Evaluation of Influencing Factors on the Maximum Climbing Specific Holding Time: An Inferential Statistics and Machine Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Data Acquisition
2.2. General Measurement Procedure
2.3. Further Data Preparation and Calculations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MacKenzie, R.; Monaghan, L.; Masson, R.A.; Werner, A.K.; Caprez, T.S.; Johnston, L.; Kemi, O.J. Physical and Physiological Determinants of Rock Climbing. Int. J. Sports Physiol. Perform. 2020, 15, 168–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehhodin, S.N.; Abdullah, B.; Yusoff, A. Comparison Level of Handgrip Strength for the Three Categories among Male Athleteâs Artificial Wall Climbing and Factors WILL Affect. Int. J. Acad. Res. Bus. Soc. Sci. 2017, 7, 272–285. [Google Scholar] [CrossRef]
- Watts, P.B. Physiology of difficult rock climbing. Eur. J. Appl. Physiol. 2004, 91, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Bergua, P.; Montero-Marin, J.; Gomez-Bruton, A.; Casajús, J.A. Hanging ability in climbing: An approach by finger hangs on adjusted depth edges in advanced and elite sport climbers. Int. J. Perform. Anal. Sport 2018, 18, 437–450. [Google Scholar] [CrossRef]
- Jandl, D. Auswirkungen von Zwei Griffbrett-Trainingsprotokollen Auf Die Kraftentwicklung der Fingerbeugermuskulatur Beim Klettern. Diploma Thesis, Karl-Franzens-Universität Graz, Graz, Austria, 2021. [Google Scholar]
- Hahn, P.; Spies, C.; Unglaub, F.; Mühldorfer-Fodor, M. Die Messung der Griffkraft: Wertigkeit und Grenzen. Orthopade 2018, 47, 191–197. [Google Scholar] [CrossRef]
- Watts, P.B.; Martin, D.T.; Durtschi, S. Anthropometric profiles of elite male and female competitive sport rock climbers. J. Sports Sci. 1993, 11, 113–117. [Google Scholar] [CrossRef]
- Booth, J.; Marino, F.; Hill, C.; Gwinn, T. Energy cost of sport rock climbing in elite performers. Br. J. Sports Med. 1999, 33, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Watts, P.B.; Daggett, M.; Gallagher, P.; Wilkins, B. Metabolic response during sport rock climbing and the effects of active versus passive recovery. Int. J. Sports Med. 2000, 21, 185–190. [Google Scholar] [CrossRef]
- Chau, N.; Pétry, D.; Bourgkard, E.; Huguenin, P.; Remy, E.; André, J.M. Comparison between estimates of hand volume and hand strengths with sex and age with and without anthropometric data in healthy working people. Eur. J. Epidemiol. 1997, 13, 309–316. [Google Scholar] [CrossRef]
- Ekşioğlu, M. Normative static grip strength of population of Turkey, effects of various factors and a comparison with international norms. Appl. Ergon. 2016, 52, 8–17. [Google Scholar] [CrossRef]
- Baláš, J.; Pecha, O.; Martin, A.J.; Cochrane, D. Hand–arm strength and endurance as predictors of climbing performance. Eur. J. Sport Sci. 2012, 12, 16–25. [Google Scholar] [CrossRef]
- Teufl, W.; Taetz, B.; Miezal, M.; Dindorf, C.; Fröhlich, M.; Trinler, U.; Hogan, A.; Bleser, G. Automated detection and explainability of pathological gait patterns using a one-class support vector machine trained on inertial measurement unit based gait data. Clin. Biomech. 2021, 89, 105452. [Google Scholar] [CrossRef] [PubMed]
- Horst, F.; Lapuschkin, S.; Samek, W.; Müller, K.-R.; Schöllhorn, W.I. Explaining the unique nature of individual gait patterns with deep learning. Sci. Rep. 2019, 9, 2391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duh, Y.-S.; Chang, R. Recurrent Neural Network for MoonBoard Climbing Route Classification and Generation. arXiv 2021, arXiv:2102.01788. [Google Scholar]
- Ambrasat, J.; Schupp, J. Handgreifkraftmessung im Sozio-Oekonomischen Panel (SOEP) 2006 und 2008; Deutsches Institut für Wirtschaftsforschung (DIW Berlin): Berlin, Germany, 2011. [Google Scholar]
- Mathiowetz, V.; Weber, K.; Volland, G.; Kashman, N. Reliability and validity of grip and pinch strength evaluations. J. Hand Surg. 1984, 9, 222–226. [Google Scholar] [CrossRef]
- Amca, A.M.; Vigouroux, L.; Aritan, S.; Berton, E. The effect of chalk on the finger-hold friction coefficient in rock climbing. Sports Biomech. 2012, 11, 473–479. [Google Scholar] [CrossRef]
- Robertson, R.J. Perceived Exertion for Practitioners: Rating Effort with the OMNI Picture System; Human Kinetics: Leeds, UK, 2004; ISBN 9780736048378. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Grant, S.; Hynes, V.; Whittaker, A.; Aitchison, T. Anthropometric, strength, endurance and flexibility characteristics of elite and recreational climbers. J. Sports Sci. 1996, 14, 301–309. [Google Scholar] [CrossRef]
- Gürer, B.; Yıldız, M.E. Investigation of Sport Rock Climbers’ Handgrip Strength. J. Biol. Exerc. 2015, 11, 55–71. [Google Scholar] [CrossRef] [Green Version]
- Watts, P.; Jensen, R.; Gannon, E.; Kobeinia, R.; Maynard, J.; Sansom, J. Forearm EMG During Rock Climbing Differs from EMG During Handgrip Dynamometry. Int. J. Exerc. Sci. 2008, 1, 4–13. [Google Scholar]
- Pratt, J.; De Vito, G.; Narici, M.; Segurado, R.; Dolan, J.; Conroy, J.; Boreham, C. Grip strength performance from 9431 participants of the GenoFit study: Normative data and associated factors. GeroScience 2021, 43, 2533–2546. [Google Scholar] [CrossRef] [PubMed]
- Mermier, C.M.; Janot, J.M.; Parker, D.L.; Swan, J.G. Physiological and anthropometric determinants of sport climbing performance. Br. J. Sports Med. 2000, 34, 359–365. [Google Scholar] [CrossRef]
- Herman-Dunphy, D.; King, D.L. The Effects of Modern Climbing Holds on the Finger Forces. Int. J. Exerc. Sci. 2017, 9, 46. [Google Scholar]
- Stefan, R.R.; Camic, C.L.; Miles, G.F.; Kovacs, A.J.; Jagim, A.R.; Hill, C.M. Relative Contributions of Handgrip and Individual Finger Strength on Climbing Performance in a Bouldering Competition. Int. J. Sports Physiol. Perform. 2022, 17, 768–773. [Google Scholar] [CrossRef]
- Molenaar, L. Performance of General Classification Riders on a Final Climb in Professional Road Cycling: What Can Be Predicted and What Does Influence Performance? Diploma Thesis, University of Groningen, Groningen, The Netherlands, 2020. [Google Scholar]
- Gonzales, J.U.; Scheuermann, B.W. Absence of gender differences in the fatigability of the forearm muscles during intermittent isometric handgrip exercise. J. Sports Sci. Med. 2007, 6, 98–105. [Google Scholar]
- Langer, K.; Simon, C.; Wiemeyer, J. Strength Training in Climbing: A Systematic Review. J. Strength Cond. Res. 2022. Publish Ahead of Print. [Google Scholar] [CrossRef]
- Medernach, J.P.; Kleinöder, H.; Lötzerich, H.H.H. Effect of interval bouldering on hanging and climbing time to exhaustion. Sports Technol. 2015, 8, 76–82. [Google Scholar] [CrossRef]
- Baláš, J.; MrskoČ, J.; PanáČková, M.; Draper, N. Sport-specific finger flexor strength assessment using electronic scales in sport climbers. Sports Technol. 2014, 7, 151–158. [Google Scholar] [CrossRef]
- Lutter, C.; El-Sheikh, Y.; Schöffl, I.; Schöffl, V. Sport climbing: Medical considerations for this new Olympic discipline. Br. J. Sports Med. 2017, 51, 2–3. [Google Scholar] [CrossRef]
Variable | Description |
---|---|
Gender Height Weight Muscle mass Body fat Lean leg mass | General anthropometric measurements |
HGS dH HGS ndH | Hand grip strength (HGS) measured using hand dynamometer |
HGS dH/kg HGS ndH/kg | HGS values normalized by subject weight |
Rating HGS everyday Rating HGS activities Rating CSHT | Subjective ratings (see description in Section 2.2) |
Forearm circumference ndH Forearm circumference dH Upper arm circumference ndH Upper arm circumference dH | Forearm and upper arm perimeters |
Length 2 ndH Length 3 ndH Length 4 ndH Length 5 ndH Length 2 dH Length 3 dH Length 4 dH Length 5 dH | Individual finger length: 2 represents the index finger, 5 the little finger |
n pull-ups | Maximal number of pull-ups |
CSHT | Climbing-specific holding time, measured performing dead hang on finger board |
ndH R2corr = 0.63 | dH R2corr = 0.55 | |||||||
---|---|---|---|---|---|---|---|---|
Predictors | B | β | SER | p | B | β | SER | p |
Constant | 60.94 | - | 18.82 | 0.002 | 66.84 | - | 21.45 | 0.003 |
Weight | −0.47 | −0.35 | 0.15 | 0.003 | −0.44 | −0.33 | 0.17 | 0.013 |
Number of pull-ups | 1.17 | 0.35 | 0.41 | 0.006 | 1.63 | 0.49 | 0.43 | 0.000 |
HGS/kg | 33.66 | 0.55 | 7.31 | 0.000 | 22.74 | 0.39 | 7.33 | 0.003 |
Length 3 (middle finger length) | −7.38 | −0.31 | 2.83 | 0.013 | −7.15 | −0.30 | 3.27 | 0.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dindorf, C.; Bartaguiz, E.; Dully, J.; Sprenger, M.; Merk, A.; Becker, S.; Fröhlich, M.; Ludwig, O. Evaluation of Influencing Factors on the Maximum Climbing Specific Holding Time: An Inferential Statistics and Machine Learning Approach. J. Funct. Morphol. Kinesiol. 2022, 7, 95. https://doi.org/10.3390/jfmk7040095
Dindorf C, Bartaguiz E, Dully J, Sprenger M, Merk A, Becker S, Fröhlich M, Ludwig O. Evaluation of Influencing Factors on the Maximum Climbing Specific Holding Time: An Inferential Statistics and Machine Learning Approach. Journal of Functional Morphology and Kinesiology. 2022; 7(4):95. https://doi.org/10.3390/jfmk7040095
Chicago/Turabian StyleDindorf, Carlo, Eva Bartaguiz, Jonas Dully, Max Sprenger, Anna Merk, Stephan Becker, Michael Fröhlich, and Oliver Ludwig. 2022. "Evaluation of Influencing Factors on the Maximum Climbing Specific Holding Time: An Inferential Statistics and Machine Learning Approach" Journal of Functional Morphology and Kinesiology 7, no. 4: 95. https://doi.org/10.3390/jfmk7040095
APA StyleDindorf, C., Bartaguiz, E., Dully, J., Sprenger, M., Merk, A., Becker, S., Fröhlich, M., & Ludwig, O. (2022). Evaluation of Influencing Factors on the Maximum Climbing Specific Holding Time: An Inferential Statistics and Machine Learning Approach. Journal of Functional Morphology and Kinesiology, 7(4), 95. https://doi.org/10.3390/jfmk7040095