 (6.24) | 38.16 (6.08) | 40.54 (7.96) | 58.16 (5.77) | 59.08 (5.28) | 56.91 (4.03) | 55.15 (4.73) | 3.33 | 0.071 | 3.67 | 0.059 | 1.16 | 0.285 |
TUA, cm2 | 65.10 (16.67) | 67.67 (16.21) | 60.84 (25.88) | 70.22 (12.95) | 72.32 (9.21) | 73.19 (16.12) | 89.60 (11.02) | 89.40 (9.25) | 5.64 | 0.019 * | 2.62 | 0.109 | 0.62 | 0.433 |
UMA, cm2 | 38.99 (11.35) | 42.79 (11.04) | 21.52 (6.50) | 23.41 (8.05) | 49.36 (8.81) | 51.65 (10.62) | 18.19 (3.97) | 19.35 (2.66) | 16.07 | <0.001 * | 107.61 | <0.001 * | 0.66 | 0.419 |
UFA, cm2 | 26.11 (6.72) | 24.88 (7.60) | 18.59 (4.65) | 19.22 (4.81) | 22.96 (6.47) | 21.53 (8.27) | 13.30 (7.27) | 15.82 (4.65) | 0.9 | 0.344 | 25.06 | <0.001 * | 0.87 | 0.352 |
TCA, cm2 | 107.06 (15.48) | 105.18 (18.13) | 82.36 (30.20) | 93.63 (18.79) | 116.55 (18.43) | 112.66 (28.97) | 107.79 (10.97) | 108.75 (10.10) | 0.01 | 0.918 | 11.46 | 0.001 * | 0.06 | 0.809 |
CMA, cm2 | 74.92 (11.76) | 71.72 (21.91) | 60.84 (25.88) | 70.22 (12.95) | 90.07 (14.19) | 89.10 (26.13) | 89.60 (11.02) | 89.40 (9.25) | 0.13 | 0.721 | 1.78 | 0.185 | 0.59 | 0.444 |
CFA, cm2 | 32.14 (6.01) | 27.72 (9.51) | 21.52 (6.50) | 23.41 (8.05) | 26.49 (8.22) | 23.56 (7.63) | 18.19 (3.97) | 19.35 (2.66) | 8.98 | <0.01 * | 23.56 | <0.001 * | 1.62 | 0.207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoletto, A.; Mauro, M.; Toselli, S. Evaluation of the Effectiveness of a Nordic Walking and a Resistance Indoor Training Program: Anthropometric, Body Composition, and Functional Parameters in the Middle-Aged Population. J. Funct. Morphol. Kinesiol. 2023, 8, 79. https://doi.org/10.3390/jfmk8020079
Grigoletto A, Mauro M, Toselli S. Evaluation of the Effectiveness of a Nordic Walking and a Resistance Indoor Training Program: Anthropometric, Body Composition, and Functional Parameters in the Middle-Aged Population. Journal of Functional Morphology and Kinesiology. 2023; 8(2):79. https://doi.org/10.3390/jfmk8020079
Chicago/Turabian StyleGrigoletto, Alessia, Mario Mauro, and Stefania Toselli. 2023. "Evaluation of the Effectiveness of a Nordic Walking and a Resistance Indoor Training Program: Anthropometric, Body Composition, and Functional Parameters in the Middle-Aged Population" Journal of Functional Morphology and Kinesiology 8, no. 2: 79. https://doi.org/10.3390/jfmk8020079
APA StyleGrigoletto, A., Mauro, M., & Toselli, S. (2023). Evaluation of the Effectiveness of a Nordic Walking and a Resistance Indoor Training Program: Anthropometric, Body Composition, and Functional Parameters in the Middle-Aged Population. Journal of Functional Morphology and Kinesiology, 8(2), 79. https://doi.org/10.3390/jfmk8020079