Downhill Sections Are Crucial for Performance in Trail Running Ultramarathons—A Pacing Strategy Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Race and Athletes’ Data
2.2. Data Analysis
2.3. Statistics
3. Results
3.1. Full Dataset
3.2. Elite Men and Women
4. Discussion
4.1. Full Dataset
4.2. Top 10 Men and Women
5. Conclusions
6. Limitations
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stöhr, A.; Nikolaidis, P.T.; Villiger, E.; Sousa, C.V.; Scheer, V.; Hill, L.; Knechtle, B. An analysis of participation and performance of 2067 100-km ultra-marathons worldwide. Int. J. Environ. Res. Public Health 2021, 18, 362. [Google Scholar] [CrossRef] [PubMed]
- Scheer, V.; Basset, P.; Giovanelli, N.; Vernillo, G.; Millet, G.P.; Costa, R.J. Defining off-road running: A position statement from the Ultra Sports Science Foundation. Int. J. Sport. Med. 2020, 41, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Vernillo, G.; Giandolini, M.; Edwards, W.B.; Morin, J.B.; Samozino, P.; Horvais, N.; Millet, G.Y. Biomechanics and physiology of uphill and downhill running. Sport. Med. 2017, 47, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Swanson, S.C.; Caldwell, G.E. An integrated biomechanical analysis of high speed incline and level treadmill running. Med. Sci. Sport. Exerc. 2000, 32, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.J.; Belliveau, R.A. Sources of mechanical power for uphill running in humans. J. Exp. Biol. 2005, 208, 1963–1970. [Google Scholar] [CrossRef] [Green Version]
- DeVita, P.; Janshen, L.; Rider, P.; Solnik, S.; Hortobágyi, T. Muscle work is biased toward energy generation over dissipation in non-level running. J. Biomech. 2008, 41, 3354–3359. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.; Bigland, B.; Ritchie, J. The physiological cost of negative work. J. Physiol. 1952, 117, 380–390. [Google Scholar] [CrossRef]
- Di Prampero, P.; Atchou, G.; Brückner, J.C.; Moia, C. The energetics of endurance running. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 55, 259–266. [Google Scholar] [CrossRef]
- Minetti, A.E.; Moia, C.; Roi, G.S.; Susta, D.; Ferretti, G. Energy cost of walking and running at extreme uphill and downhill slopes. J. Appl. Physiol. 2002, 93, 1039–1046. [Google Scholar] [CrossRef] [Green Version]
- Minetti, A.; Ardigo, L.; Saibene, F. Mechanical determinants of the minimum energy cost of gradient running in humans. J. Exp. Biol. 1994, 195, 211–225. [Google Scholar] [CrossRef]
- Snyder, K.L.; Kram, R.; Gottschall, J.S. The role of elastic energy storage and recovery in downhill and uphill running. J. Exp. Biol. 2012, 215, 2283–2287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbiss, C.R.; Laursen, P.B. Describing and understanding pacing strategies during athletic competition. Sport. Med. 2008, 38, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Bossi, A.H.; Matta, G.G.; Millet, G.Y.; Lima, P.; Pertence, L.C.; de Lima, J.P.; Hopker, J.G. Pacing strategy during 24-hour ultramarathon-distance running. Int. J. Sport. Physiol. Perform. 2017, 12, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.D. Pacing by winners of a 161-km mountain ultramarathon. Int. J. Sport. Physiol. Perform. 2014, 9, 1054–1056. [Google Scholar] [CrossRef]
- Inoue, A.; Santos, T.M.; Hettinga, F.J.; Alves, D.d.S.; Viana, B.F.; Terra, B.d.S.; Pires, F.O. The impact of sex and performance level on pacing behavior in a 24-h Ultramarathon. Front. Sport. Act. Living 2019, 1, 57. [Google Scholar] [CrossRef] [Green Version]
- Kerhervé, H.A.; Cole-Hunter, T.; Wiegand, A.N.; Solomon, C. Pacing during an ultramarathon running event in hilly terrain. PeerJ 2016, 4, e2591. [Google Scholar] [CrossRef] [Green Version]
- Lambert, M.I.; Dugas, J.P.; Kirkman, M.C.; Mokone, G.G.; Waldeck, M.R. Changes in running speeds in a 100 km ultra-marathon race. J. Sport. Sci. Med. 2004, 3, 167. [Google Scholar]
- Renfree, A.; Crivoi do Carmo, E.; Martin, L. The influence of performance level, age and gender on pacing strategy during a 100-km ultramarathon. Eur. J. Sport Sci. 2016, 16, 409–415. [Google Scholar] [CrossRef]
- Tan, P.L.; Tan, F.H.; Bosch, A.N. Similarities and differences in pacing patterns in a 161-km and 101-km ultra-distance road race. J. Strength Cond. Res. 2016, 30, 2145–2155. [Google Scholar] [CrossRef]
- Chatzakis, P.; Paradisis, G.; Chryssanthopoulos, C.; Zacharogiannis, E. Effect of performance standard and sex on 24 h ultra-marathon pacing profiles. J. Sport. Anal. 2021, 7, 247–253. [Google Scholar] [CrossRef]
- Suter, D.; Sousa, C.V.; Hill, L.; Scheer, V.; Nikolaidis, P.T.; Knechtle, B. Even Pacing Is Associated with Faster Finishing Times in Ultramarathon Distance Trail Running—The “Ultra-Trail du Mont Blanc” 2008–2019. Int. J. Environ. Res. Public Health 2020, 17, 7074. [Google Scholar] [CrossRef] [PubMed]
- March, D.S.; Vanderburgh, P.M.; Titlebaum, P.J.; Hoops, M.L. Age, sex, and finish time as determinants of pacing in the marathon. J. Strength Cond. Res. 2011, 25, 386–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deaner, R.O. Distance running as an ideal domain for showing a sex difference in competitiveness. Arch. Sex. Behav. 2013, 42, 413–428. [Google Scholar] [CrossRef]
- Trubee, N.W.; Vanderburgh, P.M.; Diestelkamp, W.S.; Jackson, K.J. Effects of heat stress and sex on pacing in marathon runners. J. Strength Cond. Res. 2014, 28, 1673–1678. [Google Scholar] [CrossRef]
- Eichenberger, E.; Knechtle, B.; Rüst, C.A.; Rosemann, T.; Lepers, R. Age and sex interactions in mountain ultramarathon running–the Swiss Alpine Marathon. Open Access J. Sport. Med. 2012, 3, 73. [Google Scholar]
- Hoffman, M.D.; Wegelin, J.A. The Western States 100-mile endurance run: Participation and performance trends. Med. Sci. Sport. Exerc. 2009, 41, 2191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knechtle, B.; Valeri, F.; Zingg, M.A.; Rosemann, T.; Rüst, C.A. What is the age for the fastest ultra-marathon performance in time-limited races from 6 h to 10 days? Age 2014, 36, 9715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knechtle, B.; Rosemann, T.; Zingg, M.A.; Stiefel, M.; Rüst, C.A. Pacing strategy in male elite and age group 100 km ultra-marathoners. Open Access J. Sport. Med. 2015, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Piccinini, P.; Arvaniti, A. Voice onset time in Spanish–English spontaneous code-switching. J. Phon. 2015, 52, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Piccinini, P.; Arvaniti, A. Dominance, mode, and individual variation in bilingual speech production and perception. Linguist. Approaches Biling. 2019, 9, 628–658. [Google Scholar] [CrossRef] [Green Version]
- Deaner, R.O.; Carter, R.E.; Joyner, M.J.; Hunter, S.K. Men are more likely than women to slow in the marathon. Med. Sci. Sport. Exerc. 2015, 47, 607. [Google Scholar] [CrossRef] [PubMed]
- Laursen, P.B.; Knez, W.L.; Shing, C.M.; Langill, R.H.; Rhodes, E.C.; Jenkins, D.G. Relationship between laboratory-measured variables and heart rate during an ultra-endurance triathlon. J. Sport. Sci. 2005, 23, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Laursen, P.B.; Suriano, R.; Quod, M.J.; Lee, H.; Abbiss, C.R.; Nosaka, K.; Martin, D.T.; Bishop, D. Core temperature and hydration status during an Ironman triathlon. Br. J. Sport. Med. 2006, 40, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Rauch, H.; Gibson, A.S.C.; Lambert, E.; Noakes, T. A signalling role for muscle glycogen in the regulation of pace during prolonged exercise. Br. J. Sport. Med. 2005, 39, 34–38. [Google Scholar] [CrossRef]
- Coyle, E.F.; Coggan, A.R. Effectiveness of carbohydrate feeding in delaying fatigue during prolonged exercise. Sport. Med. 1984, 1, 446–458. [Google Scholar] [CrossRef]
- O’toole, M.; Douglas, P.; Hiller, W. Use of heart rate monitors by endurance athletes: Lessons from triathletes. J. Sport. Med. Phys. Fit. 1998, 38, 181–187. [Google Scholar]
- Neumayr, G.; Pfister, R.; Mitterbauer, G.; Maurer, A.; Hoertnagl, H. Effect of ultramarathon cycling on the heart rate in elite cyclists. Br. J. Sport. Med. 2004, 38, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Laursen, P.B.; Rhodes, E.C. Factors affecting performance in an ultraendurance triathlon. Sport. Med. 2001, 31, 195–209. [Google Scholar] [CrossRef]
- Abbiss, C.R.; Laursen, P.B. Models to explain fatigue during prolonged endurance cycling. Sport. Med. 2005, 35, 865–898. [Google Scholar] [CrossRef]
- Gibson, A.S.C.; Baden, D.A.; Lambert, M.I.; Lambert, E.V.; Harley, Y.X.; Hampson, D.; Russell, V.A.; Noakes, T.D. The conscious perception of the sensation of fatigue. Sport. Med. 2003, 33, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Bontemps, B.; Vercruyssen, F.; Gruet, M.; Louis, J. Downhill running: What are the effects and how can we adapt? A narrative review. Sport. Med. 2020, 50, 2083–2110. [Google Scholar] [CrossRef] [PubMed]
- Kay, A. Importance of descending skill for performance in fell races: A statistical analysis of race results. J. Quant. Anal. Sport. 2014, 10, 173–181. [Google Scholar] [CrossRef]
- Cuk, I.; Nikolaidis, P.T.; Markovic, S.; Knechtle, B. Age differences in pacing in endurance running: Comparison between marathon and half-marathon Men and Women. Medicina 2019, 55, 479. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, P.T.; Knechtle, B. Pacing strategies in the ‘Athens classic marathon’: Physiological and psychological aspects. Front. Physiol. 2018, 9, 1539. [Google Scholar] [CrossRef]
- Cheuvront, S.N.; Carter, R.; DeRuisseau, K.C.; Moffatt, R.J. Running performance differences between men and women. Sport. Med. 2005, 35, 1017–1024. [Google Scholar] [CrossRef]
- Lynch, S.L.; Hoch, A.Z. The female runner: Gender specifics. Clin. Sport. Med. 2010, 29, 477–498. [Google Scholar] [CrossRef]
- Martinez-Navarro, I.; Montoya-Vieco, A.; Collado, E.; Hernando, B.; Hernando, C. Ultra Trail Performance is Differently Predicted by Endurance Variables in Men and Women. Int. J. Sport. Med. 2020, 43, 600–607. [Google Scholar] [CrossRef]
- de Waal, S.J.; Gomez-Ezeiza, J.; Venter, R.E.; Lamberts, R.P. Physiological Indicators of Trail Running Performance: A Systematic Review. Int. J. Sport. Physiol. Perform. 2021, 1, 325–332. [Google Scholar] [CrossRef]
- Alvero-Cruz, J.R.; Parent Mathias, V.; Garcia Romero, J.; Carrillo de Albornoz-Gil, M.; Benítez Porres, J.; Ordoñez, F.J.; Rosemann, T.; Nikolaidis, P.T.; Knechtle, B. Prediction of performance in a short trail running race: The role of body composition. Front. Physiol. 2019, 10, 1306. [Google Scholar] [CrossRef]
- Bascuas, P.J.; Bataller-Cervero, A.V.; Gutierrez, H.; Berzosa, C. Modifications of viscoelastic properties and physiological parameters after performing uphill and downhill running trials. J. Sport. Med. Phys. Fit. 2020, 61, 625–635. [Google Scholar] [CrossRef] [PubMed]
Predictors | Estimates | SE | CI | p |
---|---|---|---|---|
performance level | 0.54 | 0.10 | 0.35–0.72 | <0.001 |
terrain | −57.03 | 0.10 | −57.22–−56.84 | <0.001 |
race half | −33.29 | 0.10 | −33.48–−33.10 | <0.001 |
performance level * terrain | 2.62 | 0.19 | 2.25–2.99 | <0.001 |
performance level * race half | −1.71 | 0.19 | −2.08–−1.34 | <0.001 |
terrain * race half | 24.46 | 0.20 | 24.06–24.85 | <0.001 |
performance level * terrain * race half | 3.07 | 0.38 | 2.32–3.81 | <0.001 |
Predictors | Estimates | SE | CI | p |
---|---|---|---|---|
performance level | −0.26 | 0.99 | −2.19–1.67 | 0.793 |
terrain | −48.43 | 1.01 | −50.40–−46.45 | <0.001 |
race half | −17.87 | 1.02 | −19.87–−15.88 | <0.001 |
performance level * terrain | 1.82 | 1.97 | −2.04–5.68 | 0.355 |
performance level * race half | −1.46 | 1.97 | −5.32–2.40 | 0.459 |
terrain * race half | 15.87 | 2.06 | 11.83–19.91 | <0.001 |
performance level * terrain * race half | 1.55 | 3.94 | −6.17–9.26 | 0.695 |
Predictors | Estimates | SE | CI | p |
---|---|---|---|---|
performance level | −0.18 | 1.02 | −2.18–1.83 | 0.864 |
terrain | −47.18 | 1.05 | −49.23–−45.13 | <0.001 |
race half | −22.37 | 1.06 | −24.45–−20.29 | <0.001 |
performance level * terrain | 0.33 | 2.05 | −3.69–4.34 | 0.874 |
performance level * race half | −2.45 | 2.05 | −6.47–1.56 | 0.231 |
terrain * race half | 20.04 | 2.14 | 15.84–24.24 | <0.001 |
performance level * terrain * race half | −1.43 | 4.10 | −9.46–6.60 | 0.727 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genitrini, M.; Fritz, J.; Zimmermann, G.; Schwameder, H. Downhill Sections Are Crucial for Performance in Trail Running Ultramarathons—A Pacing Strategy Analysis. J. Funct. Morphol. Kinesiol. 2022, 7, 103. https://doi.org/10.3390/jfmk7040103
Genitrini M, Fritz J, Zimmermann G, Schwameder H. Downhill Sections Are Crucial for Performance in Trail Running Ultramarathons—A Pacing Strategy Analysis. Journal of Functional Morphology and Kinesiology. 2022; 7(4):103. https://doi.org/10.3390/jfmk7040103
Chicago/Turabian StyleGenitrini, Matteo, Julian Fritz, Georg Zimmermann, and Hermann Schwameder. 2022. "Downhill Sections Are Crucial for Performance in Trail Running Ultramarathons—A Pacing Strategy Analysis" Journal of Functional Morphology and Kinesiology 7, no. 4: 103. https://doi.org/10.3390/jfmk7040103
APA StyleGenitrini, M., Fritz, J., Zimmermann, G., & Schwameder, H. (2022). Downhill Sections Are Crucial for Performance in Trail Running Ultramarathons—A Pacing Strategy Analysis. Journal of Functional Morphology and Kinesiology, 7(4), 103. https://doi.org/10.3390/jfmk7040103