Training Specificity for Athletes: Emphasis on Strength-Power Training: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Specificity
4. Effects of Maximum Strength
5. Effects of Volume
6. Training to Failure
7. Equalizing Work
8. Summary and Conclusion Strength-Endurance Section
- Higher repetitions per set produce higher metabolic stress driving potential metabolic alterations resulting in greater HIEE and expanded work capacity
- The potential for better recovery as a result of the greater metabolic alterations with higher repetitions per set
- The continuum is ecologically sound
- The continuum provides part of the basis for periodization protocols [32]
- 2.
- Dynamic Correspondence (DC)
- (1)
- amplitude and direction of movements,
- (2)
- accentuated regions of force production,
- (3)
- dynamics of effort,
- (4)
- rate and timing of maximum force production, and
- (5)
- arrangement of muscular work.
9. Amplitude and Direction of Movement
10. Accentuated Regions of Force Production
11. Dynamics of Effort
12. Rate and Time of Maximum Force Production
13. Regime of Muscular Work
14. Additional Considerations
15. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, C.C.; Stone, M.H.; Lopez, S.A.; Herbert, J.A.; Kilgore, L.T.; Byrd, R.J. Diet and exercise in middle-aged men. J. Am. Diet. Assoc. 1982, 81, 695–701. [Google Scholar] [CrossRef]
- Johnson, C.C.; Stone, M.H.; Byrd, R.J.; Lopez, S.A. The response of serum lipids and plasma androgens to weight training exercise in sedentary males. J. Sport. Med. Phys. Fit. 1983, 23, 39–41. [Google Scholar]
- Morris, S.J.; Oliver, J.L.; Pedley, J.S.; Haff, G.G.; Lloyd, R.S. Comparison of Weightlifting, Traditional Resistance Training and Plyometrics on Strength, Power and Speed: A Systematic Review with Meta-Analysis. Sport. Med. 2022, 52, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- Shailendra, P.; Baldock, K.L.; Li, L.S.K.; Bennie, J.A.; Boyle, T. Resistance Training and Mortality Risk: A Systematic Review and Meta-Analysis. Am. J. Prev. Med. 2022, 63, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.H.; Fleck, S.J.; Kraemer, W.J.; Triplett, N.T. Health and performance related adaptations to resistive training. Sport. Med. 1991, 11, 210–231. [Google Scholar] [CrossRef] [PubMed]
- Styles, W.J.; Matthews, M.J.; Comfort, P. Effects of Strength Training on Squat and Sprint Performance in Soccer Players. J. Strength Cond. Res. 2016, 30, 1534–1539. [Google Scholar] [CrossRef]
- Zwolski, C.; Quatman-Yates, C.; Paterno, M.V. Resistance Training in Youth: Laying the Foundation for Injury Prevention and Physical Literacy. Sport. Health 2017, 9, 436–443. [Google Scholar] [CrossRef] [Green Version]
- James, L.P.; Suchomel, T.J.; Comfort, P.; Haff, G.G.; Connick, M.J. Rate of Force Development Adaptations After Weightlifting-Style Training: The Influence of Power Clean Ability. J. Strength Cond. Res. 2022, 36, 1560–1567. [Google Scholar] [CrossRef]
- McGee, D.; Jesse, T.C.; Stone, M.H.; Blessing, D. Leg and hip endurance adaptations to three different weight training programs. J. Appl. Sport. Sci. Res. 1992, 6, 92–95. [Google Scholar]
- McQuilliam, S.J.; Clark, D.R.; Erskine, R.M.; Brownlee, T.E. Free-Weight Resistance Training in Youth Athletes: A Narrative Review. Sport. Med. 2020, 50, 1567–1580. [Google Scholar] [CrossRef]
- O’Bryant Harold, S.; Byrd, R.; Michael, H.S. Cycle ergometer performance and maximum leg and hip strength adaptations to two different methods of weight-training. J. Strength Cond. Res. 1988, 2, 27–30. [Google Scholar]
- Paavolainen, L.; Hakkinen, K.; Hamalainen, I.; Nummela, A.; Rusko, H. Explosive strength-training improves 5-km running time by improving running economy and muscle power. J. Appl. Physiol. 1999, 86, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.M.; Stone, M.H.; Johnson, R.L.; Penland, C.M.; Warren, B.J.; Lewis, R.D. Effects of different weight training intervals on strength, power and high intensity exercise endurance. J. Strength Cond. Res. 1995, 9, 216–221. [Google Scholar]
- Bolger, R.; Lyons, M.; Harrison, A.J.; Kenny, I.C. Sprinting performance and resistance-based training interventions: A systematic review. J. Strength Cond. Res. 2015, 29, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Carroll, K.M.; Bernards, J.R.; Bazyler, C.D.; Taber, C.B.; Stuart, C.A.; DeWeese, B.H.; Sato, K.; Stone, M.H. Divergent performance outcomes following resistance training using repetition maximums or relative intensity. Int. J. Sport. Physiol. Perform. 2019, 14, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Harris, G.R.; Stone, M.H.; O’Bryant, H.; Proulx, C.M.; Johnson, R. Short term performance effects of high speed, high force and combined weight training. J. Strength Cond. Res. 2000, 14, 14–20. [Google Scholar]
- Seitz, L.B.; Reyes, A.; Tran, T.T.; de Villarreal, E.S.; Haff, G.G. Increases in lower-body strength transfer positively to sprint performance: A systematic review with meta-analysis. Sport. Med. 2014, 44, 1693–1702. [Google Scholar] [CrossRef]
- Speranza, M.J.; Gabbett, T.J.; Johnston, R.D.; Sheppard, J.M. Effect of Strength and Power Training on Tackling Ability in Semiprofessional Rugby League Players. J. Strength Cond. Res. 2016, 30, 336–343. [Google Scholar] [CrossRef]
- Wilson, G.J.; Newton, R.U.; Murphy, A.J.; Humphries, B.J. The optimal training load for the development of dynamic athletic performance. Med. Sci. Sport. Exerc. 1993, 25, 1279–1286. [Google Scholar] [CrossRef]
- Asfour, S.S.; Ayoub, M.M.; Mital, A. Effects of an endurance and strength training programme on lifting capability of males. Ergonomics 1984, 27, 435–442. [Google Scholar] [CrossRef]
- Genaidy, A.; Davis, N.; Delgado, E.; Garcia, S.; AlHerzalla, E. Effects of a job-simulated exercise programme on employees performing manual handling operations. Ergonomics 1994, 37, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Carroll, K.M.; Bazyler, C.D.; Bernards, J.R.; Taber, C.B.; Stuart, C.A.; DeWeese, B.H.; Sato, K.; Stone, M.H. Skeletal Muscle Fiber Adaptations Following Resistance Training Using Repetition Maximums or Relative Intensity. Sports 2019, 7, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Travis, S.K.; Ishida, A.; Taber, C.B.; Fry, A.C.; Stone, M.H. Emphasizing Task-Specific hypertrophy to enhance sequential strength and power performance. J. Funct. Morphol. Kinesiol. 2020, 5, 76. [Google Scholar] [CrossRef] [PubMed]
- Conroy, B.P.; Kraemer, W.J.; Maresh, C.M.; Dalsky, G.P.; Fleck, S.J.; Stone, M.H.; Fry, A.C.; Cooper, P. Bone mineral density in weightlifters. Med. Sci. Sport. Exerc. 1993, 25, 1103–1109. [Google Scholar] [CrossRef]
- Holloway, T.M.; Morton, R.W.; Oikawa, S.Y.; McKellar, S.; Baker, S.K.; Phillips, S.M. Microvascular adaptations to resistance training are independent of load in resistance-trained young men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R267–R273. [Google Scholar] [CrossRef]
- McMillan, J.; Stone, M.H.; Sartain, J.; Marple, D.; Keith, R.E.; Lewis, D.; Brown, C. The 20-hr hormonal response to a single session of weight-training. J. Strength Cond. Res. 1993, 7, 51–54. [Google Scholar]
- Poehlman, E.T.; Gardner, A.W.; Ades, P.A.; Katzman-Rooks, S.M. Resting energy metabolism and cardiovascular disease risk in resistance-trained and aerobically trained males. Metab. Clin. Exp. 1992, 41, 1351–1360. [Google Scholar] [CrossRef]
- Stone, M.H.; Wilson, G.D.; Blessing, D.; Rozenek, R. Cardiovascular responses to short-term Olympic style weight-training in young men. Can. J. Appl. Sport. Sci. Res. 1983, 8, 134–139. [Google Scholar]
- Bauer, P.; Uebellacker, F.; Mitter, B.; Aigner, A.J.; Hasenoehrl, T.; Ristl, R.; Tschan, H.; Seitz, L.B. Combining higher-load and lower-load resistance training exercises: A systematic review and meta-analysis of findings from complex training studies. J. Sci. Med. Sport 2019, 22, 838–851. [Google Scholar] [CrossRef]
- Garhammer, J. Sports Illustrated Strength Training; Time Inc.: New York, NY, USA, 1986. [Google Scholar]
- Stone, M.H.; Plisk, S.; Stone, M.E.; Schilling, B.; O’Bryant, H.S.; Pierce, K.C. Athletic performance development: Volume load—1 set vs. multiple sets, training velocity and training variation. Strength Cond. 1998, 20, 22–31. [Google Scholar] [CrossRef]
- Stone, M.H.; Hornsby, W.G.; Haff, G.G.; Fry, A.C.; Suarez DGLiu, J.; Gonzalez-Rave, J.M.; Pierce, K.C. Periodization and Block Periodization in Sports: Emphasis on strength-power training: A provocative and challenging narrative. J. Strength Cond. Res. 2021, 35, 2351–2371. [Google Scholar] [CrossRef] [PubMed]
- Tibana, R.A.; Franco, O.L.; Cunha, G.V.; Sousa, N.M.F.; Sousa Neto, I.V.; Carvalho, M.M.; Almeida, J.A.; Durigan, J.L.Q.; Marqueti, R.C.; Navalta, J.W.; et al. The Effects of Resistance Training Volume on Skeletal Muscle Proteome. Int. J. Exerc. Sci. 2017, 10, 1051. [Google Scholar] [PubMed]
- Amirthalingam, T.; Mavros, Y.; Wilson, G.C.; Clarke, J.L.; Mitchell, L.; Hackett, D.A. Effects of a Modified German Volume Training Program on Muscular Hypertrophy and Strength. J. Strength Cond. Res. 2017, 31, 3109–3119. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, V.C.; de Salles, B.F.; Trajano, G.S. Volume for Muscle Hypertrophy and Health Outcomes: The Most Effective Variable in Resistance Training. Sport. Med. 2018, 48, 499–505. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J. Sports Sci. 2017, 35, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Carraro, A.; Paoli, A.; Gobbi, E. Affective response to acute resistance exercise: A comparison among machines and free weights. Sport Sci. Health 2018, 14, 283–288. [Google Scholar] [CrossRef]
- Stone, M.H.; Plisk, S.; Collins, D. Training Principles: Evaluation of modes and methods of resistance training—A coaching perspective. Sports Biomech. 2002, 1, 79–104. [Google Scholar] [CrossRef]
- Wirth, K.; Keiner, M.; Hartmann, H.; Sander, A.; Mickel, C. Effect of 8 weeks of free-weight and machine-based strength training on strength and power performance. J. Hum. Kinet. 2016, 53, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Hawley, J.A. Specificity of training adaptation: Time for a rethink? J. Physiol. 2008, 586 Pt 1, 1–2. [Google Scholar] [CrossRef]
- Häkkinen, K.; Keskinen, K.L. Muscle cross-sectional area and voluntary force production characteristics in elite strength- and endurance-trained athletes and sprinters. Eur. J. Appl. Physiol. 1989, 59, 215–220. [Google Scholar] [CrossRef]
- Izquierdo, M.; Häkkinen, K.; Gonzalez-Badillo, J.J.; Ibanez, J.; Gorostiaga, E.M. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur. J. Appl. Physiol. 2002, 87, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, C.; Simeonidis, T.; Georginis, P.; Cherouveim, E.; Methenitis, S.; Koulouvaris, P. The effect of gender, age and sports specialisation on isometric trunk strength in Greek high level young athletes. Sports Biomech. 2020, 1–15. [Google Scholar] [CrossRef] [PubMed]
- McBride, J.M.; Triplett-McBride, T.; Davie, A.; Newton, R.U. A comparison of strength and power characteristics between power lifters, Olympic lifters, and sprinters. J. Strength Cond. Res. 1999, 13, 58–66. [Google Scholar]
- Methenitis, S.; Spengos, K.; Zaras, N.; Stasinaki, A.N.; Papadimas, G.; Karampatsos, G.; Arnaoutis, G.; Terzis, G. Fiber type composition and rate of force development in endurance-and resistance-trained individuals. J. Strength Cond. Res. 2019, 33, 2388–2397. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.H.; O’Bryant, H.S.; McCoy, L.; Coglianese, R.; Lehmkuhl, M.; Schilling, B. Power and maximum strength relationships during performance of dynamic and static weighted jumps. J. Strength Cond. Res. 2003, 17, 140–147. [Google Scholar] [PubMed]
- Baar, K. Using molecular biology to maximize concurrent training. Sports Med. 2014, 44, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Nader, G.A. Concurrent strength and endurance training: From molecules to man. Med. Sci. Sports Exerc. 2006, 38, 1965–1970. [Google Scholar] [CrossRef] [Green Version]
- Methenitis, S. A brief review on concurrent training: From laboratory to the field. Sports 2018, 6, 127. [Google Scholar] [CrossRef]
- Suarez, D.G.; Wagle, J.P.; Cunanan, A.J.; Sausaman, R.W.; Stone, M.H. Dynamic correspondence of resistance training to sport: A brief review. Strength Cond. J. 2019, 41, 80–88. [Google Scholar] [CrossRef]
- Brearley, S.; Bishop, C. Transfer of training: How specific should we be? Strength Cond. J. 2019, 41, 97–109. [Google Scholar] [CrossRef]
- Anderson, T.; Kearney, J.T. Effects of three resistance training programs on muscular strength and absolute and relative endurance. Res. Quart. Exerc. Sport 1982, 53, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Campos, G.E.; Luecke, T.J.; Wendeln, H.K.; Toma, K.; Hagerman, F.C.; Murray, T.F.; Ragg, K.E.; Ratamess, N.A.; Kraemer, W.J.; Staron, R.S. Muscular adaptations in response to three different resistance-training regimens: Specificity of repetition maximum training zones. Eur. J. Appl. Physiol. 2002, 8, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Hackett, D.A.; Ghayomzadeh, M.; Farrell, S.N.; Davies, T.B.; Sabag, A. Influence of total repetitions per set on local muscular endurance: A systematic review with meta-analysis and meta-regression. Sci. Sports 2022, 37, 405–420. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Peterson, M.D.; Ogborn, D.; Contreras, B.; Son-mez, G.T. Effects of low- versus high-load resistance training on muscle strength and hypertrophy in well-trained men. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2015, 29, 2954–2963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, M.H.; O’Bryant, H. Weight Training: A Scientific Approach, 2nd ed.; Burgess Publishing: Minneapolis, MN, USA, 1987. [Google Scholar]
- Stone, W.J.; Coulter, S.P. Strength/endurance effects from three resistance training protocols with women. J. Strength Cond. Res. 1994, 8, 231–234. [Google Scholar]
- Schoenfeld, B.J.; Grgic, J.; Van Every, D.W.; Plotkin, D.L. Loading Recommendations for Muscle Strength, Hypertrophy, and Local Endurance: A Re-Examination of the Repetition Continuum. Sports 2021, 9, 32. [Google Scholar] [CrossRef]
- Hornsby, W.G.; Gentles, J.A.; MacDonald, C.J.; Mizuguchi, S.; Ramsey, M.W.; Stone, M.H. Maximum Strength, Rate of Force Development, Jump Height, and Peak Power Alterations in Weightlifters across Five Months of Training. Sports 2017, 5, 78. [Google Scholar] [CrossRef] [Green Version]
- Hornsby, W.G.; Haff, G.G.; Sands, W.A.; Ramsey, M.W.; Beckham, G.K.; Stone, M.E.; Stone, M.H. Alterations in strength characteristics for isometric and dynamic mid-thigh pulls in collegiate throwers across 11 weeks of training. Gazzata Med. Ital. 2013, 172, 929–940. [Google Scholar]
- Stone, M.H.; O’Bryant, H.S.; Hornsby, G.; Cunanan, A.; Mizuguchi, S.; Suarez, D.G.; South, M.; Marsh, D.J.; Haff, G.G.; Ramsey, M.W.; et al. The Use of the Isometric Mid-thigh Pull in the Monitoring of Weightlifters: 25+ Years of Experience. UKSCA J. Prof. Strength Cond. 2019, 54, 10–26. [Google Scholar]
- Painter, K.B.; Rodríguez-Castellano, L.; Stone, M.H.; Rodríguez, L. High Volume Resistance Training and its Effects on Anaerobic Work Capacities Over Time: A Review. Sport J. 2020. Available online: https://www.researchgate.net/profile/Keith-Painter/publication/339746743_High_Volume_Resistance_Training_and_its_Effects_on_Anaerobic_Work_Capacities_Over_Time_A_Review/links/5e62543e299bf1744f62db94/High-Volume-Resistance-Training-and-its-Effects-on-Anaerobic-Work-Capacities-Over-Time-A-Review.pdf (accessed on 11 October 2022).
- Crewther, B.; Cronin JKeog, J.; Cook, C. The Salivary Testosterone and Cortisol Response to Three Loading Schemes. J. Strength Cond. Res. 2008, 22, 250–255. [Google Scholar] [CrossRef]
- Haff, G.G.; JRJackson, J.R.; Kawamori, N.; Carlock, J.M.; Hartman MJKilgore JLMorris, R.T.; Ramsey, M.W.; Sands, W.A.; Stone, M.H. Force-Time Curve Characteristics and Hormonal Alterations during an 11-Week Training Period in Elite Women Weightlifters. J. Strength Cond. Res. 2008, 22, 433–446. [Google Scholar] [CrossRef]
- Hornsby, W.G.; Haff, G.G.; Suarez, D.G.; Ramsey, M.W.; Triplett, N.T.; Hardee, J.P.; Stone, M.E.; Stone, M.H. Alterations in Adiponectin, Leptin, Resistin, Testosterone, and Cortisol across Eleven Weeks of Training among Division One Collegiate Throwers: A Preliminary Study. J. Funct. Morphol. Kinesiol. 2020, 5, 44. [Google Scholar] [CrossRef] [PubMed]
- Linnamo, V.; Pakarinen, A.; Komi, P.V.; Kraemer, W.J.; Häkkinen, K. Acute hormonal responses to submaximal and maximal heavy resistance and explosive exercises in men and women. J. Strength Cond. Res. 2005, 19, 566–571. [Google Scholar] [PubMed]
- Kotikangas, J.; Walker, S.; Toivonen, S.; Peltonen, H.; Häkkinen, K. Acute Neuromuscular and Hormonal Responses to Power, Strength, and Hypertrophic Protocols and Training Background. Front. Sports Act. Living 2022, 4, 919228. [Google Scholar] [CrossRef] [PubMed]
- Bartolomei, S.; Sadres, E.; Church, D.D.; Arroyo, E.; Gordon, J.A., III; Varanoske, A.N.; Wang, R.; Beyer, K.S.; Oliveira, L.P.; Stout, J.R.; et al. Comparison of the recovery response from high-intensity and high-volume resistance exercise in trained men. Eur. J. Appl. Physiol. 2017, 117, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
- Hakkinen, K.; Pakarinen, A. Acute hormonal responses to two different fatiguing heavy-resistance protocols in male athletes. J Appl. Physiol. 1993, 74, 882–887. [Google Scholar] [CrossRef]
- McCaulley, G.O.; McBride, J.M.; Cormie, P.; Hudson, M.B.; Nuzzo, J.L.; Quindry, J.C.; Travis Triplett, N. Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur. J. Appl. Physiol. 2009, 105, 695–704. [Google Scholar] [CrossRef]
- João, G.A.; Almeida, G.P.; Tavares, L.D.; Kalva-Filho, C.A.; Junior, N.C.; Pontes, F.L.; Baker, J.S.; Bocalini, D.S.; Figueira, A.J. Acute Behavior of Oxygen Consumption, Lactate Concentrations, and Energy Expenditure During Resistance Training: Comparisons Among Three Intensities. Front. Sports Act. Living 2021, 3, 797604. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Fleck, S.J.; Dziados, J.E.; Harman, E.A.; Marchitelli, L.J.; Gordon, S.E.; Triplett, N.T. Changes in hormonal concentrations after different heavy-resistance exercise protocols in women. J. Appl. Physiol. 1993, 75, 594–604. [Google Scholar] [CrossRef]
- Mulligan, S.E.; Fleck, S.J.; Gordon, S.E.; Koziris, L.P.; Triplett-McBride, N.T.; Kraemer, W.J. Influence of resistance exercise volume on serum growth hormone and cortisol concentrations in women. J. Strength Cond. Res. 1996, 10, 256–262. [Google Scholar]
- Chilibeck, P.; Syrotuik, D.; Bell, G. The effect of strength training on estimates of mitochondrial density and distribution throughout muscle fibres. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 604. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.H.; Kim, H.J.; Morton, R.W.; Harris, R.; Philips, S.M.; Jeong, T.S.; Kim, C.K. Resistance exercise-induced changes in muscle metabolism are load-dependent. Med. Sci. Sports Exerc. 2019, 51, 2578–2585. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.; Ibañez González-Badillo, J.J.; Häkkinen, K.; Ratamess, N.A.; Kraemer WJFrench, D.N.; Eslava, J.; Aritz, A.; Xabier, A.; Gorostiaga, E.M. Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. J. Appl. Physiol. 2006, 10, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.; Exposito, R.J.; Garcia-Pallare, J.; Medina, L.; Villareal, E. Concurrent endurance and strength training not to failure optimizes performance gains. Sci. Sports Exerc. 2010, 42, 1191–1199. [Google Scholar] [CrossRef] [Green Version]
- Párraga-Montilla, J.A.; García-Ramos, A.; Castaño-Zambudio, A.; Capelo-Ramírez, F.; González-Hernández, J.M.; Cordero-Rodríguez, Y.; Jiménez-Reyes, P. Acute and delayed effects of a resistance training session leading to muscular failure on mechanical, metabolic, and perceptual responses. J. Strength Cond. Res. 2020, 34, 2220–2226. [Google Scholar] [CrossRef]
- Schoenfeld, B.J. The Mechanisms of Muscle Hypertrophy and Their Application to Resistance Training. J. Strength Cond. Res. 2010, 24, 2857–2872. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Lippman, J.D.; Trevino, M.A.; Herda, T.J. Neural drive is greater for a high-intensity contraction than for moderate-intensity contractions performed to fatigue. J. Strength Cond. Res. 2020, 34, 3013–3021. [Google Scholar] [CrossRef]
- Netreba, A.; Popov, D.; Bravyy, Y.; Lyubaeva, E.; Terada, M.; Ohira, T.; Okabe, H.; Vinogradova, O.; Ohira, Y. Responses of knee extensor muscles to leg press training of various types in human. Ross. Fiziol. Zhurnal Im. IM Sechenova 2013, 99, 406–416. [Google Scholar]
- Vinogradova, O.L.; Popov, D.V.; Netreba, A.I.; Tsvirkun, D.V.; Kurochkina, N.S.; Bachinin, A.V.; Iar, B.; Liubaeva, E.V.; Lysenko, E.A.; Miller, T.F.; et al. Optimization of training: Development of a new partial load mode of strength training. Fiziol. Cheloveka 2013, 39, 71–85. [Google Scholar]
- Schuenke, M.D.; Herman, J.R.; Gliders, R.M.; Hagerman, F.C.; Hikida, R.S.; Rana, S.R.; Staron, R.S. Early-phase muscular adaptations in response to slow-speed versus traditional resistance-training regimens. Eur. J. Appl. Physiol. 2012, 112, 3585–3595. [Google Scholar] [CrossRef]
- Shepstone, T.N.; Tang, J.E.; Dallaire, S.; Schuenke, M.D.; Staron, R.S.; Phillips, S.M. Short-term high-vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. J. Appl. Physiol. 2005, 98, 1768–1776. [Google Scholar] [CrossRef] [PubMed]
- García-Pallarés, J.; Izquierdo, M. Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Med. 2011, 41, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Morán-Navarro, R.; Pérez, C.E.; Mora-Rodríguez, R.; de la Cruz-Sánchez, E.; González-Badillo, J.J.; Sánchez-Medina, L.; Pal-larés, J.G. Time course of recovery following resistance training leading or not to failure. Eur. J. Appl. Physiol. 2017, 117, 2387–2399. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Aagaard, P.; Sánchez-Medina, L.; Ribas-Serna, J.; Mora-Custodio, R.; Otero-Esquina, C.; Yáñez-García, J.M.; González-Badillo, J.J. Time Course of Recovery from Resistance Exercise with Different Set Configurations. J. Strength Cond. Res. 2020, 34, 2867–2876. [Google Scholar] [CrossRef] [PubMed]
- Aube, D.; Wadhi, T.; Rauch Janand, A.; Barakat, C.; Pearson, J.; Bradshaw, J.; Zazzo, S.; Ugrinowitsch, C.; De Souza, E.O. Progressive resistance training volume: Effects on muscle thickness, mass, and strength adaptations in resistance-trained individuals. J. Strength Cond. Res. 2022, 36, 600–607. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Huijing, P.A.; van Ingen Schenau, G.J. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping. Med. Sci. Sports Exerc. 1987, 19, 332–338. [Google Scholar] [CrossRef]
- Enoka, R.M. Eccentric contractions require unique activation strategies by the nervous system. J. Appl. Physiol. 1996, 81, 2339–2346. [Google Scholar] [CrossRef] [Green Version]
- Hakkinen, K.; Pakarinen, A.; Alen, M.; Kauhanen, H.; Komi, P.V. Neuromuscular and hormonal adaptations in athletes to strength training in two years. J. Appl. Physiol. 1988, 65, 2406–2412. [Google Scholar] [CrossRef]
- Hodgson, M.; Docherty, D.; Robbins, D. Post-activation potentiation. Sports Med. 2005, 35, 585–595. [Google Scholar] [CrossRef]
- Verkhoshansky, Y.; Siff, M.C. Supertraining; Verkhoshansky SSTM: Moscow, Russia, 2009. [Google Scholar]
- Verkhoshansky, Y.; Verkhoshansky, N. Special Strength Training: Manual for Coaches; Verkhoshansky SSTM: Roma, Italy, 2011; p. 274. [Google Scholar]
- Augustsson, J.; Esko, A.; Thomee’, R.; Svantesson, U. Weight training of the thigh muscles using closed versus open kinetic chain exercises: A comparison of performance enhancement. J. Orthop. Sports Phys. Ther. 1998, 27, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, R.; Morrissey, M.C. The relationship between open and closed kinetic chain strength of the lower limb and jumping performance. J. Orthop. Sports Phys. Ther. 1998, 27, 430–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, Y.J.; Park, S.J.; Jefferson, J.; Kim, K. The effect of open and closed kinetic chain exercises on dynamic balance ability of normal healthy adults. J. Phys. Ther. Sci. 2013, 25, 671–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchomel, T.J.; Stone, M.H.; Hornsby, W.G.; Wagle, J.P.; Cunanan, A.J. Exercise Selection. Strength and Conditioning in Sport: From Science to Practice; Taylor and Francis: England, UK, 2022; pp. 252–271. [Google Scholar]
- Worrell, T.W.; Borchert, B.; Erner, K.; Fritz, J.; Leerar, P. Effect of a lateral step-up exercise protocol on quadriceps and lower extremity performance. J. Orthop. Sports Phys. Ther. 1993, 18, 646–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehman, G.J. The influence of grip width and forearm pronation/supination on upper-body myoelectric activity during the flat bench press. J. Strength Cond. Res. 2005, 19, 587. [Google Scholar] [PubMed]
- Trebs, A.A.; Brandenburg, J.P.; Pitney, W.A. An electromyography analysis of 3 muscles surrounding the shoulder joint during the performance of a chest press exercise at several angles. J. Strength Cond. Res. 2010, 24, 1925–1930. [Google Scholar] [CrossRef]
- Bazyler, C.D.; Sato, K.; Wassinger, C.A.; Lamont, H.S.; Stone, M.H. The efficacy of incorporating partial squats in maximal strength training. J. Strength Cond. Res. 2014, 28, 3024–3032. [Google Scholar] [CrossRef]
- Newmire, D.E.; Willoughby, D.S. Partial compared with full range of motion resistance training for muscle hypertrophy: A brief review and an identification of potential mechanisms. J. Strength Cond. Res. 2018, 32, 2652–2664. [Google Scholar] [CrossRef]
- Rhea, M.R.; Kenn, J.G.; Peterson, M.D.; Massey, D.; Simão, R.; Marin, P.J.; Favero, M.; Cardozo, D.; Krein, D. Joint-angle specific strength adaptations influence improvements in power in highly trained athletes. Hum. Mov. 2016, 17, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, H.; Wirth, K.; Klusemann, M.; Dalic, J.; Matuschek, C.; Schmidtbleicher, D. Influence of squatting depth on jumping performance. J. Strength Cond. Res. 2012, 26, 3243–3261. [Google Scholar] [CrossRef] [Green Version]
- Kubo, K.; Ikebukuro, T.; Yata, H. Effects of squat training with different depths on lower limb muscle volumes. Eur. J. Appl. Physiol. 2019, 119, 1933–1942. [Google Scholar] [CrossRef]
- Fitzpatrick, D.A.; Cimadoro, G.; Cleather, D.J. The Magical Horizontal Force Muscle? A Preliminary Study Examining the “Force-Vector” Theory. Sports 2019, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duca, M.; Trecroci, A.; Perri, E.; Formenti, D.; Alberti, G. Kinematics and Kinetics of Bulgarian-Bag-Overloaded Sprints in Young Athletes. Life 2020, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.B.; Edouard, P.; Samozino, P. Technical ability of force application as a determinant factor of sprint performance. Med. Sci. Sports Exerc. 2011, 43, 1680–1688. [Google Scholar] [CrossRef] [PubMed]
- Bloomquist, K.; Langberg, H.; Karlsen, S.; Madsgaard, S.; Boesen, M.; Raastad, T. Effect of range of motion in heavy load squatting on muscle and tendon adaptations. Eur. J. Appl. Physiol. 2013, 113, 2133–2142. [Google Scholar] [CrossRef] [PubMed]
- Baker, D. Improving vertical jump performance through general, special, and specific strength training. J. Strength Cond. Res. 1996, 10, 131–136. [Google Scholar] [CrossRef]
- Channell, B.T.; Barfield, J.P. Effect of Olympic and Traditional Resistance Training on Vertical Jump Improvement in High School Boys. J. Strength Cond. Res. 2008, 22, 1522–1527. [Google Scholar] [CrossRef] [Green Version]
- Millar, N.A.; Colenso-Semple, L.M.; Lockie, R.G.; Marttinen, R.H.J.; Galpin, A.J. In-Season Hip Thrust vs. Back Squat Training in Female High School Soccer Players. Int. J. Exerc. Sci. 2020, 13, 49–61. [Google Scholar]
- McMahon, G.E.; Morse, C.I.; Burden, A.; Winwood, K.; Onambélé, G.L. Impact of range of motion during ecologically valid resistance training protocols on muscle size, subcutaneous fat, and strength. J. Strength Cond. Res. 2014, 28, 245–255. [Google Scholar] [CrossRef]
- Haff, G.G.; Whitley, A.; Potteiger, J.A. A Brief Review: Explosive Exercises and Sports Performance. Strength Cond. J. 2001, 23, 13–25. [Google Scholar] [CrossRef]
- Taber, C.; Bellon, C.; Abbott, H.; Bingham, G.E. Roles of Maximal Strength and Rate of Force Development in Maximizing Muscular Power. Strength Cond. J. 2016, 38, 71–78. [Google Scholar] [CrossRef]
- Newton, R.U.; Kraemer, W.J.; Hakkinen, K. Effects of ballistic training on preseason preparation of elite volleyball players. Med. Sci. Sports Exerc. 1999, 31, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newton, R.U.; Rogers, R.A.; Volek, J.S.; Häkkinen, K.; Kraemer, W.J. Four weeks of optimal load ballistic resistance training at the end of season attenuates declining jump performance of women volleyball players. J. Strength Cond. Res. 2006, 20, 955–961. [Google Scholar] [PubMed] [Green Version]
- DeRenne, C.; Ho, K.W.; Murphy, J.C. Effects of general, special, and specific resistance training on throwing velocity in baseball: A brief review. J. Strength Cond. Res. 2001, 15, 148–156. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, K.P.; Newton, R.U. Baseball Throwing Speed and Base Running Speed: The Effects of Ballistic Resistance Training. J. Strength Cond. Res. 1998, 12, 216–221. [Google Scholar] [CrossRef]
- Clark, K.P.; Weyand, P.G. Are running speeds maximized with simple-spring stance mechanics? J. Appl. Physiol. 2014, 117, 604–615. [Google Scholar] [CrossRef]
- Miller, R.H.; Umberger, B.R.; Caldwell, G.E. Limitations to maximum sprinting speed imposed by muscle mechanical properties. J. Biomech. 2012, 45, 1092–1097. [Google Scholar] [CrossRef]
- McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the key phases of the countermovement jump force-time curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Sole, C.J.; Mizuguchi, S.; Sato, K.; Moir, G.L.; Stone, M.H. Phase characteristics of the countermovement jump force-time curve: A comparison of athletes by jumping ability. J. Strength Cond. Res. 2018, 32, 1155–1165. [Google Scholar] [CrossRef]
- Newton, R.U.; Kraemer, W.J.; Häkkinen, K.; Humphries, B.J.; Murphy, A.J. Kinematics, kinetics, and muscle activation during explosive upper body movements. J. Appl. Biomech. 1996, 12, 31–43. [Google Scholar] [CrossRef]
- Newton, R.U.; Kraemer, W.J. Developing Explosive Muscular Power: Implications for a Mixed Methods Training Strategy. Strength Cond. J. 1994, 16, 20–31. [Google Scholar] [CrossRef]
- Kraska, J.M.; Ramsey, M.W.; GGregory, H.; Nate, F.; Sands, W.A.; Stone, M.E.; Stone, M.H. Relationship between strength characteristics and unweighted and weighted vertical jump height. Int. J. Sports Physiol. Perform. 2009, 4, 461–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoff, J.; Almåsbakk, B. The Effects of Maximum Strength Training on Throwing Velocity and Muscle Strength in Female Team-Handball Players. J. Strength Cond. Res. 1995, 9, 255–258. [Google Scholar]
- Fatouros, I.G.; Jamurtas, A.Z.; Leontsini, D.; Taxildaris, K.; Aggelousis, N.; Kostopoulos, N.; Buckenmeyer, P. Evaluation of plyometric exercise training, weight training, and their combination on vertical jumping performance and leg strength. J. Strength Cond. Res. 2000, 14, 470–476. [Google Scholar]
- Teo, S.Y.; Newton, M.J.; Newton, R.U.; Dempsey, A.R.; Fairchild, T.J. Comparing the effectiveness of a short-term vertical jump vs. weightlifting program on athletic power development. J. Strength Cond. Res. 2016, 30, 2741–2748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackett, D.; Davies, T.; Soomro, N.; Halaki, M. Olympic weightlifting training improves vertical jump height in sportspeople: A systematic review with meta-analysis. Br. J. Sports Med. 2016, 50, 865–872. [Google Scholar] [CrossRef]
- Tricoli, V.; Lamas, L.; Carnevale, R.; Ugrinowitsch, C. Short-term effects on lower-body functional power development: Weightlifting vs. vertical jump training programs. J. Strength Cond. Res. 2005, 19, 433–437. [Google Scholar] [CrossRef]
- Ince, I. Effects of Split Style Olympic Weightlifting Training on Leg Stiffness Vertical Jump Change of Direction and Sprint in Collegiate Volleyball Players. Univ. J. Educ. Res. 2019, 7, 24–31. [Google Scholar] [CrossRef]
- Cronin, J.; McNair, P.; Marshall, R. The effects of bungy weight training on muscle function and functional performance. J. Sports Sci. 2003, 21, 59–71. [Google Scholar] [CrossRef]
- Israetel, M.A.; McBride, J.M.; Nuzzo, J.L.; Skinner, J.W.; Dayne, A.M. Kinetic and kinematic differences between squats performed with and without elastic bands. J. Strength Cond. Res. 2010, 24, 190–194. [Google Scholar] [CrossRef]
- McMaster, D.T.; Cronin, J.; McGuigan, M. Forms of variable resistance training. Strength Cond. J. 2009, 31, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Makaruk, H.; Starzak, M.; Suchecki, B.; Czaplicki, M.; Stojiljković, N. The effects of assisted and resisted plyometric training programs on vertical jump performance in adults: A systematic review and meta-analysis. J. Sports Sci. Med. 2020, 19, 347. [Google Scholar]
- Carlson, K.; Magnusen, M.; Walters, P. Effect of various training modalities on vertical jump. Res. Sports Med. 2009, 17, 84–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClenton, L.S.; Brown, L.E.; Coburn, J.W.; Kersey, R.D. The effect of short-term VertiMax vs. depth jump training on vertical jump performance. J. Strength Cond. Res. 2008, 22, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.; Newton, R.; McGuigan, M. The effect of accentuated eccentric load on jump kinetics in high-performance volleyball players. Int. J. Sports Sci. Coach. 2007, 2, 267–273. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Young, K. Using Additional Eccentric Loads to Increase Concentric Performance in the Bench Throw. J. Strength Cond. Res. 2010, 24, 2853–2856. [Google Scholar] [CrossRef] [Green Version]
- Wagle, J.P.; Taber, C.B.; Cunanan, A.J.; Bingham, G.E.; Carroll, K.M.; DeWeese, B.H.; Stone, M.H. Accentuated eccentric loading for training and performance: A review. Sports Med. 2017, 47, 2473–2495. [Google Scholar] [CrossRef]
- Lopez, P.; Radaelli, R.; Taaffe, D.R.; Newton, R.U.; Galvão, D.A.; Trajano, G.S.; Pinto, R.S. Resistance training load effects on muscle hypertrophy and strength gain: Systematic review and network meta-analysis. Med. Sci. Sports Exerc. 2021, 53, 1206. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Wilson, J.M.; Lowery, R.P.; Krieger, J.W. Muscular adaptations in low-versus high-load resistance training: A meta-analysis. Eur. J. Sport Sci. 2016, 16, 1–10. [Google Scholar] [CrossRef]
- Hakkinen, K.; Komi, P.V. Training-induced changes in neuromuscular performance under voluntary and reflex conditions. Eur. J. Appl. Physiol. 1986, 55, 147–155. [Google Scholar] [CrossRef]
- Wetmore, A.B.; Moquin, P.A.; Carroll, K.M.; Fry, A.C.; Hornsby, W.G.; Stone, M.H. The effect of training status on adaptations to 11 weeks of block periodization training. Sports 2020, 8, 145. [Google Scholar] [CrossRef]
- Zamparo, P.; Minetti, A.; Di Prampero, P. Interplay among the changes of muscle strength, cross-sectional area and maximal explosive power: Theory and facts. Eur. J. Appl. Physiol. 2002, 88, 193–202. [Google Scholar] [PubMed]
- Cormie, P.; McCaulley, G.O.; Mcbride, J.M. Power versus strength-power jump squat training: Influence on the load-power relationship. Med. Sci. Sports Exerc. 2007, 39, 996–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behm, D.G.; Young, J.D.; Whitten, J.H. Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis. Front. Physiol. 2017, 8, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Adaptations in athletic performance after ballistic power versus strength training. Med. Sci. Sports Exerc. 2010, 42, 1582–1598. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 2—Training considerations for improving maximal power production. Sports Med. 2011, 41, 125–146. [Google Scholar] [CrossRef]
- Kawamori, N.; Newton, R.U. Velocity specificity of resistance training: Actual movement velocity versus intention to move explosively. Strength Cond. J. 2006, 28, 86. [Google Scholar] [CrossRef]
- Flanagan, E.P.; Comyns, T.M. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond. J. 2008, 30, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Komi, P.V. Stretch-shortening cycle. In Strength and Power in Sport, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1992; pp. 184–202. [Google Scholar]
- Turner, A.N.; Jeffreys, I. The stretch-shortening cycle: Proposed mechanisms and methods for enhancement. Strength Cond. J. 2010, 32, 87–99. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [Green Version]
- 157. Rodríguez-Rosell, D.; Pareja-Blanco, F.; Aagaard, P.; González-Badillo, J.J. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin. Physiol. Funct. Imaging 2018, 38, 743–762. [Google Scholar] [CrossRef]
- Frobose, I.; Verdonck, A.; Duesberg, F.F.; Mucha, C. Effects of various load intensities in the framework of postoperative stationary endurance training on performance deficit of the quadriceps muscle of the thigh. Z. Orthop. Ihre Grenzgeb. 1993, 131, 164–167. [Google Scholar] [PubMed]
- De Oliveira, F.B.; Rizatto, G.F.; Denadai, B.S. Are early and late rate of force development differently influenced by fast-velocity resistance training? Clin. Physiol. Funct. Imaging 2013, 33, 282–287. [Google Scholar] [CrossRef] [PubMed]
- 160. Aagaard, P.; Andersen, J.L.; Dyhre-Poulsen, P.; Dyhre-Poulsen p Leffers, A.-M.; Wagner, A.; Magnusson, S.P.; Halkjær-Kristensen, J.; Simonsen, E.B. A mechanism for increased contractile strength of human pennate muscle in response to strength training: Changes in muscle architecture. J. Physiol. 2001, 534, 613–623. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The importance of muscular strength: Training considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.; Ficarra, S.; Nakamura, M.; Paoli, A.; Bellafiore, M.; Palma, A.; Bianco, A. Effects of Different Long-Term Exercise Modalities on Tissue Stiffness. Sports Med.-Open 2022, 8, 71. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.; Suga, T.; Miyake, Y.; Takao, K.; Tanaka, T.; Misaki, J.; Isaka, T. Specific adaptations of patellar and Achilles tendons in male sprinters and endurance runners. Transl. Sports Med. 2018, 1, 104–109. [Google Scholar] [CrossRef]
- Goodwin, J.E.; Cleather, D.J. The biomechanical principles underpinning strength and conditioning. In Strength and Conditioning for Sports Performance; Jeffreys, I., Moody, J., Eds.; Routledge: Milton Park, UK, 2016; pp. 78–108. [Google Scholar]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef]
- Colliander, E.; Tesch, P. Effects of eccentric and concentric muscle actions in resistance training. Acta Physiol. Scand. 1990, 140, 31–39. [Google Scholar] [CrossRef]
- Higbie, E.J.; Cureton, K.J.; Warren, G.L., III; Prior, B.M. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J. Appl. Physiol. 1996, 81, 2173–2181. [Google Scholar] [CrossRef] [Green Version]
- Aagaard, P.; Simonsen, E.; Trolle, M.; Trolle, M.; Bangsbo, J.; Klausen, K. Specificity of training velocity and training load on gains in isokinetic knee joint strength. Acta Physiol. Scand. 1996, 156, 123–129. [Google Scholar] [CrossRef]
- Komi, P.V. Stretch-shortening cycle. In Strength and Power in Sport; John Wiley & Sons: New York, NY, USA, 2003; Volume 2, pp. 184–202. [Google Scholar]
- Van Ingen Schenau, G. An alternative view of the concept of utilisation of elastic energy in human movement. Hum. Mov. Sci. 1984, 3, 301–336. [Google Scholar] [CrossRef]
- Franchi, M.V.; Atherton, P.J.; Reeves, N.D.; Flück, M.; Williams, J.; Mitchell, W.K.; Selby, A.; Beltran, V.R.; Narici, M. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol. 2014, 210, 642–654. [Google Scholar] [CrossRef] [PubMed]
- Franchi, M.V.; Reeves, N.D.; Narici, M.V. Skeletal muscle remodeling in response to eccentric vs. concentric loading: Morphological, molecular, and metabolic adaptations. Front. Physiol. 2017, 8, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marušič, J.; Vatovec, R.; Marković, G.; Šarabon, N. Effects of eccentric training at long-muscle length on architectural and functional characteristics of the hamstrings. Scand. J. Med. Sci. Sports 2020, 30, 2130–2142. [Google Scholar] [CrossRef] [PubMed]
- Reeves, N.D.; Maganaris, C.N.; Longo, S.; Narici, M.V. Differential adaptations to eccentric versus conventional resistance training in older humans. Exp. Physiol. 2009, 94, 825–833. [Google Scholar] [CrossRef]
- Seger, J.Y.; Arvidsson, B.; Thorstensson, A.; Seger, J.Y. Specific effects of eccentric and concentric training on muscle strength and morphology in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 79, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, G.R. Can fast-twitch muscle fibres be selectively recruited during lengthening contractions? Review and applications to sport movements. Sports Biomech. 2008, 7, 137–157. [Google Scholar] [CrossRef] [PubMed]
- Hogrel, J.-Y. Use of surface EMG for studying motor unit recruitment during isometric linear force ramp. J. Electromyogr. Kinesiol. 2003, 13, 417–423. [Google Scholar] [CrossRef]
- Milner-Brown, H.S.; Stein, R.B.; Yemm, R. The orderly recruitment of human motor units during voluntary isometric contractions. J. Physiol. 1973, 230, 359. [Google Scholar] [CrossRef]
- Thomas, C.K.; Ross, B.H.; Calancie, B.L.A.I.R. Human motor-unit recruitment during isometric contractions and repeated dynamic movements. J. Neurophysiol. 1987, 57, 311–324. [Google Scholar] [CrossRef]
- Duchateau, J.; Hainaut, K. Mechanisms of muscle and motor unit adaptation to explosive power training. In Strength and Power in Sport, 2nd ed.; Encyclopaedia of Sports Medicine; Komi, P., Ed.; IOC Medical Commission Publication, Blackwell Science: Oxford, UK, 2003; Volume III, pp. 315–330. [Google Scholar]
- Nardone, A.; Schieppati, M. Selective recruitment of high threshold human motor units during voluntary isotonic lengthening of active muscles. J. Physiol. 1989, 409, 451–471. [Google Scholar] [CrossRef]
- Mchugh, M.P.; Tyler, T.F.; Greenberg, S.C.; Gleim, G.W. Differences in activation patterns between eccentric and concentric quadriceps contractions. J. Sports Sci. 2002, 20, 83–91. [Google Scholar] [CrossRef]
- Pasquet, B.; Carpentier, A.; Duchateau, J.; Hainaut, K. Muscle fatigue during concentric and eccentric contractions. Muscle Nerve 2000, 23, 1727–1735. [Google Scholar] [CrossRef]
- Tesch, P.; Dudley, G.; Duvoisin, M.; Hather, B.; Harris, R. Force and EMG signal patterns during repeated bouts of concentric or eccentric muscle actions. Acta Physiol. 1990, 138, 263–271. [Google Scholar] [CrossRef]
- Minetti, A.E. On the mechanical power of joint extensions as affected by the change in muscle force (or cross-sectional area), ceteris paribus. Eur. J. Appl. Physiol. 2002, 86, 363–369. [Google Scholar] [CrossRef]
- Askling, C.; Karlsson, J.; Thorstensson, A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand. J. Med. Sci. Sports 2003, 13, 244–250. [Google Scholar] [CrossRef]
- Blackburn, T.; Guskiewicz, K.M.; Petschauer, M.A.; Prentice, W.E. Balance and joint stability: The relative contributions of proprioception and muscular strength. J. Sport Rehab. 2000, 9, 315–328. [Google Scholar] [CrossRef] [Green Version]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- James, L.P.; Haff, G.G.; Kelly, V.G.; Connick, M.; Hoffman, B.; Beckman, E.M. The impact of strength level on adaptations to combined weightlifting, plyometric and ballistic training. Scand. J. Med. Sci. Sports 2017, 28, 1494–1505. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stone, M.H.; Hornsby, W.G.; Suarez, D.G.; Duca, M.; Pierce, K.C. Training Specificity for Athletes: Emphasis on Strength-Power Training: A Narrative Review. J. Funct. Morphol. Kinesiol. 2022, 7, 102. https://doi.org/10.3390/jfmk7040102
Stone MH, Hornsby WG, Suarez DG, Duca M, Pierce KC. Training Specificity for Athletes: Emphasis on Strength-Power Training: A Narrative Review. Journal of Functional Morphology and Kinesiology. 2022; 7(4):102. https://doi.org/10.3390/jfmk7040102
Chicago/Turabian StyleStone, Michael H., W. Guy Hornsby, Dylan G. Suarez, Marco Duca, and Kyle C. Pierce. 2022. "Training Specificity for Athletes: Emphasis on Strength-Power Training: A Narrative Review" Journal of Functional Morphology and Kinesiology 7, no. 4: 102. https://doi.org/10.3390/jfmk7040102
APA StyleStone, M. H., Hornsby, W. G., Suarez, D. G., Duca, M., & Pierce, K. C. (2022). Training Specificity for Athletes: Emphasis on Strength-Power Training: A Narrative Review. Journal of Functional Morphology and Kinesiology, 7(4), 102. https://doi.org/10.3390/jfmk7040102