Dystrophin-Glycoprotein Complex Behavior in Sternocleidomastoid Muscle of High- and Low-Ranking Baboons: A Possible Phylogenetic Arrangement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Muscle Biopsies
2.2. Immunofluorescence Reactions
3. Results
3.1. Sarcoglycans Immunoreactions
3.2. Sarcoglycans/Beta-DG Immunoreactions
3.3. Laminin Immunoreaction
3.4. Sarcoglycans/Dystrophin Immunoreactions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Campbell, K.P.; Kahl, S.D. Association of dystrophin and an integral membrane glycoprotein. Nature 1989, 338, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Ozawa, E. Glycoprotein complex anchoring dystrophin to sarcolemma. J. Biochem. 1990, 108, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Ervasti, J.M.; Campbell, K.P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 1993, 122, 809–823. [Google Scholar] [CrossRef]
- Campbell, K.P. Three muscular dystrophies: Loss of cytoskeleton-extracellular matrix linkage. Cell 1995, 80, 675–679. [Google Scholar] [CrossRef]
- Straub, V.; Campbell, K.P. Muscular dystrophies and the dystrophin-glycoprotein complex. Curr. Opin. Neurol. 1997, 10, 168–175. [Google Scholar] [CrossRef]
- Ozawa, E.; Noguchi, S.; Mizuno, Y.; Hagiwara, Y.; Yoshida, M. From dystrophinopathy to sarcoglycanopathy: Evolution of a concept of muscular dystrophy. Muscle Nerve 1998, 21, 421–438. [Google Scholar] [CrossRef]
- Ozawa, E.; Mizuno, Y.; Hagiwara, Y.; Sasaoka, T.; Yoshida, M. Molecular and cell biology of the sarcoglycan complex. Muscle Nerve 2005, 32, 563–576. [Google Scholar] [CrossRef]
- Anastasi, G.; Cutroneo, G.; Santoro, G.; Trimarchi, F. The non-junctional sarcolemmal cytoskeleton: The costameres. Ital. J. Anat. Embryol. 1998, 103, 1–11. [Google Scholar]
- Ginjaar, H.B.; van der Kooi, A.J.; Ceelie, H.; Kneppers, A.L.; van Meegen, M.; Barth, P.G.; Busch, H.F.; Wokke, J.H.; Anderson, L.V.; Bönnemann, C.G.; et al. Sarcoglycanopathies in Dutch patients with autosomal recessive limb girdle muscular dystrophy. J. Neurol. 2000, 247, 524–529. [Google Scholar] [CrossRef]
- Calvo, F.; Teijeira, S.; Fernandez, J.M.; Teijeiro, A.; Fernandez-Hojas, R.; Fernandez-Lopez, X.A.; Martin, E.; Navarro, C. Evaluation of heart involvement in gamma-sarcoglycanopathy (LGMD2C). A study of ten patients. Neuromuscul. Disord. 2000, 10, 560–566. [Google Scholar] [CrossRef]
- Bönnemann, C.G.; Wong, J.; Jones, K.J.; Lidov, H.G.W.; Feener, C.A.; Shapiro, F.; Darars, B.T.; Kunkel, L.M.; North, K.N. Primary γ-sarcoglycanopathy (LGMD 2C): Broadening of the mutational spectrum guided by the immunohistochemical profile. Neuromuscul. Disord. 2002, 12, 273–280. [Google Scholar] [CrossRef]
- Dalkilic, I.; Kunkel, L.M. Muscular dystrophies: Genes to pathogenesis. Curr. Opin. 2003, 13, 231–238. [Google Scholar] [CrossRef]
- Ventura Spagnolo, E.; Mondello, C.; Di Mauro, D.; Vermiglio, G.; Asmundo, A.; Filippini, E.; Alibrandi, A.; Rizzo, G. Analysis on sarcoglycans expression as markers of septic cardiomyopathy in sepsis-related death. J. Leg. Med. 2018, 132, 1685–1692. [Google Scholar] [CrossRef] [PubMed]
- Bruschetta, D.; Anastasi, G.; Andronaco, V.; Cascio, F.; Rizzo, G.; Di Mauro, D.; Bonanno, L.; Izzo, V.; Buda, D.; Vermiglio, G.; et al. Human calf muscles changes after strength training as revealed by diffusion tensor imaging. J. Sports Med. Phys. Fit. 2019, 59, 853–860. [Google Scholar] [CrossRef]
- Cutroneo, G.; Piancino, M.G.; Ramieri, G.; Bracco, P.; Vita, G.; Isola, G.; Vermiglio, G.; Favaloro, A.; Anastasi, G.; Trimarchi, F. Expression of muscle-specific integrins in masseter muscle fibres during malocclusion disease. Int. J. Mol. Med. 2012, 30, 235–242. [Google Scholar] [CrossRef]
- Cutroneo, G.; Vermiglio, G.; Centofanti, A.; Rizzo, G.; Runci, M.; Favaloro, A.; Piancino, M.G.; Bracco, P.; Ramieri, G.; Bianchi, F.; et al. Morphofunctional compensation of masseter muscles in unilateral posterior crossbite patients. Eur. J. Histochem. 2016, 60, 2605. [Google Scholar] [CrossRef]
- Vermiglio, G.; Centofanti, A.; Piancino, M.G.; Malandrino, M.C.; Runci Anastasi, M.; Picciolo, G.; Cutroneo, G. Extracellular matrix behaviour in masseter muscle of patients affected by unilateral posterior crossbite: An immunofluorescence study. Appl. Sci. 2021, 11, 4649. [Google Scholar] [CrossRef]
- Vermiglio, G.; Piancino, M.G.; Runci Anastasi, M.; Picciolo, G.; Centofanti, A.; Santoro, G.; Malandrino, M.C.; Cutroneo, G.; Anastasi, G. Use of immunofluorescence technique to perform a quantitative analysis of masseter mucle fibers in unilateral posterior crossbite. Appl. Sci. 2021, 11, 5350. [Google Scholar] [CrossRef]
- Vermiglio, G.; Centofanti, A.; Ramieri, G.; Tepedino, M.; Runci Anastasi, M.; Micali, A.; Arco, A.; Piancino, M.G. Immunofluorescence Evaluation of Myf5 and MyoD in Masseter Muscle of Unilateral Posterior Crossbite Patients. J. Funct. Morphol. Kinesiol. 2020, 5, 80. [Google Scholar] [CrossRef]
- King, M.C.; Wilson, A.C. Evolution at two levels in humans and chimpanzees. Science 1975, 188, 107–116. [Google Scholar] [CrossRef]
- Donaldson, I.; Gottgens, B. Evolution of candidate transcriptional regulatory motifs since the human-chimpanzee divergence. Genome Biol. 2006, 7, R52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollard, K.S.; Salama, S.; King, B.; Kern, A.D.; Dreszer, T.; Katzman, S.; Siepel, A.; Pedersen, J.S.; Bejerano, G.; Baertsch, R.; et al. Forces shaping the fastest evolving regions in the human genome. PLoS Genet. 2006, 2, e168. [Google Scholar] [CrossRef] [PubMed]
- Bradley, B.J. Reconstructing phylogenies and phenotypes: A molecular view of human evolution. J. Anat. 2008, 212, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Favaloro, A.; Speranza, G.; Rezza, S.; Gatta, V.; Vaccarino, G.; Stuppia, L.; Festa, F.; Anastasi, G. Muscle-specific integrins in masseter muscle fibres of chimpanzees: An immunohistochemical study. Folia Histochem. Cytobiol. 2009, 47, 551–558. [Google Scholar]
- Murthy, K.K.; Salas, M.T.; Carey, K.D.; Patterson, J.L. Baboon as a nonhuman primate model for vaccine studies. Vaccine 2006, 24, 4622–4624. [Google Scholar] [CrossRef]
- Cutroneo, G.; Centofanti, A.; Speciale, F.; Rizzo, G.; Favaloro, A.; Santoro, G.; Bruschetta, D.; Milardi, D.; Micali, A.; Di Mauro, D.; et al. Sarcoglycan complex in masseter and sternocleidomastoid muscles of baboons: An immunohistochemical study. Eur. J. Histochem. 2015, 59, 2509. [Google Scholar] [CrossRef]
- Ingber, D.E. Tensegrity: The architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 1997, 59, 575–599. [Google Scholar] [CrossRef]
- Street, S.F. Lateral transmission of tension in frog myofibres: A myofibrillar network and transverse cytoskeletal connections are possible transmitters. J. Cell Physiol. 1983, 114, 346–364. [Google Scholar] [CrossRef]
- Monti, R.J.; Roy, R.R.; Hodgson, J.A.; Edgerton, V.R. Transmission of forces within mammalian skeletal muscle. J. Biochem. 1999, 32, 371–380. [Google Scholar] [CrossRef]
- Chance, M.R.A.; Jolly, C.J. Social Groups of Monkeys, Apes, and Men; Dutton: New York, NY, USA, 1970. [Google Scholar]
- Langergraber, K.E.; Prüfer, K.; Rowney, C.; Boesch, C.; Crockford, C.; Fawcett, K.; Inoue, O.; Inoue-Muruyama, M.; Mitani, J.C.; Muller, M.N.; et al. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl. Acad. Sci. USA 2012, 109, 15716–15721. [Google Scholar] [CrossRef]
- Rasmussen, K.L.R. Changes in the activity budgets of yellow baboons (Papio cynocephalus) during sexual consortships. Behav. Ecol. Sociobiol. 1985, 17, 161–170. [Google Scholar] [CrossRef]
- Gesquiere, L.R.; Learn, N.H.; Simao, M.C.; Onyango, P.O.; Alberts, S.C.; Altmann, J. Life at the top: Energetic and psychological stress in wild male primates. Science 2011, 333, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberts, S.C.; Altmann, J.; Wilson, M.L. Mate guarding constrains foraging activity of male baboons. Anim. Behav. 1996, 51, 1269–1277. [Google Scholar] [CrossRef]
- Archie, E.A.; Altmann, J.; Alberts, S.C. Social status predicts wound healing in wild baboons. Proc. Natl. Acad. Sci. USA 2012, 109, 9017–9022. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Centofanti, A.; Vermiglio, G.; Cutroneo, G.; Favaloro, A.; Picciolo, G.; Festa, F.; Anastasi, G.P. Dystrophin-Glycoprotein Complex Behavior in Sternocleidomastoid Muscle of High- and Low-Ranking Baboons: A Possible Phylogenetic Arrangement. J. Funct. Morphol. Kinesiol. 2022, 7, 62. https://doi.org/10.3390/jfmk7030062
Centofanti A, Vermiglio G, Cutroneo G, Favaloro A, Picciolo G, Festa F, Anastasi GP. Dystrophin-Glycoprotein Complex Behavior in Sternocleidomastoid Muscle of High- and Low-Ranking Baboons: A Possible Phylogenetic Arrangement. Journal of Functional Morphology and Kinesiology. 2022; 7(3):62. https://doi.org/10.3390/jfmk7030062
Chicago/Turabian StyleCentofanti, Antonio, Giovanna Vermiglio, Giuseppina Cutroneo, Angelo Favaloro, Giacomo Picciolo, Felice Festa, and Giuseppe Pio Anastasi. 2022. "Dystrophin-Glycoprotein Complex Behavior in Sternocleidomastoid Muscle of High- and Low-Ranking Baboons: A Possible Phylogenetic Arrangement" Journal of Functional Morphology and Kinesiology 7, no. 3: 62. https://doi.org/10.3390/jfmk7030062
APA StyleCentofanti, A., Vermiglio, G., Cutroneo, G., Favaloro, A., Picciolo, G., Festa, F., & Anastasi, G. P. (2022). Dystrophin-Glycoprotein Complex Behavior in Sternocleidomastoid Muscle of High- and Low-Ranking Baboons: A Possible Phylogenetic Arrangement. Journal of Functional Morphology and Kinesiology, 7(3), 62. https://doi.org/10.3390/jfmk7030062