The Influence of Music Preference on Exercise Responses and Performance: A Review
Abstract
:1. Introduction
2. General Exercise Responses While Listening to Music
2.1. Psychological
2.2. Physiological
3. Music Preference and Exercise Performance
3.1. Endurance Exercise
3.2. Anaerobic and Sprint Exercise
3.3. Resistance Exercise
3.4. Pre-Task/Warm-up Music and Performance
4. Practical Applications and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mithen, S.; Morley, I.; Wray, A.; Tallerman, M.; Gamble, C. The Singing Neanderthals: The Origins of Music, Language, Mind and Body. Camb. Archaeol. J. 2006, 16, 97–112. [Google Scholar] [CrossRef]
- O′Connell, J.M.; Castelo-Branco, S.E.-S. Music and Conflict; University of Illinois Press: Champaign, IL, USA, 2010. [Google Scholar]
- Surette, T.W. Music and Life: A Study of the Relations Between Ourselves and Music; Houghton Mifflin Co.: Boston, MA, USA, 1917. [Google Scholar]
- Karageorghis, C.I. The scientific application of music in sport and exercise. Sport Exerc. Psychol. 2008, 109, 138. [Google Scholar]
- Bateman, A.; Bale, J. Sporting Sounds: Relationships between Sport and Music; Routledge: Oxfordshire, UK, 2008. [Google Scholar]
- Hallett, R.; Lamont, A. How do gym members engage with music during exercise? Qual. Res. Sport Exerc. Health 2015, 7, 411–427. [Google Scholar] [CrossRef] [Green Version]
- Laukka, P.; Quick, L. Emotional and motivational uses of music in sports and exercise: A questionnaire study among athletes. Psychol. Music 2013, 41, 198–215. [Google Scholar] [CrossRef]
- Nakamura, P.M.; Pereira, G.; Papini, C.B.; Nakamura, F.Y.; Kokubun, E. Effects of preferred and nonpreferred music on continuous cycling exercise performance. Percept. Mot. Ski. 2010, 110, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Karow, M.C.; Rogers, R.R.; Pederson, J.A.; Williams, T.D.; Marshall, M.R.; Ballmann, C.G. Effects of Preferred and Nonpreferred Warm-Up Music on Exercise Performance. Percept. Mot. Ski. 2020, 127, 912–924. [Google Scholar] [CrossRef]
- Stork, M.J.; Kwan, M.Y.; Gibala, M.J.; Martin Ginis, K.A. Music enhances performance and perceived enjoyment of sprint interval exercise. Med. Sci. Sports Exerc. 2015, 47, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, K.J.; Sosa, S.R.; Rogers, R.R.; Kopec, T.J.; Ballmann, C.G. Sex Differences in Response to Listening to Self-Selected Music during Repeated High-Intensity Sprint Exercise. Sexes 2021, 2, 60–68. [Google Scholar] [CrossRef]
- Ballmann, C.G.; Cook, G.D.; Hester, Z.T.; Kopec, T.J.; Williams, T.D.; Rogers, R.R. Effects of Preferred and Non-Preferred Warm-Up Music on Resistance Exercise Performance. J. Funct. Morphol. Kinesiol. 2021, 6, 3. [Google Scholar] [CrossRef]
- Ballmann, C.G.; Favre, M.L.; Phillips, M.T.; Rogers, R.R.; Pederson, J.A.; Williams, T.D. Effect of Pre-Exercise Music on Bench Press Power, Velocity, and Repetition Volume. Percept. Mot. Ski. 2021, 00315125211002406. [Google Scholar] [CrossRef]
- Ballmann, C.G.; McCullum, M.J.; Rogers, R.R.; Marshall, M.M.; Williams, T.D. Effects of Preferred vs. Nonpreferred Music on Resistance Exercise Performance. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Boutcher, S.H.; Trenske, M. The effects of sensory deprivation and music on perceived exertion and affect during exercise. J. Sport Exerc. Psychol. 1990, 12, 167–176. [Google Scholar] [CrossRef]
- Ballmann, C.G.; Maynard, D.J.; Lafoon, Z.N.; Marshall, M.R.; Williams, T.D.; Rogers, R.R. Effects of Listening to Preferred versus Non-Preferred Music on Repeated Wingate Anaerobic Test Performance. Sports 2019, 7, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, D.T.; Wright, M.J.; Karageorghis, C.I. Tempo and intensity of pre-task music modulate neural activity during reactive task performance. Psychol. Music 2014, 42, 714–727. [Google Scholar] [CrossRef] [Green Version]
- Biagini, M.S.; Brown, L.E.; Coburn, J.W.; Judelson, D.A.; Statler, T.A.; Bottaro, M.; Tran, T.T.; Longo, N.A. Effects of self-selected music on strength, explosiveness, and mood. J. Strength Cond. Res. 2012, 26, 1934–1938. [Google Scholar] [CrossRef] [Green Version]
- Terry, P.C.; Karageorghis, C.I.; Saha, A.M.; D’Auria, S. Effects of synchronous music on treadmill running among elite triathletes. J.Sci. Med. Sport 2012, 15, 52–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, S.D.; Karageorghis, C.I. The effects of synchronous music on 400-m sprint performance. J. Sports Sci. 2006, 24, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Bacon, C.; Myers, T.; Karageorghis, C. Effect of music-movement synchrony on exercise oxygen consumption. J. Sports Med. Phys. Fit. 2012, 52, 359. [Google Scholar]
- Hsu, D.Y.; Huang, L.; Nordgren, L.F.; Rucker, D.D.; Galinsky, A.D. The music of power: Perceptual and behavioral consequences of powerful music. Soc. Psychol. Personal. Sci. 2015, 6, 75–83. [Google Scholar] [CrossRef]
- Atan, T. Effect of music on anaerobic exercise performance. Biol. Sport 2013, 30, 35. [Google Scholar] [CrossRef] [Green Version]
- Pujol, T.J.; Langenfeld, M.E. Influence of music on Wingate Anaerobic Test performance. Percept. Mot. Ski. 1999, 88, 292–296. [Google Scholar] [CrossRef]
- Karageorghis, C.I.; Priest, D.-L. Music in the exercise domain: A review and synthesis (Part I). Int. Rev. Sport Exerc. Psychol. 2012, 5, 44–66. [Google Scholar] [CrossRef] [Green Version]
- Terry, P.C.; Karageorghis, C.I.; Curran, M.L.; Martin, O.V.; Parsons-Smith, R.L. Effects of music in exercise and sport: A meta-analytic review. Psychol. Bull. 2020, 146, 91. [Google Scholar] [CrossRef] [Green Version]
- Horn, T.S.; Smith, A.L. Advances in Sport and Exercise Psychology; Human Kinetics: Champaign, IL, USA, 2018. [Google Scholar]
- Archer, T. Physical exercise and its impact on psychology. Clin. Exp. Psychol. 2016, 2, e104. [Google Scholar] [CrossRef]
- Beedie, C.J.; Terry, P.C.; Lane, A.M. The profile of mood states and athletic performance: Two meta-analyses. J. Appl. Sport Psychol. 2000, 12, 49–68. [Google Scholar] [CrossRef]
- Juslin, P.N. From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions. Phys. Life Rev. 2013, 10, 235–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, W.F.; Schellenberg, E.G.; Husain, G. Arousal, mood, and the Mozart effect. Psychol. Sci. 2001, 12, 248–251. [Google Scholar] [CrossRef]
- Leunes, A.; Burger, J. Profile of mood states research in sport and exercise psychology: Past, present, and future. J. Appl. Sport Psychol. 2000, 12, 5–15. [Google Scholar] [CrossRef]
- Hardy, C.J.; Rejeski, W.J. Not what, but how one feels: The measurement of affect during exercise. J. Sport Exerc. Psychol. 1989, 11, 304–317. [Google Scholar] [CrossRef]
- Frijda, N.H. The Emotions; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Kilpatrick, M.; Kraemer, R.; Bartholomew, J.; Acevedo, E.; Jarreau, D. Affective responses to exercise are dependent on intensity rather than total work. Med. Sci. Sports Exerc. 2007, 39, 1417–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carraro, A.; Paoli, A.; Gobbi, E. Affective response to acute resistance exercise: A comparison among machines and free weights. Sport Sci. Health 2018, 14, 283–288. [Google Scholar] [CrossRef]
- Hutchinson, J.C.; Jones, L.; Vitti, S.N.; Moore, A.; Dalton, P.C.; O’Neil, B.J. The influence of self-selected music on affect-regulated exercise intensity and remembered pleasure during treadmill running. Sport Exerc. Perform. Psychol. 2018, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Elliott, D.; Carr, S.; Savage, D. Effects of motivational music on work output and affective responses during sub-maximal cycling of a standardized perceived intensity. J. Sport Behav. 2004, 27, 134. [Google Scholar]
- Brownley, K.A.; McMurray, R.G.; Hackney, A.C. Effects of music on physiological and affective responses to graded treadmill exercise in trained and untrained runners. Int. J. Psychophysiol. 1995, 19, 193–201. [Google Scholar] [CrossRef]
- Calik-Kutukcu, E.; Saglam, M.; Vardar-Yagli, N.; Cakmak, A.; Inal-Ince, D.; Bozdemir-Ozel, C.; Sonbahar-Ulu, H.; Arikan, H.; Yalcin, E.; Karakaya, J. Listening to motivational music while walking elicits more positive affective response in patients with cystic fibrosis. Complement. Ther. Clin. Pract. 2016, 23, 52–58. [Google Scholar] [CrossRef]
- Chtourou, H.; Hmida, C.; Souissi, N. Effect of music on short-term maximal performance: Sprinters vs. long distance runners. Sport Sci. Health 2017, 13, 213–216. [Google Scholar] [CrossRef]
- Chtourou, H.; Jarraya, M.; Aloui, A.; Hammouda, O.; Souissi, N. The effects of music during warm-up on anaerobic performances of young sprinters. Sci. Sports 2012, 27, e85–e88. [Google Scholar] [CrossRef]
- Stennett, R.G. The relationship of performance level to level of arousal. J. Exp. Psychol. Hum. Percept. Perform. 1957, 54, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Karageorghis, C.I.; Terry, P.C. The psychophysical effects of music in sport and exercise: A review. J. Sport Behav. 1997, 20, 54. [Google Scholar]
- Edworthy, J.; Waring, H. The effects of music tempo and loudness level on treadmill exercise. Ergonomics 2006, 49, 1597–1610. [Google Scholar] [CrossRef]
- Bigliassi, M.; Karageorghis, C.I.; Bishop, D.T.; Nowicky, A.V.; Wright, M.J. Cerebral effects of music during isometric exercise: An fMRI study. Int. J. Psychophysiol. 2018, 133, 131–139. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Du, X. The Effect of Musical Stimulation in Sports on Sports Fatigue of College Students. J. Internet Technol. 2021, 22, 187–195. [Google Scholar]
- Jing, L.; Xudong, W. Evaluation on the effects of relaxing music on the recovery from aerobic exercise-induced fatigue. J. Sports Med. Phys. Fit. 2008, 48, 102–106. [Google Scholar]
- Moss, S.L.; Enright, K.; Cushman, S. The influence of music genre on explosive power, repetitions to failure and mood responses during resistance exercise. Psychol. Sport Exerc. 2018, 37, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.; Karageorghis, C.I.; Ekkekakis, P. Can high-intensity exercise be more pleasant? Attentional dissociation using music and video. J. Sport Exerc. Psychol. 2014, 36, 528–541. [Google Scholar] [CrossRef] [Green Version]
- Lingham, J.; Theorell, T. Self-selected “favourite” stimulative and sedative music listening–how does familiar and preferred music listening affect the body? Nord. J. Music Ther. 2009, 18, 150–166. [Google Scholar] [CrossRef]
- Karageorghis, C.I.; Bigliassi, M.; Guérin, S.M.; Delevoye-Turrell, Y. Brain mechanisms that underlie music interventions in the exercise domain. Prog. Brain Res. 2018, 240, 109–125. [Google Scholar]
- Jia, T.; Ogawa, Y.; Miura, M.; Ito, O.; Kohzuki, M. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise. PLoS ONE 2016, 11, e0148648. [Google Scholar] [CrossRef]
- Yamamoto, T.; Ohkuwa, T.; Itoh, H.; Kitoh, M.; Terasawa, J.; Tsuda, T.; Kitagawa, S.; Sato, Y. Effects of pre-exercise listening to slow and fast rhythm music on supramaximal cycle performance and selected metabolic variables. Arch. Biochem. Biophys. 2003, 111, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Szmedra, L.; Bacharach, D. Effect of music on perceived exertion, plasma lactate, norepinephrine and cardiovascular hemodynamics during treadmill running. Int. J. Sports Med. 1998, 19, 32–37. [Google Scholar] [CrossRef]
- Franco-Alvarenga, P.E.; Brieztke, C.; Canestri, R.; Pires, F.O. Psychophysiological responses of music on physical performance: A critical review. Rev. Bras. De Ciência E Mov. 2019, 27, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, S.; Iwai, K.; Akimoto, T.; Sugawara, J.; Kono, I. Effects of music during exercise on RPE, heart rate and the autonomic nervous system. J. Sports Med. Phys. Fit. 2006, 46, 425–430. [Google Scholar]
- Rodriguez-Fornells, A.; Rojo, N.; Amengual, J.L.; Ripollés, P.; Altenmüller, E.; Münte, T.F. The involvement of audio–motor coupling in the music-supported therapy applied to stroke patients. Ann. N. Y. Acad. Sci. 2012, 1252, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Centala, J.; Pogorel, C.; Pummill, S.W.; Malek, M.H. Listening to Fast-Tempo Music Delays the Onset of Neuromuscular Fatigue. J. Strength Cond. Res. 2020, 34, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, L.; Boone, T.; Huschle, B. Cardiovascular responses to music tempo during steady-state exercise. J. Exerc. Physiol. Online 2009, 12, 50–56. [Google Scholar]
- Jones, A.M.; Burnley, M. Oxygen uptake kinetics: An underappreciated determinant of exercise performance. Int. J. Sports Physiol. Perform. 2009, 4, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Sonmez, G.T.; Vatansever, S.; Olcucu, B.; Cinar, V. Impact of Music on Exercise Performance. Int. J. Rev. Life. Sci. 2015, 5, 1307–1312. [Google Scholar]
- Ghaderi, M.; Chtourou, H.; Nikbakht, H.; Jafari, M.; Chamari, K. Listening Motivational Music: Lactate and Cortisol Response to a Single Circuit Resistance Exercise for Young Male Athletes. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2015, 37, 33–45. [Google Scholar]
- Eliakim, M.; Bodner, E.; Eliakim, A.; Nemet, D.; Meckel, Y. Effect of motivational music on lactate levels during recovery from intense exercise. J. Strength Cond. Res. 2012, 26, 80–86. [Google Scholar] [CrossRef]
- Ghaderi, M.; Rahimi, R.; Azarbayjani, M.A. The effect of motivational and relaxation music on aerobic performance, rating perceived exertion and salivary cortisol in athlete males. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2009, 31, 29–38. [Google Scholar]
- de Souza Vale, R.G.; Rosa, G.; José, R.; Júnior, N.; Martin Dantas, E. Cortisol and physical exercise. J. Res. Gate 2012, 40161. [Google Scholar] [CrossRef]
- Jurcău, R.; Jurcău, I. Influence of music therapy on anxiety and salivary cortisol, in stress induced by short term intense physical exercise. Palestrica Third Millenn. Civiliz. Sport 2012, 13, 321–325. [Google Scholar]
- Peretz, I.; Gaudreau, D.; Bonnel, A.M. Exposure effects on music preference and recognition. Mem. Cogn. 1998, 26, 884–902. [Google Scholar] [CrossRef] [Green Version]
- Dyrlund, A.K.; Wininger, S.R. The effects of music preference and exercise intensity on psychological variables. J. Music Ther. 2008, 45, 114–134. [Google Scholar] [CrossRef]
- Connon, H.A.; Scott, D. The effect of differing types of music and music preference as a dissociative strategy on exercise performance and perceived exertion. J. Exerc. Mov. Sport (SCAPPS Refereed Abstr. Repos.) 2011, 43, 58. [Google Scholar]
- Mitchell, L.A.; MacDonald, R.A.; Brodie, E.E. A comparison of the effects of preferred music, arithmetic and humour on cold pressor pain. Eur. J. Pain 2006, 10, 343–351. [Google Scholar] [CrossRef]
- Tounsi, M.; Jaafar, H.; Aloui, A.; Tabka, Z.; Trabelsi, Y. Effect of listening to music on repeated-sprint performance and affective load in young male and female soccer players. Sport Sci. Health 2019, 15, 337–342. [Google Scholar] [CrossRef]
- Hutchinson, J.C.; Sherman, T. The relationship between exercise intensity and preferred music intensity. Sport Exerc. Perform. Psychol. 2014, 3, 191. [Google Scholar] [CrossRef]
- Cole, Z.; Maeda, H. Effects of listening to preferential music on sex differences in endurance running performance. Percept. Mot. Ski. 2015, 121, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Rasteiro, F.M.; Messias, L.H.D.; Scariot, P.P.M.; Cruz, J.P.; Cetein, R.L.; Gobatto, C.A.; Manchado-Gobatto, F.B. Effects of preferred music on physiological responses, perceived exertion, and anaerobic threshold determination in an incremental running test on both sexes. PLoS ONE 2020, 15, e0237310. [Google Scholar] [CrossRef]
- Nater, U.M.; Abbruzzese, E.; Krebs, M.; Ehlert, U. Sex differences in emotional and psychophysiological responses to musical stimuli. Int. J. Psychophysiol. 2006, 62, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Carlson, E.; Saarikallio, S.; Toiviainen, P.; Bogert, B.; Kliuchko, M.; Brattico, E. Maladaptive and adaptive emotion regulation through music: A behavioral and neuroimaging study of males and females. Front. Hum. Neurosci. 2015, 9, 466. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, J.; Pequignot, J.M.; Peyrin, L.; Monod, H. Sex differences in the sympatho-adrenal response to isometric exercise. Eur. J. Appl. Physiol. 1980, 45, 147–154. [Google Scholar] [CrossRef]
- Wheatley, C.M.; Snyder, E.M.; Johnson, B.D.; Olson, T.P. Sex differences in cardiovascular function during submaximal exercise in humans. Springerplus 2014, 3, 445. [Google Scholar] [CrossRef] [Green Version]
- Archana, R.; Mukilan, R. Beneficial effect of preferential music on exercise induced changes in heart rate variability. J. Clin. Diagn. Res. JCDR 2016, 10, CC09. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, L.; Rickson, D.; Jiang, C. The effects of sedative and stimulative music on stress reduction depend on music preference. Arts Psychother. 2013, 40, 201–205. [Google Scholar] [CrossRef]
- Jebabli, N.; Granacher, U.; Selmi, M.A.; Al-Haddabi, B.; Behm, D.G.; Chaouachi, A.; Haj Sassi, R. Listening to Preferred Music Improved Running Performance without Changing the Pacing Pattern during a 6 Minute Run Test with Young Male Adults. Sports 2020, 8, 61. [Google Scholar] [CrossRef]
- Van Dyck, E.; Buhmann, J.; Lorenzoni, V. Instructed versus spontaneous entrainment of running cadence to music tempo. Ann. N. Y. Acad. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Wilmore, J.H. Influence of motivation on physical work capacity and performance. J. Appl. Physiol. 1968, 24, 459–463. [Google Scholar] [CrossRef]
- Bartolomei, S.; Di Michele, R.; Merni, F. Effects of Self-Selected Music on Maximal Bench Press Strength and Strength Endurance. Percept. Mot. Ski. 2015, 120, 714–721. [Google Scholar] [CrossRef]
- Pearce, K.A. Effects of different types of music on physical strength. Percept. Mot. Ski. 1981, 53, 351–352. [Google Scholar] [CrossRef]
- Karageorghis, C.I.; Drew, K.M.; Terry, P.C. Effects of pretest stimulative and sedative music on grip strength. Percept. Mot. Ski. 1996, 83, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- de Abreu Araújo, M.H.; Júnior, J.T.; Venâncio, P.E.M.; Tolentino, G.P.; Lima, W.A.; Soares, V.; Oliveira-Silva, I. Music ergogenic effect on strength performance: Randomized clinical test. Man. Ther. Posturol. Rehabil. J. 2018, 16, 1–6. [Google Scholar]
- Silva, N.; Rizardi, F.G.; Fujita, R.A.; Villalba, M.M.; Gomes, M.M. Preferred Music Genre Benefits During Strength Tests: Increased Maximal Strength and Strength-Endurance and Reduced Perceived Exertion. Percept. Mot. Ski. 2021, 128, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Peón, R.; Brust-Carmona, H.; Peñaloza-Rojas, J.; Bach-y-Rita, G. The efferent control of afferent signals entering the central nervous system. Ann. N. Y. Acad. Sci. 1961, 89, 866–882. [Google Scholar] [CrossRef] [PubMed]
- Bredin, S.S.; Dickson, D.B.; Warburton, D.E. Effects of varying attentional focus on health-related physical fitness performance. Appl. Physiol. Nutr. Metab. 2013, 38, 161–168. [Google Scholar] [CrossRef]
- Karageorghis, C.I.; Jones, L.; Priest, D.-L.; Akers, R.I.; Clarke, A.; Perry, J.M.; Reddick, B.T.; Bishop, D.T.; Lim, H.B. Revisiting the relationship between exercise heart rate and music tempo preference. Res. Q. Exerc. Sport 2011, 82, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Jarraya, M.; Chtourou, H.; Aloui, A.; Hammouda, O.; Chamari, K.; Chaouachi, A.; Souissi, N. The effects of music on high-intensity short-term exercise in well trained athletes. Asian J. Sports Med. 2012, 3, 233. [Google Scholar] [CrossRef] [Green Version]
- Antioch, I.; Furuta, T.; Uchikawa, R.; Okumura, M.; Otogoto, J.; Kondo, E.; Sogawa, N.; Ciobica, A.; Tomida, M. Favorite Music Mediates Pain-related Responses in the Anterior Cingulate Cortex and Skin Pain Thresholds. J. Pain Res. 2020, 13, 2729–2737. [Google Scholar] [CrossRef]
- Osuch, E.A.; Bluhm, R.L.; Williamson, P.C.; Théberge, J.; Densmore, M.; Neufeld, R.W. Brain activation to favorite music in healthy controls and depressed patients. Neuroreport 2009, 20, 1204–1208. [Google Scholar] [CrossRef] [PubMed]
Study | Conditions | Timing of Music | Exercise | Primary Findings |
---|---|---|---|---|
Dyrlund et al. (2008) | No music, Preferred, Non-preferred | During exercise | Treadmill running | ↑ enjoyment, ↔ RPE (trend towards sig.) |
Nakamura et al. (2010) | No music, Preferred, Non-preferred | During exercise | Cycling | ↑ cycling distance; ↓RPE; ↔ HR |
Connon et al. (2011) | No music, Preferred genre | During exercise | Cycling | ↔ performance ↓RPE |
Cole et al. (2015) | No music, Preferred, Non-preferred | During exercise | 12 min Cooper Running Test | ↑ distance run (females), ↔ distance run (males) |
Archana et al. (2016) | No music, Preferred | Post Exercise | Cycling | ↓ low frequency/high frequency components of HRV |
Ballmann et al. (2018) | Preferred, Non-preferred | During exercise | Bench press | ↑ barbell velocity; ↑ power; ↑ RTF; ↑ motivation |
de Abreu Araújo et al. (2018) | No music, Preferred | During exercise | Bicep curl, Knee Extension | ↑ repetitions to failure |
Ballmann et al. (2019) | Preferred, Non-preferred | During exercise | Wingate sprints | ↔ performance ↓RPE; ↑ motivation |
Karow et al. (2020) | No music, Preferred, Non-preferred | Warm-up | Rowing | ↑ power output; ↓ time; ↑ motivation; ↔ RPE |
Jebabli et al. (2020) | No music, Preferred | During exercise | 6 min Run Test | ↑ running speed; ↑ distance covered; ↓ Blood [La-] ↔RPE |
Rasteiro et al. (2020) | No music, Preferred | During exercise | Incremental Running Test | ↑ HR (females); ↑ RPE (females); ↑ time (females) ↔ outcomes (males) |
Silva et al. (2020) | No music, Preferred genre, Non-preferred genre | During exercise | Hand grip, Lat-pull down | ↑ RTF; ↑ grip strength; ↓RPE |
Ballmann et al. (2021) | No music, Preferred | Pre-task | Bench press | ↑ barbell velocity and power; ↑ RTF; ↑ motivation |
Ballmann et al. (2021) | Preferred, Non-preferred | Warm-up | Bench press | ↑ RTF; ↔ barbell velocity; ↑ motivation; ↔RPE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballmann, C.G. The Influence of Music Preference on Exercise Responses and Performance: A Review. J. Funct. Morphol. Kinesiol. 2021, 6, 33. https://doi.org/10.3390/jfmk6020033
Ballmann CG. The Influence of Music Preference on Exercise Responses and Performance: A Review. Journal of Functional Morphology and Kinesiology. 2021; 6(2):33. https://doi.org/10.3390/jfmk6020033
Chicago/Turabian StyleBallmann, Christopher G. 2021. "The Influence of Music Preference on Exercise Responses and Performance: A Review" Journal of Functional Morphology and Kinesiology 6, no. 2: 33. https://doi.org/10.3390/jfmk6020033
APA StyleBallmann, C. G. (2021). The Influence of Music Preference on Exercise Responses and Performance: A Review. Journal of Functional Morphology and Kinesiology, 6(2), 33. https://doi.org/10.3390/jfmk6020033