Kinetic and Kinematic Analysis of Landing during Standing Back Somersault Using Three Technical Arm Swings in Artistic Gymnastics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Procedures
2.4. Statistical Analyses
3. Results
4. Discussion
5. Limitations and Future Research Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, C.; Hao, W.; He, W.; Xiao, X.; Li, X.; Sun, W. Biomechanical and neuromuscular strategies on backward somersault landing in artistic gymnastics: A case study. Math. Biosci. Eng. 2019, 16, 5862–5876. [Google Scholar] [CrossRef] [PubMed]
- Marinšek, M. Basic landing characteristics and their application in artistic gymnastics. Sci. Gymnast. J. 2010, 2, 59–67. [Google Scholar]
- Johns, D.P.; Lindner, K.J.; Wolko, K. Understanding attrition in female competitive gymnastics: Applying social exchange theory. Sociol. Sport J. 1990, 7, 154–171. [Google Scholar] [CrossRef]
- Lindner, K.; Caine, D. Injury patterns of female competitive club gymnasts. Can. J. Sport Sci. J. Can. Des Sci. Du Sport 1990, 15, 254–261. [Google Scholar]
- Gittoes, M.J.R.; Irwin, G. Biomechanical approaches to understanding the potentially injurious demands of gymnastic-style impact landings. Sport. Med. Arthrosc. Rehabil. Ther. Technol. 2012, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, E.J.; Hume, P.A. Biomechanical approaches to identify and quantify injury mechanisms and risk factors in women’s artistic gymnastics. Sport. Biomech. Int. Soc. Biomech. Sport. 2012, 11, 324–341. [Google Scholar] [CrossRef]
- Mkaouer, B.; Jemni, M.; Amara, S.; Chaabene, H.; Padulo, J.; Tabka, Z. Effect of three technical arms swings on the elevation of the center of mass during a standing back somersault. J. Hum. Kinet. 2014, 40, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Mills, C.; Pain, M.T.; Yeadon, M.R. The influence of simulation model complexity on the estimation of internal loading in gymnastics landings. J. Biomech. 2008, 41, 620–628. [Google Scholar] [CrossRef] [Green Version]
- Omorczyk, J.; Ambroży, T.; Bujas, P.; Puszczałowska-Lizis, E. The Level of technical and specific skill efficiency in youth class female artistic gymnasts. Kinesiology 2014, 25, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Mkaouer, B.; Jemni, M.; Amara, S.; Chaabène, H.; Tabka, Z. Kinematic and kinetic analysis of two gymnastics acrobatic series to performing the backward stretched somersault. J. Hum. Kinet. 2013, 37, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.B.; Hubbard, M. Role of arms in somersaulting from compliant surfaces: A simulation study of springboard standing dives. Hum. Mov. Sci. 2008, 27, 80–95. [Google Scholar] [CrossRef]
- Mkaouer, B.; Jemni, M.; Amara, S.; Chaabèn, H.; Tabka, Z. Kinematic and kinetic analysis of counter movement jump versus two different types of standing back somersault. Sci. Gymnast. J. 2012, 4, 61–71. [Google Scholar]
- Medved, V.; Tonkovíc, S.; Cifrek, M. Simple neuro-mechanical measure of the locomotor skill: An example of backward somersault. Med. Prog. Through Technol. 1995, 21, 77–84. [Google Scholar]
- Medved, V.; Tonkovíc, S. Method to evaluate the skill level in fast locomotion through myoelectric and kinetic signal analysis. Med. Biol. Eng. Comput. 1991, 29, 406–412. [Google Scholar] [CrossRef]
- Medved, V. Measurement of Human Locomotion; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Munkasy, B.; McNitt-Gray, J.; Michele, D.; Welch, M. Kinematics prior to contact in landings preceded by rotation. In Proceedings of the 20th Annual Meeting of the American Society of Biomechanics, Atlanta, GA, USA, 17–19 October 1996. [Google Scholar]
- McNitt-Gray, J.L.; Hester, D.M.E.; Mathiyakom, W.; Munkasy, B.A. Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force. J. Biomech. 2001, 34, 1471–1482. [Google Scholar] [CrossRef]
- Mathiyakom, W.; McNitt-Gray, J.L.; Wilcox, R. Lower extremity control and dynamics during backward angular impulse generation in backward translating tasks. Exp. Brain Res. 2006, 169, 377–388. [Google Scholar] [CrossRef]
- Okubo, Y.; Tucker, K.; Butler, B.; Hodes, P. Muscle activity during back tuck somersault. In Proceedings of the XIX Congress of the International Society of Electrophysiology and Kinesiology, Brisbane, Australia, 19 July 2012; University of Brisbane: Brisbane, Australia, 2012; p. 253. [Google Scholar]
- Lacouture, P.; Junqua, A.; Duboy, J.; Durand, B. Dynamographic and cinematographic study of backward somersault. Biol. Sport 1989, 6, 207–213. [Google Scholar]
- Duboy, J.; Junqua, A.; Lacouture, P. Mécanique Humaine: Éléments D’une Analyse des Gestes Sportifs en Deux Dimensions; Revue EPS: Paris, France, 1994. [Google Scholar]
- Leboeuf, F.; Seguin, P.; Lacouture, P. Optimal synthesis versus dynamic analysis for an acrobatic aerial movement. Mov. Sport Sci. 2012, 75, 19–25. [Google Scholar] [CrossRef]
- Mkaouer, B. Kinetic and Kinematic Study of the Floor Exercise Run-up Techniques and Their Impacts on the Back Acrobatic Series in Artistic Gymnastics; Manouba University: Tunis, Tunisia, 2013. [Google Scholar]
- Comfort, P.; Colclough, A.; Herrington, L. A comparison of frontal plane projection angle across landing tasks in female gymnasts. Int. J. Athl. Ther. Train. 2016, 21, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Cuk, I.; Marinšek, M. Landing quality in artistic gymnastics is related to landing symmetry. Biol. Sport 2013, 30, 29–33. [Google Scholar] [CrossRef]
- Marinšek, M.; Čuk, I. The influence of different twists in the forward and backward somersault on increased landing asymmetries. Kinesiology 2013, 45, 73–81. [Google Scholar]
- Wade, M.; Campbell, A.; Smith, A.; Norcott, J.; O’Sullivan, P. Investigation of spinal posture signatures and ground reaction forces during landing in elite female gymnasts. J. Appl. Biomech. 2012, 28, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.-S. Analysis of Successful Landing by the Type of the Salto Backward. Korean J. Sport Biomech. 2004, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, R.V.; Boyd, K.M.; Webb, D.J. The revision of the Declaration of Helsinki: Past, present and future. Br. J. Clin. Pharmacol. 2004, 57, 695–713. [Google Scholar] [CrossRef]
- Matsui, S. MOVIAS for Windows: Center of Gravity of the Human Body in MOVIAS; NAC Image Technology Co., Ltd.: Tokyo, Japan, 1983. [Google Scholar]
- Zar, J.H. The Latin Square Experimental Design—Multiway Factorial Analysis of Variance. In Biostatistical Analysis, 2nd ed.; Prentice-Hall: Englewoods Cliff, NJ, USA, 1984; p. 248. [Google Scholar]
- Faul, F.; Erdfelder, E. GPOWER: A Priori, Post-Hoc, and Compromise Power Analyses for MS-DOS [Computer Program]; Department of Psychology, Bonn University: Bonn, Germany, 1992; p. 54. [Google Scholar]
- Hopkins, W.G. A new view of statistics. A scale of magnitudes for effect statistics. Sportscience 2002, 502, 411. [Google Scholar]
- Scanlan, A.T.; Dascombe, B.J.; Reaburn, P.R. The construct and longitudinal validity of the basketball exercise simulation test. J. Strength Cond. Res. 2012, 26, 523–530. [Google Scholar] [CrossRef]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport. Exerc. 2009, 41, 3. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sport. Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wagner, J.M.; Rhodes, J.A.; Patten, C. Reproducibility and minimal detectable change of three-dimensional kinematic analysis of reaching tasks in people with hemiparesis after stroke. Phys. Ther. 2008, 88, 652–663. [Google Scholar] [CrossRef]
- Hraski, Z. Correlation between selected kinematic parameters and angular momentum in backward somersaults. In Proceedings of the ISBS-Conference Proceedings Archive, Caceres, Spain, 1–5 July 2002. [Google Scholar]
- McNitt-Gray, J.L. Influence of impact speed on joint kinematics and impulse characteristics of drop landings. J. Biomech. 1989, 22, 1054. [Google Scholar] [CrossRef]
- Beatty, K.T.; McIntosh, A.S.; Frechede, B.O. Variation in landing during gymnastics skills. In Proceedings of the ISBS-Conference Proceedings Archive, Ouro Preto, Brazil, 23–27 August 2007. [Google Scholar]
- Sadowski, J.; Boloban, V.; Wisniowski, W.; Mastalerz, A.; Niznikowski, T. Key components of acrobatic jump. Biol. Sport 2005, 22, 385. [Google Scholar]
- Cossin, M.; Ross, A.; Prince, F. Effect of jump heights, landing techniques, and participants on vertical ground reaction force and loading rate during landing on three different Korean teeterboards. Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol. 2012, 17543371211058031. [Google Scholar] [CrossRef]
R1 vs. R2 | Mean ± SD Fy (N) | T-test (p) | TEM | TEM (%) | MDC (95%) | SWC (0.2) | ICC (95% CI) |
---|---|---|---|---|---|---|---|
SBS270° | 7894.96 ± 1017.04 7908.05 ± 988.18 | 0.852 | 10.387 | 0.131 | 28.792 | 28.792 | 0.995 (0.901–0.999) |
SBS180° | 7182.43 ± 879.63 7251.65 ± 822.85 | 0.326 | 10.725 | 0.149 | 29.729 | 160.767 | 0.994 (0.880–0.999) |
SBS90° | 5555.94 ± 381.93 5561.18 ± 269.97 | 0.933 | 26.618 | 0.479 | 73.782 | 62.365 | 0.967 (0.443–0.996) |
Variables | df | Mean Square | F | Sig. | Effect Size | Power | |
---|---|---|---|---|---|---|---|
Kinetics | Fz (BW) | 2 | 0.166 | 6.783 | 0.060 | 2.604 § | 0.507 |
Fx (BW) | 2 | 1.467 | 24.962 | 0.008 | 4.998 § | 0.955 | |
Fy (BW) | 2 | 40.361 | 41.966 | 0.003 | 6.479 § | 0.996 | |
Mz (N·m−1) | 2 | 130,748.283 | 104.189 | 0.000 | 10.203 § | 1.000 | |
Mx (N·m−1) | 2 | 114,815.710 | 47.597 | 0.000 | 6.876 § | 1.000 | |
My (N·m−1) | 2 | 13,944.128 | 149.906 | 0.000 | 12.241 § | 1.000 | |
Pz (N·m·s−1) | 2 | 0.456 | 18.878 | 0.001 | 4.357 § | 0.996 | |
Px (N·m·s−1) | 2 | 0.368 | 10.260 | 0.006 | 3.199 § | 0.921 | |
Py (N·m·s−1) | 2 | 0.010 | 1.760 | 0.233 | 1.328 # | 0.267 | |
Kinematics | Vz (m·s−1) | 2 | 0.002 | 0.730 | 0.511 | 0.853 * | 0.134 |
Vx (m·s−1) | 2 | 0.004 | 8.388 | 0.011 | 2.895 § | 0.859 | |
Vy (m·s−1) | 2 | 0.064 | 0.456 | 0.650 | 0.674 * | 0.101 | |
∠L (°) | 2 | 10.141 | 8.872 | 0.009 | 2.976 § | 0.878 | |
∠H (°) | 2 | 326.727 | 12.249 | 0.004 | 3.501 § | 0.958 | |
∠K (°) | 2 | 74.122 | 0.093 | 0.912 | 0.306 ¤ | 0.060 |
Measure | Mean Difference | Std. Error | Sig. | Effect Size | |
---|---|---|---|---|---|
Fx (BW) | SBS270° vs. SBS180° | −0.446 | 0.072 | 0.011 | 6.472 § |
SBS270° vs. SBS90° | 0.766 | 0.153 | 0.023 | 5.006 § | |
SBS180° vs. SBS90° | 1.212 | 0.148 | 0.004 | 8.189 § | |
Fy (BW) | SBS270° vs. SBS90° | 4.018 | 0.620 | 0.009 | 6.480 § |
Mz (N·m−1) | SBS270° vs. SBS180° | 281.433 | 26.824 | 0.001 | 10.491 § |
SBS270° vs. SBS90° | 278.723 | 27.985 | 0.002 | 9.960 § | |
Mx (N·m−1) | SBS270° vs. SBS180° | 277.346 | 33.018 | 0.003 | 8.399 § |
SBS180° vs. SBS90° | −244.497 | 21.986 | 0.001 | 11.120 § | |
My (N·m−1) | SBS270° vs. SBS180° | 92.970 | 4.723 | 0.000 | 19.684 § |
SBS270° vs. SBS90° | 89.889 | 8.115 | 0.001 | 10.076 § | |
Pz (N·m·s−1) | SBS270° vs. SBS180° | 0.525 | 0.122 | 0.038 | 4.303 § |
SBS270° vs. SBS90° | 0.521 | 0.117 | 0.034 | 4.452 § | |
Px (N·m·s−1) | SBS180° vs. SBS90° | −0.494 | 0.103 | 0.026 | 4.796 § |
Vx (m·s−1) | SBS180° vs. SBS90° | 0.058 | 0.011 | 0.021 | 5.272 § |
∠L (°) | SBS270° vs. SBS90° | −2.028 | 0.475 | 0.039 | 4.269 § |
∠H (°) | SBS270° vs. SBS90° | 15.434 | 2.508 | 0.011 | 6.153 § |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mkaouer, B.; Akkari-Ghazouani, H.; Amara, S.; Bouguezzi, R.; Jemni, M.; Chaabene, H. Kinetic and Kinematic Analysis of Landing during Standing Back Somersault Using Three Technical Arm Swings in Artistic Gymnastics. J. Funct. Morphol. Kinesiol. 2023, 8, 10. https://doi.org/10.3390/jfmk8010010
Mkaouer B, Akkari-Ghazouani H, Amara S, Bouguezzi R, Jemni M, Chaabene H. Kinetic and Kinematic Analysis of Landing during Standing Back Somersault Using Three Technical Arm Swings in Artistic Gymnastics. Journal of Functional Morphology and Kinesiology. 2023; 8(1):10. https://doi.org/10.3390/jfmk8010010
Chicago/Turabian StyleMkaouer, Bessem, Hounaida Akkari-Ghazouani, Samiha Amara, Raja Bouguezzi, Monèm Jemni, and Helmi Chaabene. 2023. "Kinetic and Kinematic Analysis of Landing during Standing Back Somersault Using Three Technical Arm Swings in Artistic Gymnastics" Journal of Functional Morphology and Kinesiology 8, no. 1: 10. https://doi.org/10.3390/jfmk8010010
APA StyleMkaouer, B., Akkari-Ghazouani, H., Amara, S., Bouguezzi, R., Jemni, M., & Chaabene, H. (2023). Kinetic and Kinematic Analysis of Landing during Standing Back Somersault Using Three Technical Arm Swings in Artistic Gymnastics. Journal of Functional Morphology and Kinesiology, 8(1), 10. https://doi.org/10.3390/jfmk8010010