Eccentric Force-Velocity Characteristics during a Novel Squat Protocol in Trained Rugby Union Athletes—Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Experimental Procedures
2.4. Statistical Analyses
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Chronic Adaptations to Eccentric Training: A Systematic Review. Sports Med. 2017, 47, 917–941. [Google Scholar] [CrossRef]
- McNeill, C.; Beaven, C.M.; McMaster, D.T.; Gill, N. Eccentric Training Interventions and Team Sport Athletes. J. Funct. Morphol. Kinesiol. 2019, 4, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roig, M.; O’Brien, K.; Kirk, G.; Murray, R.; McKinnon, P.; Shadgan, B.; Reid, W.D. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: A systematic review with meta-analysis. Br. J. Sports Med. 2008, 43, 556–568. [Google Scholar] [CrossRef]
- Laffaye, G.; Wagner, P. Eccentric rate of force development determines jumping performance. Comput. Methods Biomech. Biomed. Eng. 2013, 16, 82–83. [Google Scholar] [CrossRef]
- Spiteri, T.; Newton, R.U.; Binetti, M.; Hart, N.H.; Sheppard, J.M.; Nimphius, S. Mechanical Determinants of Faster Change of Direction and Agility Performance in Female Basketball Athletes. J. Strength Cond. Res. 2015, 29, 2205–2214. [Google Scholar] [CrossRef]
- Komi, P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000, 33, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Mike, J.N.; Cole, N.; Herrera, C.; VanDusseldorp, T.; Kravitz, L.; Kerksick, C.M. The Effects of Eccentric Contraction Duration on Muscle Strength, Power Production, Vertical Jump, and Soreness. J. Strength Cond. Res. 2017, 31, 773–786. [Google Scholar] [CrossRef] [Green Version]
- Shibata, K.; Takizawa, K.; Nosaka, K.; Mizuno, M. Effects of Prolonging Eccentric Phase Duration in Parallel Back-Squat Training to Momentary Failure on Muscle Cross-Sectional Area, Squat One Repetition Maximum, and Performance Tests in University Soccer Players. J. Strength Cond. Res. 2021, 35, 668–674. [Google Scholar] [CrossRef]
- Stasinaki, A.-N.; Zaras, N.; Methenitis, S.; Bogdanis, G.; Terzis, G. Rate of Force Development and Muscle Architecture after Fast and Slow Velocity Eccentric Training. Sports 2019, 7, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zacharia, E.; Spiliopoulou, P.; Methenitis, S.; Stasinaki, A.-N.; Zaras, N.; Papadopoulos, C.; Papadimas, G.; Karampatsos, G.; Bogdanis, G.C.; Terzis, G. Changes in Muscle Power and Muscle Morphology with Different Volumes of Fast Eccentric Half-Squats. Sports 2019, 7, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollander, D.B.; Kraemer, R.R.; Kilpatrick, M.W.; Ramadan, Z.G.; Reeves, G.V.; François, M.; Hebert, E.P.; Tryniecki, J.L. Maximal eccentric and concentric strength discrepancies between young men and women for dynamic resistance exercise. J. Strength Cond. Res. 2007, 21, 37–40. [Google Scholar] [CrossRef]
- Hortobagyi, T.; Katch, F.I. Eccentric and concentric torque-velocity relationships during arm flexion and extension: Influence of strength level. Eur. J. Appl. Physiol. 1990, 60, 395–401. [Google Scholar] [CrossRef]
- Meylan, C.; Cronin, J.; Nosaka, K. Isoinertial Assessment of Eccentric Muscular Strength. Strength Cond. J. 2008, 30, 56–64. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Tsoukos, A.; Brown, L.E.; Selima, E.; Veligekas, P.; Spengos, K.; Terzis, G. Muscle Fiber and Performance Changes after Fast Eccentric Complex Training. Med. Sci. Sports Exerc. 2018, 50, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Reactive and eccentric strength contribute to stiffness regulation during maximum velocity sprinting in team sport athletes and highly trained sprinters. J. Sports Sci. 2020, 38, 29–37. [Google Scholar] [CrossRef]
- Nicol, C.; Avela, J.; Komi, P.V. The Stretch-Shortening Cycle. Sports Med. 2006, 36, 977–999. [Google Scholar] [CrossRef]
- Alcazar, J.; Csapo, R.; Ara, I.; Alegre, L.M. On the Shape of the Force-Velocity Relationship in Skeletal Muscles: The Linear, the Hyperbolic, and the Double-Hyperbolic. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, S.P.; Halkjær-Kristensen, J.; Dyhre-Poulsen, P. Neural inhibition during maximal eccentric and concentric quadriceps contraction: Effects of resistance training. J. Appl. Physiol. 2000, 89, 2249–2257. [Google Scholar] [CrossRef]
- Picerno, P.; Iannetta, D.; Comotto, S.; Donati, M.; Pecoraro, F.; Zok, M.; Tollis, G.; Figura, M.; Varalda, C.; Di Muzio, D.; et al. 1RM prediction: A novel methodology based on the force–velocity and load–velocity relationships. Eur. J. Appl. Physiol. 2016, 116, 2035–2043. [Google Scholar] [CrossRef]
- Hansen, K.T.; Cronin, J.B.; Newton, M.J. Three Methods of Calculating Force-Time Variables in the Rebound Jump Squat. J. Strength Cond. Res. 2011, 25, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Hori, N.; Newton, R.U.; Kawamori, N.; McGuigan, M.R.; Kraemer, W.J.; Nosaka, K. Reliability of Performance Measurements Derived From Ground Reaction Force Data During Countermovement Jump and the Influence of Sampling Frequency. J. Strength Cond. Res. 2009, 23, 874–882. [Google Scholar] [CrossRef] [Green Version]
- Thompson, W.R.; Gordon, N.F.; Pescatello, L.S. ACSM’s Guidelines for Exercise Testing and Prescription, 8th ed.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010. [Google Scholar]
- Hopkins, W.G. Spreadsheets for the analysis of validity and reliability. Sportscience 2015, 19, 36–42. [Google Scholar]
- Fleiss, J.L. The Design and Analysis of Clinical Experiments; John Wiley & Sons: New York, NY, USA, 1999; pp. 6–7. [Google Scholar]
- Rosner, B. Fundamentals of Biostatistics, 8th ed.; Cengage Learning: Boston, MA, USA, 2016. [Google Scholar]
- Bakeman, R. Recommended effect size statistics for repeated measures designs. Behav. Res. Methods 2005, 37, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.P. Quantifying Test-Retest Reliability Using the Intraclass Correlation Coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Schabort, E.J.; Hawley, J.A. Reliability of Power in Physical Performance Tests. Sports Med. 2001, 31, 211–234. [Google Scholar] [CrossRef]
- Atkinson, G.; Nevill, A.M. Statistical Methods For Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Rojas, F.J.; García-Ramos, A. Reliability and magnitude of loaded countermovement jump performance variables: A technical examination of the jump threshold initiation. Sports Biomech. 2019, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Frohm, A.; Halvorsen, K.; Thorstensson, A. A new device for controlled eccentric overloading in training and rehabilitation. Eur. J. Appl. Physiol. 2005, 94, 168–174. [Google Scholar] [CrossRef]
CV (%) | Change in Mean (%) | |
---|---|---|
EPV | ||
AB | 5.8 (5.3 to 6.5) | 12.2 (11.0 to 13.5) |
AC | 7.0 (6.3 to 7.8) | 11.8 (10.3 to 13.3) |
BC | 5.7 (5.2 to 6.3) | −0.4 (−1.5 to 0.7) |
EPF | ||
AB | 3.7 (3.3 to 4.1) | 6.0 (5.2 to 6.7) |
AC | 4.5 (4.1 to 5.0) | 5.8 (4.9 to 6.7) |
BC | 3.2 (2.9 to 3.6) | −0.2 (−0.8 to 0.5) |
EMV | ||
AB | 6.1 (5.5 to 6.8) | 12.7 (11.4 to 14.0) |
AC | 7.6 (6.9 to 8.4) | 11.9 (10.2 to 13.5) |
BC | 6.1 (5.5 to 6.8) | −0.7 (−1.9 to 0.4) |
EMF | ||
AB | 4.8 (4.3 to 5.3) | 3.2 (2.3 to 4.2) |
AC | 4.6 (4.2 to 5.1) | 2.7 (1.8 to 3.6) |
BC | 4.0 (3.6 to 4.5) | −0.5 (−1.3 to 0.3) |
RFD | ||
AB | 13.7 (12.4 to 15.4) | 15.4 (12.5 to 18.4) |
AC | 15.6 (14.1 to 17.5) | 12.7 (9.5 to 16.0) |
BC | 13.6 (12.3 to 15.2) | −2.3 (−4.7 to 0.2) |
RoM | ||
AB | 4.9 (4.3 to 5.8) | 7.6 (6.1 to 9.1) |
AC | 6.6 (5.7 to 7.7) | 8.1 (6.1 to 10.2) |
BC | 2.0 (1.7 to 2.3) | 1.7 (1.1 to 2.3) |
Duration | ||
AB | 6.5 (5.9 to 7.3) | −5.3 (−6.5 to −4.1) |
AC | 7.4 (6.7 to 8.2) | −4.3 (−5.6 to −2.9) |
BC | 6.8 (6.2 to 7.6) | 2.4 (1.1 to 3.8) |
Trial 1 ± SD | Trial 2 ± SD | % Change in Mean (90% CL) | % CV (90% CL) | ICC (90% CL) | |
---|---|---|---|---|---|
EPF | |||||
20 | 2682.7 ± 425.7 | 2661.7 ± 537.3 | −1.4 (−4.3 to 1.5) | 4.3 (3.3 to 6.7) | 0.95 (0.88 to 0.98) * |
40 | 2818.3 ± 420.5 | 2808.0 ± 436.5 | −0.5 (−3.3 to 2.3) | 4.1 (3.1 to 6.3) | 0.94 (0.84 to 0.98) * |
60 | 2996.9 ± 503.6 | 2852.8 ± 462.3 | −4.8 (−7.8 to −1.7) | 4.7 (3.6 to 7.3) | 0.93 (0.83 to 0.97) * |
80 | 3006.9 ± 421.6 | 2911.9 ± 493.9 | −3.5 (−6.5 to −0.5) | 4.5 (3.3 to 6.8) | 0.93 (0.82 to 0.97) * |
100 | 2994.3 ± 392.3 | 2925.5 ± 460.3 | −2.6 (−5.3 to 0.2) | 4.1 (3.1 to 6.3) | 0.93 (0.82 to 0.97) * |
120 | 2941.0 ± 385.1 | 2898.8 ± 459.1 | −1.7 (−4.1 to 0.7) | 3.2 (2.4 to 5.2) | 0.96 (0.88 to 0.99) * |
EPV | |||||
20 | 2.04 ± 0.25 | 2.11 ± 0.26 | 3.8 (−0.4 to 8.2) | 6.1 (4.6 to 9.4) | 0.81 (0.56 to 0.92) |
40 | 1.94 ± 0.21 | 1.98 ± 0.22 | 2.0 (−1.9 to 5.9) | 5.6 (4.2 to 8.6) | 0.79 (0.52 to 0.92) |
60 | 1.81 ± 0.19 | 1.79 ± 0.19 | −1.2 (−3.9 to 1.6) | 4.0 (3.0 to 6.1) | 0.88 (0.71 to 0.95) |
80 | 1.59 ± 0.20 | 1.61 ± 0.18 | 1.5 (−3.0 to 6.1) | 6.6 (4.9 to 10.1) | 0.74 (0.42 to 0.89) |
100 | 1.40 ± 0.18 | 1.41 ± 0.16 | 0.9 (−2.7 to 4.7) | 5.4 (4.1 to 8.3) | 0.84 (0.61 to 0.94) |
120 | 1.24 ± 0.22 | 1.25 ± 0.22 | 0.9 (−5.9 to 8.2) | 9.5 (6.9 to 15.5) | 0.80 (0.49 to 0.93) |
EMF | |||||
20 | 1453.5 ± 213.1 | 1452.8 ± 267.9 | −0.5 (−4.2 to 3.3) | 5.5 (4.1 to 8.5) | 0.91 (0.78 to 0.97) * |
40 | 1611.7 ± 158.4 | 1573.0 ± 232.3 | −2.9 (−7.9 to 2.3) | 7.8 (5.9 to 12.1) | 0.65 (0.28 to 0.85) |
60 | 1835.3 ± 176.7 | 1807.4 ± 208.3 | −1.7 (−5.4 to 2.2) | 5.7 (4.3 to 8.7) | 0.77 (0.48 to 0.91) |
80 | 2015.6 ± 167.5 | 1949.4 ± 188.9 | −3.4 (−6.6 to 0.0) | 5.0 (3.7 to 7.6) | 0.74 (0.43 to 0.90) |
100 | 2187.7 ± 175.2 | 2121.0 ± 197.7 | −3.2 (−6.3 to 0.1) | 4.8 (3.6 to 7.3) | 0.75 (0.44 to 0.90) |
120 | 2273.7 ± 126.7 | 2229.1 ± 180.3 | −2.1 (−4.9 to 0.7) | 3.8 (2.8 to 6.1) | 0.77 (0.43 to 0.91) |
EMV | |||||
20 | 1.43 ± 0.15 | 1.48 ± 0.18 | 3.3 (−0.5 to 7.3) | 5.5 (4.1 to 8.4) | 0.80 (0.55 to 0.92) |
40 | 1.33 ± 0.11 | 1.35 ± 0.14 | 1.1 (−2.7 to 5.0) | 5.7 (4.2 to 8.7) | 0.73 (0.41 to 0.89) |
60 | 1.23 ± 0.14 | 1.21 ± 0.14 | −1.4 (−4.0 to 1.3) | 3.9 (2.9 to 6.0) | 0.91 (0.76 to 0.96) * |
80 | 1.08 ± 0.13 | 1.07 ± 0.13 | −0.1 (−3.8 to 3.7) | 5.6 (4.2 to 8.5) | 0.83 (0.60 to 0.93) |
100 | 0.92 ± 0.14 | 0.92 ± 0.13 | −0.3 (−4.6 to 4.1) | 6.5 (4.9 to 10.0) | 0.82 (0.59 to 0.93) |
120 | 0.79 ± 0.17 | 0.78 ± 0.18 | −1.9 (−7.5 to 4.1) | 7.9 (5.8 to 13.0) | 0.92 (0.77 to 0.97) * |
RFD | |||||
20 | 6631.6 ± 1682.1 | 7144.9 ± 2309.0 | 6.1 (−1.3 to 14.0) | 10.9 (8.1 to 16.9) | 0.90 (0.75 to 0.96) |
40 | 6266.1 ± 1286.9 | 6425.4 ± 1427.9 | 2.4 (−4.9 to 10.3) | 11.2 (8.3 to 17.4) | 0.81 (0.56 to 0.92) |
60 | 6053.9 ± 1494.8 | 5781.8 ± 1370.4 | −4.3 (−9.8 to 1.5) | 8.9 (6.6 to 13.8) | 0.90 (0.76 to 0.96) * |
80 | 5101.4 ± 1296.3 | 4979.0 ± 1306.8 | −2.8 (−11.8 to 7.2) | 15.0 (11.1 to 23.6) | 0.74 (0.42 to 0.89) |
100 | 4120.8 ± 1114.0 | 4125.1 ± 1084.2 | 0.6 (−12.8 to 16.0) | 22.7 (16.7 to 36.3) | 0.50 (0.05 to 0.78) |
120 | 3388.4 ± 1180.5 | 3353.3 ± 1364.8 | −2.1 (−16.3 to 14.5) | 22.5 (16.2 to 38.1) | 0.81 (0.51 to 0.93) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McNeill, C.; Beaven, C.M.; McMaster, D.T.; Gill, N. Eccentric Force-Velocity Characteristics during a Novel Squat Protocol in Trained Rugby Union Athletes—Pilot Study. J. Funct. Morphol. Kinesiol. 2021, 6, 32. https://doi.org/10.3390/jfmk6020032
McNeill C, Beaven CM, McMaster DT, Gill N. Eccentric Force-Velocity Characteristics during a Novel Squat Protocol in Trained Rugby Union Athletes—Pilot Study. Journal of Functional Morphology and Kinesiology. 2021; 6(2):32. https://doi.org/10.3390/jfmk6020032
Chicago/Turabian StyleMcNeill, Conor, C. Martyn Beaven, Daniel T. McMaster, and Nicholas Gill. 2021. "Eccentric Force-Velocity Characteristics during a Novel Squat Protocol in Trained Rugby Union Athletes—Pilot Study" Journal of Functional Morphology and Kinesiology 6, no. 2: 32. https://doi.org/10.3390/jfmk6020032
APA StyleMcNeill, C., Beaven, C. M., McMaster, D. T., & Gill, N. (2021). Eccentric Force-Velocity Characteristics during a Novel Squat Protocol in Trained Rugby Union Athletes—Pilot Study. Journal of Functional Morphology and Kinesiology, 6(2), 32. https://doi.org/10.3390/jfmk6020032