Strength, Endocrine, and Body Composition Alterations across Four Blocks of Training in an Elite 400 m Sprinter
Abstract
:1. Introduction
2. Methods
Subject (Athlete)
3. Training Program and Testing Timeline
4. Blood Collection
5. Body Composition
6. Vertical Jump Assessments
7. Isometric Midthigh Pull Assessments
8. Statistical Analyses
9. Results
Testosterone: Cortisol Ratio, Testosterone, and Cortisol
10. Body Composition
11. Vertical Jumping
12. Isometric Midthigh Pull
13. Discussion
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schiffer, J. The 400 metres. New Stud. Athl. 2008, 23, 7–13. [Google Scholar]
- Nevill, A.M.; Ramsbottom, R.; Nevill, E.M.; Newport, S.; Williams, C. The relative contributions of anaerobic and aerobic energy supply during track 100-, 400- and 800-m performance. J. Sports Med. Phys. Fit. 2008, 48, 138–142. [Google Scholar]
- Zouhal, H.; Jabbour, G.; Jacob, C.; Duvigneau, D.; Botcazou, M.; Abderrahaman, B.A.; Prioux, J.; Moussa, E. Anaerobic and Aerobic Energy System Contribution to 400-m Flat and 400-m Hurdles Track Running. J. Strength Cond. Res. 2010, 24, 2309–2315. [Google Scholar] [CrossRef]
- Dal Pupo, J.; Arins, F.B.; Guglielmo, L.G.A.; da Silva, R.R.C.; Moro, A.R.P.; Dos Santos, S.G. Physiological and neuromuscular indices associated with sprint running performance. Res. Sports Med. 2013, 21, 124–135. [Google Scholar] [CrossRef]
- Hanon, C.; Gajer, B. Velocity and Stride Parameters of World-Class 400-Meter Athletes Compared with Less Experienced Runners. J. Strength Cond. Res. 2009, 23, 524–531. [Google Scholar] [CrossRef]
- Weyand, P.G.; Sternlight, D.B.; Bellizzi, M.J.; Wright, S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 2000, 89, 1991–1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weyand, P.; Sandell, R.F.; Prime, D.N.L.; Bundle, M.W. The biological limits to running speed are im-posed from the ground up. J. Appl. Physiol. 2010, 108, 950–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, M. Year plans for speed and strength endurance for 400 metres runners. Athl. Coach. 1989, 23, 33–44. [Google Scholar]
- Thompson, M.A. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance. Integr. Comp. Biol. 2017, 57, 293–300. [Google Scholar] [CrossRef]
- Stone, M.H.; Bryant, O.H.; Garhammer, J.; McMillan, J.; Rozenek, R. A Theoretical Model of Strength Training. Natl. Strength Coach. Assoc. J. 1982, 4, 36–39. [Google Scholar] [CrossRef]
- Stone, M.H.; Stone, M.E.; Sands, W.A. Principles and Practice of Resistance Training; Human Kinetics: Champaign, IL, USA, 2007. [Google Scholar]
- Painter, K.B.; Haff, G.G.; Ramsey, M.W.; McBride, J.; Triplett, T.; Sands, W.A.; Lamont, H.S.; Stone, M.E.; Stone, M.H. Strength Gains: Block versus Daily Undulating Periodization Weight Training Among Track and Field Athletes. Int. J. Sports Physiol. Perform. 2012, 7, 161–169. [Google Scholar] [CrossRef]
- Painter, K.; Haff, G.G.; Triplett, N.T.; Stuart, C.; Hornsby, G.; Ramsey, M.W.; Bazyler, C.D.; Stone, M.H. Resting Hormone Alterations and Injuries: Block vs. DUP Weight-Training among D-1 Track and Field Athletes. Sports 2018, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Carroll, K.M.; Bernards, J.R.; Bazyler, C.D.; Taber, C.B.; Stuart, C.A.; DeWeese, B.H.; Sato, K.; Stone, M.H. Divergent Performance Outcomes Following Resistance Training Using Repetition Maximums or Relative Intensity. Int. J. Sports Physiol. Perform. 2018, 29, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Issurin, V. Block periodization versus traditional training theory: A review. J. Sports Med. Phys. Fit. 2008, 48, 65–75. [Google Scholar]
- DeWeese, B.H.; Hornsby, G.; Stone, M.; Stone, M.H. The training process: Planning for strength-power training in track and field. Part 1: Theoretical aspects. J. Sport Health Sci. 2015, 4, 308–317. [Google Scholar] [CrossRef] [Green Version]
- DeWeese, B.H.; Hornsby, G.; Stone, M.; Stone, M.H. The training process: Planning for strength–power training in track and field. Part 2: Practical and applied aspects. J. Sport Health Sci. 2015, 4, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Cunanan, A.J.; De Weese, B.H.; Wagle, J.P.; Carroll, M.K.; Sausaman, R.; Hornsby, W.G., III; Haff, G.G.; Triplett, N.T.; Pierce, K.C.; Stone, M.H. The General Adaptation Syndrome: A Foundation for the Concept of Periodization. Sports Med. 2018, 48, 787–797. [Google Scholar] [CrossRef]
- Hornsby, W.G.; Gentles, J.A.; Macdonald, C.J.; Mizuguchi, S.; Ramsey, M.W.; Stone, M.H. Maximum Strength, Rate of Force Development, Jump Height, and Peak Power Alterations in Weightlifters across Five Months of Training. Sports 2017, 5, 78. [Google Scholar] [CrossRef] [Green Version]
- Suarez, D.G.; Mizuguchi, S.; Hornsby, W.G.; Cunanan, A.J.; Marsh, D.J.; Stone, M.H. Phase-Specific Changes in Rate of Force Development and Muscle Morphology Throughout a Block Periodized Training Cycle in Weightlifters. Sports 2019, 7, 129. [Google Scholar] [CrossRef] [Green Version]
- Wetmore, A.B.; Moquin, P.A.; Carroll, K.M.; Fry, A.C.; Hornsby, W.G.; Stone, M.H. The Effect of Training Status on Adaptations to 11 Weeks of Block Periodization Training. Sports 2020, 8, 145. [Google Scholar] [CrossRef]
- Foster, C. Monitoring training in athletes with reference to overtraining syndrome. Med. Sci. Sports Exerc. 1998, 30, 1164–1168. [Google Scholar] [CrossRef]
- Issurin, V. Periodization Training from Ancient Precursors to Structured Block Models. Kinesiology 2014, 46, 3–9. [Google Scholar]
- Williams, T.D.; Tolusso, D.V.; Fedewa, M.V.; Esco, M.R. Comparison of Periodized and Non-Periodized Resistance Training on Maximal Strength: A Meta-Analysis. Sports Med. 2017, 47, 2083–2100. [Google Scholar] [CrossRef] [PubMed]
- Stone, H.; Bryant, O.H.; Hornsby, G.; Cunanan, A.; Mizuguchi, S.; Suarez, D.; South, M.; Marsh, D.J.; Haff, G.; Ramsey, M.; et al. Using the Isometric Mid-thigh Pull in the Monitoring of Weightlifters: 25+ Years of Experience. UKSCA J. 2019, 54, 19–26. [Google Scholar]
- Santos, C.T.D.; Beckham, G.K.; Stone, M.H.; Guppy, S.N.; Haff, G.G. Standardization and meth-odological considerations for the isometric midthigh pull. Strength Cond. J. 2019, 41, 57–79. [Google Scholar]
- Brady, C.J.; Harrison, A.J.; Flanagan, E.P.; Haff, G.G.; Comyns, T.M. The Relationship Between Isometric Strength and Sprint Acceleration in Sprinters. Int. J. Sports Physiol. Perform. 2020, 15, 38–45. [Google Scholar] [CrossRef]
- Healy, R.; Smyth, C.; Kenny, I.C.; Harrison, A.J. Influence of Reactive and Maximum Strength Indicators on Sprint Performance. J. Strength Cond. Res. 2019, 33, 3039–3048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguel, P.J.; Reis, V.M. Speed strength endurance and 400m performance. New Stud. Athl. 2004, 19, 39–45. [Google Scholar]
- McMahon, J.J.; Jones, P.A.; Suchomel, T.J.; Lake, J.; Comfort, P. Influence of the Reactive Strength Index Modified on Force– and Power–Time Curves. Int. J. Sports Physiol. Perform. 2018, 13, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Sole, C.J.; Mizuguchi, S.; Sato, K.; Moir, G.L.; Stone, M.H. Phase Characteristics of the Countermovement Jump Force-Time Curve: A Comparison of Athletes by Jumping Ability. J. Strength Cond. Res. 2018, 32, 1155–1165. [Google Scholar] [CrossRef]
- Mujika, I. Tapering and Peaking for Optimal Performance. Tapering Peaking Optim. Perform. 2009, 1. [Google Scholar] [CrossRef]
- Crewther, B.T.; Cook, C.; Cardinale, M.; Weatherby, R.P.; Lowe, T. Two emerging concepts for elite ath-letes: The short-term effects of testosterone and cortisol on the neuromuscular system and the dose-response training role of these endogenous hormones. Sports Med. 2011, 41, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.G.; Jackson, J.R.; Kawamori, N.; Carlock, J.M.; Hartman, M.J.; Kilgore, J.L.; Morris, R.T.; Ramsey, M.W.; Sands, W.A.; Stone, M.H. Force-Time Curve Characteristics and Hormonal Alterations During an Eleven-Week Training Period in Elite Women Weightlifters. J. Strength Cond. Res. 2008, 22, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, K.; Pakarinen, A.; Alén, M.; Kauhanen, H.; Komi, P.V. Relationships Between Training Volume, Physical Performance Capacity, and Serum Hormone Concentrations During Prolonged Training in Elite Weight Lifters. Endoscopy 1987, 08, S61–S65. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, M.; Stone, M.H. Is Testosterone Influencing Explosive Performance? J. Strength Cond. Res. 2006, 20, 103–107. [Google Scholar] [CrossRef]
- McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the Key Phases of the Countermovement Jump Force-Time Curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Halperin, I. Case Studies in Exercise and Sport Sciences: A Powerful Tool to Bridge the Sci-ence–Practice Gap. Int. J. Sports Physiol. Perform. 2018, 13, 824–825. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Comfort, P.; Lake, J.P. Enhancing the Force-Velocity Profile of Athletes Using Weightlifting Derivatives. Strength Cond. J. 2017, 39, 10–20. [Google Scholar] [CrossRef]
- DeWeese, B.H.; Sams, M.; Serrano, A. Sliding toward Sochi-part I: A review of program-ming tactics used during the 2010–2014 quadrennial. NSCA Coach 2014, 1, 30–43. [Google Scholar]
- Hackney, A.C.; Viru, A. Research Methodology: Endocrinologic Measurements in Exercise Science and Sports Medicine. J. Athl. Train. 2008, 43, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, R.; Hucklebridge, F.; Thorn, L.; Evans, P.; Clow, A. State variation in the cortisol awakening response. Stress 2013, 16, 483–492. [Google Scholar] [CrossRef]
- Kuzawa, C.W.; Georgiev, A.V.; McDade, T.W.; Bechayda, S.A.; Gettler, L.T. Is There a Testosterone Awakening Response in Humans? Adapt. Hum. Behav. Physiol. 2015, 2, 166–183. [Google Scholar] [CrossRef] [Green Version]
- Kutáč, P.; Bunc, V.; Sigmund, M. Whole-body dual-energy X-ray absorptiometry demonstrates better reliability than segmental body composition analysis in college-aged students. PLoS ONE 2019, 14, e215599. [Google Scholar] [CrossRef] [Green Version]
- Gajewski, J.; Michalski, R.; Buśko, K.; Mazur-Różycka, J.; Staniak, Z. Countermovement depth–A variable which clarifies the relationship between the maximum power output and height of a vertical jump. Acta Bioeng. Biomech. 2018, 20, 127–134. [Google Scholar] [PubMed]
- Moir, G.L. Three Different Methods of Calculating Vertical Jump Height from Force Platform Data in Men and Women. Meas. Phys. Educ. Exerc. Sci. 2008, 12, 207–218. [Google Scholar] [CrossRef]
- Cormie, P.I.; McGuigan, M.R.; Newton, R.U. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med. Sci. Sports Exerc. 2010, 42, 1731–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebben, W.P.; Petushek, E.J. Using the Reactive Strength Index Modified to Evaluate Plyometric Per-formance. J. Strength Cond Res. 2010, 24, 1983–1987. [Google Scholar] [CrossRef]
- Bates, B.T.; Haven, B.H. An analysis of the mechanics of highly skilled female runners. Mech. Sport 1973, 4, 237–245. [Google Scholar]
- Bates, B.T.; Osternig, L.R.; James, S.L. Fatigue Effects in Running. J. Mot. Behav. 1977, 9, 203–207. [Google Scholar] [CrossRef]
- Hobara, H.; Inoue, K.; Gomi, K.; Sakamoto, M.; Muraoka, T.; Iso, S.; Kanosue, K. Continuous change in spring-mass characteristics during a 400 m sprint. J. Sci. Med. Sport 2010, 13, 256–261. [Google Scholar] [CrossRef]
- Lachlan, J.; Llion, P.A.; Haff, G.; Gregory, K.; Vincent, G.; Beckman, E.M. Validity and Reliability of a Portable Isometric Mid-Thigh Clean Pull. J. Strength Cond. Res. 2017, 31, 1378–1386. [Google Scholar]
- Vanrenterghem, J.; De Clercq, D.; Cleven, P.V. Necessary precautions in measuring correct vertical jumping height by means of force plate measurements. Ergonomics 2001, 44, 814–818. [Google Scholar] [CrossRef]
- Rhea, M.R. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J. Strength Cond. Res. 2004, 18, 918–920. [Google Scholar]
- Bazyler, C.D.; Mizuguchi, S.; Sole, C.J.; Suchomel, T.J.; Sato, K.; Kavanaugh, A.A.; Brad, E.H.; Stone, M.H. Jumping Performance is Preserved but Not Muscle Thickness in Collegiate Volleyball Players after a Taper. J. Strength Cond. Res. 2018, 32, 1020–1028. [Google Scholar] [CrossRef]
- Mujika, I.; Padilla, S.; Pyne, D.; Busso, T. Physiological Changes Associated with the Pre-Event Taper in Athletes. Sports Med. 2004, 34, 891–927. [Google Scholar] [CrossRef]
- Verkhoshansky, V.Y.; Siff, M.C. Supertraining, 4th ed.; Verkhoshansky Publishing: Moscow, Russia, 1999. [Google Scholar]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Per-formance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Angelo, R.A.; Fernandes, V.; Gil, S.; Kobal, R.; Cesar, C.A.C.; Kitamura, K.; Nakamura, F.Y. Relationship Between Sprint Ability and Loaded/Unloaded Jump Tests in Elite Sprinters. J. Strength Cond. Res. 2015, 29, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Travis, S.K.; Mujika, I.; Gentles, J.A.; Stone, M.H.; Bazyler, C.D. Tapering and Peaking Maximal Strength for Powerlifting Performance: A Review. Sports 2020, 8, 125. [Google Scholar] [CrossRef] [PubMed]
- Bazyler, C.D.; Mizuguchi, S.; Harrison, A.P.; Sato, K.; Kavanaugh, A.A.; DeWeese, B.H.; Stone, M.H. Changes in Muscle Architecture, Explosive Ability, and Track and Field Throwing Performance Throughout a Competitive Season and After a Taper. J. Strength Cond. Res. 2017, 31, 2785–2793. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Chatard, J.; Padilla, S.; Guezennec, C.Y.; Geyssant, A. Hormonal responses to training and its tapering off in com-petitive swimmers: Relationships with performance. Eur. J. Appl. Physiol. 1996, 74, 361–366. [Google Scholar] [CrossRef]
- Joffe, S.A.; Tallent, J. Neuromuscular predictors of competition performance in advanced international female weightlifters: A cross-sectional and longitudinal analysis. J. Sports Sci. 2020, 38, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Villanueva, L.; Welvaert, M.; Pyne, D.B. Swimming Fast When It Counts: A 7-Year Analysis of Olympic and World Championships Performance. Int. J. Sports Physiol. Perform. 2019, 14, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Tønnessen, E.; Sylta, Ø.; Haugen, T.A.; Hem, E.; Svendsen, I.S.; Seiler, S. The road to gold: Training and peaking characteristics in the year prior to a gold medal endurance performance. PLoS ONE 2014, 9, e101796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Block | Week | Sets | Repetitions | Intensity/Day | |||||
---|---|---|---|---|---|---|---|---|---|
Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | ||||
Strength Endurance | 1 | 3 | 10 * | M | Running | ML | Running | L | Running |
2 | 3 | 10 * | MH | Running | M | Running | L | Running | |
3 | 3 | 10 * | H | Running | MH | Running | ML | Running | |
4 | 3 | 5 * | M | Running | M | Running | L | Running | |
Max Strength Phase | 5 | 3 | 5 * | H | Running | MH | Running | M | Running |
6 | 3 | 5 * | H | Running | H | Running | M | Running | |
7 | 3 | 5 * | VH | Running | H | Running | MH | Running | |
8 | 3 | 5 * | ML | Running | L | Running | L | Running | |
Strength–Speed | 9 | 3 | 3 * | Running | H | Running | MH | Running | Running |
10 | 3 | 3 * | Running | VH | Running | H | Running | Running | |
11 | 3 | 3 * | Running | VVH | Running | M | Running | Running | |
12 | 3 | 3 * | Running | ML | Running | L | Running | Running | |
Speed–Strength | 13 | 3 | 3 * | Running | MH | Running | L | Running | Running |
14 | 3 | 3 * | Running | H | Running | M | Running | Running | |
15 | 3 | 3 * | Running | VH | Running | MH | Running | Running | |
16 | 3 | 3 * | Running | L | Running | L | Running | Running |
Day | Strength—Endurance | Strength | Strength–Speed | Speed–Strength |
---|---|---|---|---|
Monday | Back squat Overhead press Lunges Bench press | Back squat Overhead press Dumbell step-up Bench press | ||
Tuesday | ¼ back squats and squat jumps Push press and vertical medicine ball toss Midthigh pull from box and CG CM shrug Nordics * Bench press | Depth jumps * Hurdle hops Loaded countermovement jump (CMJ) Back Squat and box jumps ($) | ||
Wednesday | Clean pull to knee Pull-up Stiff leg deadlift Band assisted Nordics | Clean pull from floor Clean pull from knee Pull-up Stiff leg deadlift | ||
Thursday | CG CM shrug Push press and vertical medicine ball toss Half squat and AEL (#) Deadlift Barbell prone row | Assisted band jumps AEL (#) ¼ loaded CMJ Clean pull and power clean ($) | ||
Friday | front squat overhead press lunges bench press | front squat midthigh pull bench press stiff leg deadlift |
Training Zone/Kind of Training | Lactate (mmol/L) | Rpe | Description | Training Example | |
---|---|---|---|---|---|
1 | Aerobic long intervals | <4 mmol | <3 | 8–10 km interval run with changing intensity | 4 km jog 4× (2′/2′) 4× (1:30″/1:30″) |
2 | Speed endurance type 1 | 6–8 mmol/L | 3–5 | 100–200 m runs with medium and long intervals and submaximal pace (70–85% Vmax) | 4× (5 × 100 m) 1st set: 5 × 100 (16 s)/1:15″ 2nd set: 5 × 100 (15 s)/1:30″ 3rd set: 5 × 100 (14 s)/1:45″ 4th set: 5 × 10 (13 s) Interset recovery: 4′, 6′ and 8′ after 1st, 2nd and 3rd set respectively |
3 | Speed endurance type 2 | 10–12 mmol | 5–7 | 100–200 m runs with medium and long intervals and submaximal to maximal pace (85–100% Vmax) | 5× (2 × 200 m) in 32″; 30″; 28″; 26″ (spikes); 24″ (spikes Inter-repetitions recovery 2′, 2′, 2′, 3′, 3′ Interset recovery: 8′, 10′, 12′, 14′ |
4 | Special endurance | 10–15 mmol | 7–9 | 200–400 m runs with medium and long intervals with submaximal to near maximum pace (70–95% Vmax) | 7 × 400 m in 80″; 76″; 72″; 68″; 64″; 60″; 56″ Rest between reps 2′, 4′, 6′, 8′, 10′ 12′ |
5 | Tempo endurance | 12–17 mmol | 8–10 | 300–500 m runs with medium interval and submaximal intensity | 4 × (500 m + 300 m) 1st set 500 m in 1′40″ 300 m in 57″ (5′ rest between) 4th set 500 m in 1′10″ 300 m in 39″ (10′ rest between sets) |
6 | speed | No data | 4–5 | 40–120 m runs with near maximal intensity (95–100% Vmax) | 2 × 40 m 2 × 60 m 2 × 80 m 1 × 120 m Inter repetitions recovery: 4 min Interset recovery 8 min |
7 | running strength | No data | 4–5 | Bounding, skipping and explosive throws | Jumps to 30 m or 10 repetitions Standing long jumps 3–10 alternate leg hops or bounding |
Block | Aerobic Intervals | Speed Endurance Type 1 | Speed Endurance Type 2 | Special Endurance | Tempo Endurance | Speed | Running Strength | Number of All Training Sessions |
---|---|---|---|---|---|---|---|---|
Strength endurance | 50% | 25% | 25% | 0% | 0% | 0% | 0% | 24 |
Strength | 0% | 25% | 33% | 25% | 16% | 16% | 0% | 24 |
Strength–speed | 5% | 11% | 16% | 16% | 16% | 5% | 27% | 40 |
Speed–strength | 5% | 5% | 35% | 50% | 0 | 5% | 0 | 5 |
Variable | ICC | CV (%) |
---|---|---|
PF | 0.97 | 4% |
RFD100 | 0.85 | 12% |
RFD150 | 0.91 | 10% |
RFD200 | 0.93 | 7.7% |
RFD300 | 0.94 | 6.4% |
Descriptive Values | Percent Change (Δ%) for T, C and T/C | ||||||||
---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T2–T1 Δ% | T3–T2 Δ% | T4–T3 Δ% | T5–T4 Δ% | |
Testosterone [nmol/L] | 27 | 28.9 | 30.9 | 25 | 31.5 | 7% | 6.90% | −19.10% | 26% |
Cortisol [nmol/L] | 305 | 518 | 557 | 573 | 386 | 69% | 7.50% | 2.87% | −32% |
T/C [nmol/L] | 8.9 | 5.6 | 5.5 | 4.4 | 8.2 | −37% | −1.78 | −20% | 86% |
T1 | T2 | T3 | T4 | T5 | |
---|---|---|---|---|---|
Body mass | 76.2 | 75.1 | 75.8 | 76.3 | 74.1 |
BMI [kg/m2] | 22 | 21.6 | 22 | 22 | 21.6 |
Fat mass [kg] | 8.8 | 7.9 | 7.0 | 6.5 | 6.9 |
Fat mass [%] | 11.5 | 10.6 | 9.2 | 8.5 | 9.3 |
Fat–free body mass [kg] | 64.3 | 63.9 | 65.7 | 66.7 | 64.6 |
Bone mineral content [kg] | 3.2 | 3.2 | 3.1 | 3.2 | 3.2 |
T1 | T2 | T3 | T4 | T5 | |
---|---|---|---|---|---|
Jump Height [cm] | 53 0.01 | 50 0.00 | 49.8 0.01 | 52.3 0.00 | 55.9 0.00 |
RSI mod | 0.815 0.04 | 0.759 0.05 | 0.748 0.00 | 0.771 0.02 | 0.852 0.01 |
Velocity at take–off [m/s] | 3.21 0.03 | 3.12 0.04 | 3.11 0.05 | 3.18 0.01 | 3.3 0.02 |
Time to take off [s] | 0.65 0.01 | 0.66 0.04 | 0.66 0.02 | 0.67 0.02 | 0.65 0.01 |
Unweighting phase time [s] | 0.295 0.006 | 0.310 0.035 | 0.314 0.006 | 0.316 0.025 | 0.299 0.015 |
Braking phase time [s] | 0.141 0.009 | 0.141 0.009 | 0.142 0.014 | 0.143 0.006 | 0.138 0.005 |
Propulsion phase time [s] | 0.215 0.005 | 0.211 0.001 | 0.210 0.014 | 0.219 0.004 | 0.219 0.006 |
CMJ depth [cm] | −38 0.00 | −36.2 0.00 | −35.6 0.02 | −38.3 0.01 | −39.7 0.01 |
Peak negative velocity [m/s] | −1.53 0.05 | −1.48 0.03 | −1.49 0.03 | −1.64 −0.09 | −1.68 0.03 |
Peak Eccentric Force [N·kg−1] | 17.3 1.04 | 16.43 0.8 | 16.43 0.97 | 16.6 0.81 | 17.4 0.2 |
Peak Concentric Force [N·kg−1] | 17.6 0.95 | 17.23 0.49 | 16.96 1.06 | 17.16 0.3 | 17.9 0.36 |
Peak Eccentric Power [W·kg−1] | 12.4 2.49 | 11.6 1.3 | 11.83 0.92 | 14.16 2.51 | 15.53 0.66 |
Peak Concentric Power [W·kg−1] | 41.7 1.13 | 40.36 1.44 | 41.23 1.04 | 41.06 0.92 | 44.6 1.68 |
Mean ECC Power [W·kg−1] | 8.04 1.17 | 7.49 0.89 | 7.62 0.50 | 9.1 1.45 | 9.85 0.26 |
Mean CON Power [W·kg−1] | 24.56 1.07 | 23.53 0.56 | 23.56 0.86 | 23.66 0.20 | 25.46 0.86 |
Power Ratio [%] | 32.64 3.25 | 31.81 3.39 | 32.31 1.11 | 38.52 6.44 | 38.7 2.27 |
Eccentric Impulse [N·s−1·kg−1] | 1.49 0.06 | 1.43 0.02 | 1.46 0.04 | 1.6 0.1 | 1.63 0.03 |
Concentric Impulse [N·s−1·kg−1] | 3.28 0.04 | 3.20 0.04 | 3.18 0.04 | 3.25 0.01 | 3.39 0.01 |
T1 vs. T2 | T2 vs. T3 | T3 vs. T4 | T4 vs. T5 | T1 vs. T5 | |
---|---|---|---|---|---|
ΔES; Δ % | |||||
Jump height [cm] | −1.58 −5.7% | −0.16 −0.6% | 1.34 4.0% | 2.0 7.7% | 1.60 5.7% |
RSImod | −1.04 −7.3% | −0.33 −1.3% | 0.46 2.7% | 1.63 10.4% | 0.72 3.7% |
Velocity at take–off [m/s] | −1.61 −2.8% | −0.18 −0.3% | 1.37 2.6% | 2.08 3.4% | 1.67 2.8% |
Time to take off [s] | 0.26 1.5% | 0.09 0.6% | 0.31 2% | −0.54 −3.2% | 0.13 0.8% |
Unweighting phase time [s] | 0.43 4.85% | 0.12 1.29% | 0.07 0.74% | −0.5 −5.27% | 0.12 1.35% |
Braking phase time [s] | 0 0% | 0.06 0.7% | 0.06 0.7% | −0.34 −3.5% | −0.2 −2.1% |
Propulsion phase time [s] | −0.31 −1.9% | −0.11 −0.5% | 0.8 4.3% | 0 0% | 0.37 1.9% |
CMJ Depth [cm] | −0.78 −4.5% | −0.26 −1.7% | 1.18 7.3% | 0.62 3.7% | 0.75 4.5% |
Peak negative velocity [m/s] | −0.58 −3.3% | 0.18 1.4% | 1.55 9.3% | 0.47 2.4% | 1.62 9.8% |
Peak eccentric force [N·kg−1] | −0.67 −5.0% | 0.0 0.0% | 0.13 1.0% | 0.61 4.8% | 0.08 0.6% |
Peak concentric force [N·kg−1] | −0.33 −2.3% | −0.24 −1.2% | 0.18 1.2% | 0.66 4.1% | 0.27 1.7% |
Peak eccentric power [W·kg−1] | − 0.29 −6.5% | 0.08 2.0% | 0.84 19.8% | 0.49 9.6% | 1.12 25.2% |
Peak concentric power [W·kg−1] | −0.66 −3.1% | 0.43 2.0% | −0.08 −0.2% | 1.75 8.5% | 1.44 7.0% |
Peak eccentric power [W·kg−1] | −0.29 −6.5% | 0.08 2.0% | 0.84 19.8% | 0.49 9.6% | 1.12 25.2% |
Mean ECC power [W·kg−1] | −0.36 −6.84% | 0.08 1.73% | 0.98 19.51 | 0.49 8.23% | 1.19 22.5% |
Mean CON power [W·kg−1] | −0.84 −4.2% | 0.02 0.14% | 0.08 0.42% | 1.46 7.6% | 0.73 3.66% |
Power ratio [%] | −0.14 −2.5% | 0.08 1.6% | 1.05 19.2% | 0.03 0.6% | 1.03 18.7% |
Eccentric impulse [N·s−1·kg−1] | −0.61 −4% | 0.25 2.1% | 1.47 9.6% | 0.27 1.9% | 1.38 9.4% |
Concentric impulse [N·s−1·kg−1] | −1.4 −2.4% | −0.41 −0.6% | 1.31 2.2% | 2.44 4.3% | 1.9 3.4% |
Peak Force [N·kg−1] | T1 | T2 | T3 | T4 | T5 |
---|---|---|---|---|---|
34.51 | 36.40 | 38.49 | 37.62 | 36.63 | |
(2.17) | (2.24) | (1.09) | (1.35) | (0.51) |
RFD | T2 | T3 | T4 | T5 |
---|---|---|---|---|
RFD 100 | 103.23 (30.45) | 155.30 (34.14) | 132.20 (16.21) | 122.07 (6.76) |
RFD 150 | 102.03 (28.72) | 137.17 (9.70) | 132.40 (8.07) | 109.90 (9.22) |
RFD 200 | 90.00 (17.87) | 118.27 (4.70) | 114.93 (8.12) | 90.47 (10.14) |
RFD 300 | 65.6 (11.6) | 74.4 (2.3) | 78.5 (5.7) | 60.2 (6.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batra, A.; Wetmore, A.B.; Hornsby, W.G.; Lipinska, P.; Staniak, Z.; Surala, O.; Stone, M.H. Strength, Endocrine, and Body Composition Alterations across Four Blocks of Training in an Elite 400 m Sprinter. J. Funct. Morphol. Kinesiol. 2021, 6, 25. https://doi.org/10.3390/jfmk6010025
Batra A, Wetmore AB, Hornsby WG, Lipinska P, Staniak Z, Surala O, Stone MH. Strength, Endocrine, and Body Composition Alterations across Four Blocks of Training in an Elite 400 m Sprinter. Journal of Functional Morphology and Kinesiology. 2021; 6(1):25. https://doi.org/10.3390/jfmk6010025
Chicago/Turabian StyleBatra, Amit, Alex B. Wetmore, W. Guy. Hornsby, Patrycja Lipinska, Zbigniew Staniak, Olga Surala, and Michael H. Stone. 2021. "Strength, Endocrine, and Body Composition Alterations across Four Blocks of Training in an Elite 400 m Sprinter" Journal of Functional Morphology and Kinesiology 6, no. 1: 25. https://doi.org/10.3390/jfmk6010025
APA StyleBatra, A., Wetmore, A. B., Hornsby, W. G., Lipinska, P., Staniak, Z., Surala, O., & Stone, M. H. (2021). Strength, Endocrine, and Body Composition Alterations across Four Blocks of Training in an Elite 400 m Sprinter. Journal of Functional Morphology and Kinesiology, 6(1), 25. https://doi.org/10.3390/jfmk6010025