Is Muscle Architecture Different in Athletes with a Previous Hamstring Strain? A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Literature Search and Study Selection
2.2. Data Extraction
2.3. Elibility Criteria
2.4. Quality Assessment
2.5. Data Analysis
- 1.
- Strong evidence: consistent results in two or more low risk of bias studies with generally consistent findings in ≥75% of studies.
- 2.
- Moderate evidence: provided by one low risk of bias study and/or two or more studies with high risk of bias study and by generally consistent results across all studies (≥75% of the studies reported consistent findings).
- 3.
- Limited evidence: provided by single-study findings from high risk of bias study.
- 4.
- Conflicting evidence: inconsistent findings in multiple studies (<75% of the studies reported consistent findings).
- 5.
- No evidence: no studies (randomized controlled trials or non-randomized controlled trials) available for assessment.
3. Results
3.1. Search Results
3.2. Risk of Bias Assessment
3.3. Description of Studies
3.4. Injured vs. Uninjured Limb
3.5. Injured vs. Controls
4. Discussion
4.1. Injured vs. Uninjured Limb
4.2. Injured vs. Uninjured Groups
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ekstrand, J.; Waldén, M.; Hägglund, M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: A 13-year longitudinal analysis of the UEFA Elite Club injury study. Br. J. Sports Med. 2016, 50, 731–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Beijsterveldt, A.M.C.; van de Port, I.G.L.; Vereijken, A.J.; Backx, F.J.G. Risk Factors for Hamstring Injuries in Male Soccer Players: A Systematic Review of Prospective Studies. Scand. J. Med. Sci. Sports 2013, 23, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Hauge Engebretsen, A.; Myklebust, G.; Holme, I.; Engebretsen, L.; Bahr, R.; Engebretsen, A.H.; Myklebust, G.; Holme, I.; Engebretsen, L.; Bahr, R. Intrinsic Risk Factors for Hamstring Injuries Among Male Soccer Players: A Prospective Cohort Study. Am. J. Sports Med. 2010, 38, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Lehance, C.; Binet, J.; Bury, T.; Croisier, J.L. Muscular strength, functional performances and injury risk in professional and junior elite soccer players. Scand. J. Med. Sci. Sports 2009, 19, 243–251. [Google Scholar] [CrossRef]
- Brockett, C.L.; Morgan, D.L.; Proske, U. Predicting hamstring strain injury in elite athletes. Med. Sci. Sports Exerc. 2004, 36, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Sanfilippo, J.L.; Silder, A.; Sherry, M.A.; Tuite, M.J.; Heiderscheit, B.C. Hamstring strength and morphology progression after return to sport from injury. Med. Sci. Sports Exerc. 2013, 45, 448–454. [Google Scholar] [CrossRef] [Green Version]
- Silder, A.; Sherry, M.A.; Sanfilippo, J.; Tuite, M.J.; Hetzel, S.J.; Heiderscheit, B.C. Clinical and morphological changes following 2 rehabilitation programs for acute hamstring strain injuries: A randomized clinical trial. J. Orthop. Sport. Phys. Ther. 2013, 43, 284–299. [Google Scholar] [CrossRef] [Green Version]
- Maniar, N.; Shield, A.J.; Williams, M.D.; Timmins, R.G.; Opar, D.A. Hamstring strength and flexibility after hamstring strain injury: A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 909–920. [Google Scholar] [CrossRef]
- Opar, D.A.; Williams, M.D.; Timmins, R.G.; Dear, N.M.; Shield, A.J. Knee flexor strength and bicep femoris electromyographical activity is lower in previously strained hamstrings. J. Electromyogr. Kinesiol. 2013, 23, 696–703. [Google Scholar] [CrossRef] [Green Version]
- Opar, D.A.; Williams, M.D.; Timmins, R.G.; Dear, N.M.; Shield, A.J. Rate of torque and electromyographic development during anticipated eccentric contraction is lower in previously strained hamstrings. Am. J. Sports Med. 2013, 41, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Kellis, E. Quantification of quadriceps and hamstring antagonist activity. Sport. Med. 1998, 25, 37–62. [Google Scholar] [CrossRef] [PubMed]
- Kellis, E. Intra- and Inter-Muscular Variations in Hamstring Architecture and Mechanics and Their Implications for Injury: A Narrative Review. Sport. Med. 2018, 48, 2271–2283. [Google Scholar] [CrossRef]
- Connell, D.A.; Schneider-Kolsky, M.E.; Hoving, J.L.; Malara, F.; Buchbinder, R.; Koulouris, G.; Burke, F.; Bass, C. Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. Am. J. Roentgenol. 2004, 183, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Slavotinek, J.P.; Verrall, G.M.; Fon, G.T. Hamstring injury in athletes: Using MR imaging measurements to compare extent of muscle injury with amount of time lost from competition. Am. J. Roentgenol. 2002, 179, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Koulouris, G.; Connell, D. Evaluation of the hamstring muscle complex following acute injury. Skelet. Radiol. 2003, 32, 582–589. [Google Scholar] [CrossRef]
- Canosa-Carro, L.; Bravo-Aguilar, M.; Abuín-Porras, V.; Almazán-Polo, J.; García-Pérez-de-Sevilla, G.; Rodríguez-Costa, I.; López-López, D.; Navarro-Flores, E.; Romero-Morales, C. Current understanding of the diagnosis and management of the tendinopathy: An update from the lab to the clinical practice. Disease-a-Month 2022, 101314. [Google Scholar] [CrossRef] [PubMed]
- Presland, J.; Timmins, R.G.; Maniar, N.; Tofari, P.J.; Kidgell, D.; Shield, A.J.; Dickson, J.; Opar, D.A. Muscle Activity and Activation in Previously Strain-Injured Lower Limbs: A Systematic Review. Sports Med. 2021, 51, 2311–2327. [Google Scholar] [CrossRef]
- Timmins, R.G.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Biceps femoris long head architecture: A reliability and retrospective injury study. Med. Sci. Sports Exerc. 2015, 47, 905–913. [Google Scholar] [CrossRef] [Green Version]
- De Lima-E-Silva, F.X.; Oliveira, G.S.; Medeiros, T.M.; Dornelles, M.P.; Ribeiro-Alvares, J.B.A.; Baroni, B.M. Flexibility, strength, and fascicle length of football players with and without history of hamstring strain injury in the prior season. Sci. Med. Footb. 2020, 4, 322–328. [Google Scholar] [CrossRef]
- Nin, D.Z.; Pain, M.T.G.; Lim, Y.I.I.H.; Kong, P.U.I.W. Hamstring muscle architecture and viscoelastic properties: Reliability and retrospective comparison between previously injured and uninjured athletes. J. Mech. Med. Biol. 2021, 21, 2150007. [Google Scholar] [CrossRef]
- Timmins, R.G.; Bourne, M.N.; Hickey, J.T.; Maniar, N.; Tofari, P.J.; Williams, M.D.; Opar, D.A. Effect of prior injury on changes to biceps femoris architecture across an australian football league season. Med. Sci. Sports Exerc. 2017, 49, 2102–2109. [Google Scholar] [CrossRef] [PubMed]
- Avrillon, S.; Hug, F.; Guilhem, G. Bilateral differences in hamstring coordination in previously injured elite athletes. J. Appl. Physiol. 2020, 128, 688–697. [Google Scholar] [CrossRef] [Green Version]
- Silder, A.; Thelen, D.G.; Heiderscheit, B.C. Effects of prior hamstring strain injury on strength, flexibility, and running mechanics. Clin. Biomech. 2010, 25, 681–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, S.R.; Abrantes, F.; Santos, F.; Mascarenhas, V.; Oliveira, R.; Firmino, T.; Mendes, B.; Cerda, M.; Vaz, J.R. Is Biceps Femoris Aponeurosis Size an Independent Risk Factor for Strain Injury? Int. J. Sports Med. 2020, 41, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Rehorn, M.R.; Blemker, S.S. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J. Biomech. 2010, 43, 2574–2581. [Google Scholar] [CrossRef] [Green Version]
- Tarantino, D.; Brancaccio, P. Sports Injury prevention: A concise review. Pharmacologyonline 2019, 1, 1–11. [Google Scholar]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Freckleton, G.; Pizzari, T. Risk factors for hamstring muscle strain injury in sport: A systematic review and meta-analysis. Br. J. Sports Med. 2013, 47, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates, Publishers: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; Wiley-Blackwell: Chichester, UK; Hoboken, NJ, USA, 2008. [Google Scholar]
- Sterne, J.A.C.; Egger, M.; Smith, G.D. Systematic reviews in health care: Investigating and dealing with publication and other biases in meta-analysis. BMJ 2001, 323, 101–105. [Google Scholar] [CrossRef]
- Green, B.; Bourne, M.N.; Pizzari, T. Isokinetic strength assessment offers limited predictive validity for detecting risk of future hamstring strain in sport: A systematic review and meta-analysis. Br. J. Sports Med. 2018, 52, 329–336. [Google Scholar] [CrossRef]
- Bourne, M.N.; Opar, D.A.; Williams, M.D.; Shield, A.J. Eccentric knee flexor strength and risk of hamstring injuries in rugby union. Am. J. Sports Med. 2015, 43, 2663–2670. [Google Scholar] [CrossRef] [PubMed]
- Mühlenfeld, N.; Steendahl, I.B.; Berthold, D.P.; Meyer, T.; Hauser, T.; Wagner, N.; Sander, A.-L.; Marzi, I.; Kaltenbach, B.; Yel, I.; et al. Assessment of muscle volume using magnetic resonance imaging (MRI) in football players after hamstring injuries. Eur. J. Sport Sci. 2021, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Nagano, Y.; Higashihara, A.; Edama, M. Change in muscle thickness under contracting conditions following return to sports after a hamstring muscle strain injury—A pilot study. Asia-Pac. J. Sport. Med. Arthrosc. Rehabil. Technol. 2015, 2, 63–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourne, M.N.; Opar, D.A.; Williams, M.D.; Al Najjar, A.; Shield, A.J. Muscle activation patterns in the Nordic hamstring exercise: Impact of prior strain injury. Scand. J. Med. Sci. Sport. 2016, 26, 666–674. [Google Scholar] [CrossRef] [Green Version]
- Silder, A.; Reeder, S.B.; Thelen, D.G. The influence of prior hamstring injury on lengthening muscle tissue mechanics. J. Biomech. 2010, 43, 2254–2260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fyfe, J.J.; Opar, D.A.; Williams, M.D.; Shield, A.J. The role of neuromuscular inhibition in hamstring strain injury recurrence. J. Electromyogr. Kinesiol. 2013, 23, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Sole, G.; Milosavljevic, S.; Nicholson, H.; Sullivan, S.J. Altered muscle activation following hamstring injuries. Br. J. Sports Med. 2012, 46, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Sole, G.; Milosavljevic, S.; Nicholson, H.; Sullivan, S.J. Selective Strength Loss and Decreased Muscle Activity in Hamstring Injury. J. Orthop. Sports Phys. Ther. 2011, 41, 354–363. [Google Scholar] [CrossRef]
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): A prospective cohort study. Br. J. Sports Med. 2016, 50, 1524–1535. [Google Scholar] [CrossRef]
- Kellis, E.; Galanis, N.; Natsis, K.; Kapetanos, G. Validity of architectural properties of the hamstring muscles: Correlation of ultrasound findings with cadaveric dissection. J. Biomech. 2009, 42, 2549–2554. [Google Scholar] [CrossRef]
- Sahinis, C.; Kellis, E.; Galanis, N.; Dafkou, K.; Ellinoudis, A. Intra- and inter-muscular differences in the cross-sectional area of the quadriceps muscles assessed by extended field-of-view ultrasonography. Med. Ultrason. 2020, 22, 152–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miokovic, T.; Armbrecht, G.; Felsenberg, D.; Belavy, D.L. Heterogeneous atrophy occurs within individual lower limb muscles during 60 days of bed rest. J. Appl. Physiol. 2012, 113, 1545–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opar, D.A.; Williams, M.D.; Shield, A.J. Hamstring strain injuries: Factors that lead to injury and re-injury. Sports Med. 2012, 42, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Timmins, R.G.; Opar, D.A.; Williams, M.D.; Schache, A.G.; Dear, N.M.; Shield, A.J. Reduced biceps femoris myoelectrical activity influences eccentric knee flexor weakness after repeat sprint running. Scand. J. Med. Sci. Sports 2014, 24, e299–e305. [Google Scholar] [CrossRef] [Green Version]
- Askling, C.M.; Heiderscheit, B.C. Acute hamstring muscle injury: Types, rehabilitation, and return to sports. In Sports Injuries: Prevention, Diagnosis, Treatment and Rehabilitation, 2nd ed.; Doral, M., Karlsson, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 2137–2147. ISBN 9783642365690. [Google Scholar]
Study | 1 | 2 | 3 | 5 | 6 | 7 | 10 | 11 | 12 | 16 | 18 | 20 | 21 | 25 | 27 | 28 | 29 | Total | % | Quality |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Avrillon et al. [22] | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 14 | 70 | High |
Bourne et al. [33] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 2 | 0 | 14 | 70 | High |
de Lima-E-Silva et al. [19] | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 2 | 0 | 14 | 70 | High |
Freitas et al. [24] | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 2 | 0 | 14 | 70 | High |
Mühlenfeld et al. [34] | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 2 | 2 | 16 | 80 | High |
Nagano et al. [35] | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 9 | 45 | Low |
Nin et al. [20] | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 10 | 50 | Low |
Sanfilippo et al. [6] | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 17 | 85 | High |
Silder et al. [23] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 2 | 1 | 13 | 65 | Low |
Timmins et al. [18] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 16 | 80 | High |
Timmins et al. [21] | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 13 | 65 | Low |
Study | Participants (Age) | Injured Muscle | Time from Injury | Muscle | Architecture | Imaging Technique |
---|---|---|---|---|---|---|
Avrillon et al. [22] | 17 M elite sprinters and long jumpers (26.3 ± 5.5 yrs) | BFlh | 98.2 ± 53.3 days | BFlh, BFsh, ST and SM | PCSA, MV, FL *, PA * | MRI and US |
Bourne et al. [33] | 10 M recreationally active, (21.6 ± 1.9 yrs) | 7 BFlh, 2 ST, 1 SM | within the previous 24 months | Hamstrings | ACSA | MRI |
de Lima-E-Silva et al. [19] | 80 M football players I: 20 (22.10 ± 3.65 yrs), CG: 60 (19.25 ± 2.40 yrs) | (Not specified) | Prior football season | BFlh | FL | US |
Freitas et al. [24] | 40 M professional football players I: 9 (28.6 ± 5.2 yrs), CG: 31 (23.3 ± 4.3 yrs) | BFlh | 1.41 ± 1.04 years | BFlh | MV, ACSA, aponeurosis | MRI |
Mühlenfeld et al. [34] | 20 M football players (25 ± 4 yrs) | Whole group | 45 ± 15 h | Hamstrings | MV | MRI |
Nagano et al. [35] | 6 M track and field sprinters (20.3 ± 0.8 yrs) | Not specified | 2–8 weeks | BFlh, ST | MT | US |
Nin et al. [20] | 15 M athletes, IG:5 (22.8 ± 1.9 yrs) CG: 10 (23.2 ± 2.1 yrs) | BFlh | 18 months | BFlh, ST | MT, PA, FL | US |
Sanfilippo et al. [6] | IG: 22 M and F recreational athletes (24 ± 9 yrs) | 16 BFlh, 4 SM, 2 SM | 26 (17–49 days) | BFlh, BFsh ST | MV | MRI |
Silder et al. [23] | IG: 18 M and F athletes (24 ± 9 yrs) | BFlh | 5–13 months | BFlh | Tendon volume | MRI |
Timmins et al. [18] | 20 M recreationally active and 16 elite athletes IG:16 (23.7 ± 3.3 yrs), CG: 20 (26.1 ± 7.4 yrs) | BFlh | 18 months | BFlh | MT, PA, FL | US |
Timmins et al. [21] | 30 M elite Australian Football IG:12 (22.9 ± 2.6 yrs), CG: 18 (23.5 ± 3.9 yrs) | BFlh | 12 months | BFlh | FL, MT, PA | US |
Parameter | Risk Bias | Diff | Evidence Level | Studies |
---|---|---|---|---|
Fascicle Length | ||||
SM, BFsh | Low | ↔ | Moderate | Avrillon et al. [22] |
ST | High | ↔ | Limited | Nin et al. [20] |
BFlh FL/muscle length | Low | ↔ | Moderate | de Lima-E-Silva et al. [19] |
BFlh FL, BFlh FL/muscle thickness at 0, 25, 50 and 75% MVC | Low | ↓ | Moderate | Timmins et al. [18] |
Pennation Angle | ||||
SM | Low | ↔ | Moderate | Avrillon et al. [22] |
BFsh | Low | ↔ | Moderate | Avrillon et al. [22] |
ST | High | ↔ | Limited | Nin et al. et al. [20] |
BFlh at 25, 50 and 75% MVC | Low | ↑ | Moderate | Timmins et al. [18] |
Muscle thickness | ||||
BFlh, ST during contraction | High | ↔ | Limited | Nagano et al. [35] |
BFlh at 25, 50 and 75% MVC | Low | ↔ | Moderate | Timmins et al. [18] |
Physiological Cross-sectional area | ||||
ST, SM, BFlh, BFsh | Low | ↔ | Moderate | Avrillon et al. [22] |
ST/Hamstrings | Low | ↔ | Moderate | Avrillon et al. [22] |
SM/Hamstrings | Low | ↔ | Moderate | Avrillon et al. [22] |
BFlh/Hamstrings | Low | ↓ | Moderate | Avrillon et al. [22] |
Anatomical Cross-sectional area | ||||
BFlh | Low | ↔ | Moderate | Freitas et al. [24] |
Hamstrings | Low | ↔ | Moderate | Bourne et al. [33] |
Muscle Volume | ||||
SM | Low | ↔ | Moderate | Avrillon et al. [22] |
Hamstrings | Low | ↔ | Moderate | Mühlenfeld et al. [34] |
Tendon/aponeurosis | ||||
BFlh aponeurosis Width, Area, Volume | Low | ↔ | Moderate | Freitas et al. [24] |
BFlh tendon Volume | High | ↑ | Lim | Silder et al. [23] |
Parameter | Risk Bias | Diff | Evidence Level | Studies |
---|---|---|---|---|
Fascicle Length | ||||
BFlh FL/muscle length | Low | ↓ | Moderate | de Lima-E-Silva et al. [19] |
BFlh FL/muscle thickness, BFlh FL at 25, 50 and 75% MVC | Low | ↔ | Moderate | Timmins et al. [18] |
ST | High | ↓ | Limited | Nin et al. [20] |
Pennation Angle | ||||
BFlh at 25, 50 and 75% MVC | Low | ↔ | Moderate | Timmins et al. [18] |
ST | High | ↔ | Limited | Nin et al. [20] |
Muscle thickness | ||||
ST | High | ↔ | Limited | Nin et al. [20] |
BFlh at 25, 50 and 75% MVC | Low | ↔ | Moderate | Timmins et al. [18] |
Volume and Cross-sectional area | ||||
BFlh | Low | ↔ | Moderate | Freitas et al. [24] |
Aponeurosis | ||||
BFlh width, area, volume | Low | ↔ | Moderate | Freitas et al. [24] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kellis, E.; Sahinis, C. Is Muscle Architecture Different in Athletes with a Previous Hamstring Strain? A Systematic Review and Meta-Analysis. J. Funct. Morphol. Kinesiol. 2022, 7, 16. https://doi.org/10.3390/jfmk7010016
Kellis E, Sahinis C. Is Muscle Architecture Different in Athletes with a Previous Hamstring Strain? A Systematic Review and Meta-Analysis. Journal of Functional Morphology and Kinesiology. 2022; 7(1):16. https://doi.org/10.3390/jfmk7010016
Chicago/Turabian StyleKellis, Eleftherios, and Chrysostomos Sahinis. 2022. "Is Muscle Architecture Different in Athletes with a Previous Hamstring Strain? A Systematic Review and Meta-Analysis" Journal of Functional Morphology and Kinesiology 7, no. 1: 16. https://doi.org/10.3390/jfmk7010016
APA StyleKellis, E., & Sahinis, C. (2022). Is Muscle Architecture Different in Athletes with a Previous Hamstring Strain? A Systematic Review and Meta-Analysis. Journal of Functional Morphology and Kinesiology, 7(1), 16. https://doi.org/10.3390/jfmk7010016