Contralateral Muscle Imbalances and Physiological Profile of Recreational Aerial Athletes
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Franklin, J. Intermediate Guide to Aerial Silks; Aerial Physique: Los Angeles, CA, USA, 2015. [Google Scholar]
- Franklin, J. Beginners Guide to Aerial Silks; Aerial Physique: Los Angeles, CA, USA, 2017. [Google Scholar]
- Malkogeorgos, A.; Zaggelidou, E.; Zaggelidis, G.; Christos, G. Physiological Elements Required by Dancers. Sports Sci. Rev. 2013, 22, 343–368. [Google Scholar] [CrossRef]
- Sleeper, M.D.; Kenyon, L.K.; Casey, E. Measuring Fitness in Female Gymnasts: The Gymnastics Functional Measurement Tool. Int. J. Sports Phys. Ther. 2012, 7, 124–138. [Google Scholar] [PubMed]
- Twitchett, A.E.; Koutedakis, A.Y.; Wyon, A.M. Physiological Fitness and Professional Classical Ballet Performance: A Brief Review. J. Strength Cond. Res. 2009, 23, 2732–2740. [Google Scholar] [CrossRef] [PubMed]
- Mellor, S. Beginning Aerial Silks Pose Guide; Aerial Physique: Los Angeles, CA, USA, 2015. [Google Scholar]
- Carlson, C. The natural history and management of hamstring injuries. Curr. Rev. Musculoskelet. Med. 2008, 1, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Gerard, G.; Rosalind, C. Developments in the use of the Hamstring/Quadriceps Ratio for the Assessment of Muscle Balance. J. Sports Sci. Med. 2002, 1, 56–62. [Google Scholar]
- Teixeira, J.; Carvalho, P.; Moreira, C.; Santos, R. Isokinetic Assessment of Muscle Imbalances and Bilateral Differences between Knee Extensores and Flexores’ Strength in Basketball, Footbal, Handball and Volleyball Athletes. Int. J. Sports Sci. 2014, 4, 1–6. [Google Scholar]
- Ruas, C.V.; Pinto, R.S.; Haff, G.G.; Lima, C.D.; Pinto, M.D.; Brown, L.E. Alternative Methods of Determining Hamstrings-to-Quadriceps Ratios: A Comprehensive Review. Sports Med. Open 2019, 5, 11. [Google Scholar] [CrossRef]
- Wanke, E.M.; McCormack, M.; Koch, F.; Wanke, A.; Groneberg, D.A. Acute Injuries in Student Circus Artists with Regard to Gender Specific Differences. Asian J. Sports Med. 2012, 3, 153–160. [Google Scholar] [CrossRef]
- Heyward, V.H. Advanced Fitness Assessment and Exercise Prescription, 7th ed.; Human Kinetics: Champaign, IL, USA, 2014. [Google Scholar]
- Beam, W.; Adams, G. Exercise Physiology Laboratory Manual, 6th ed.; McGraw-Hill Education: New York, NY, USA, 2011. [Google Scholar]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2018. [Google Scholar]
- Zabik, R.M.; Dawson, M.L. Comparison of Force and Peak EMG during a Maximal Voluntary Isometric Contraction at Selected Angles in the Range of Motion for Knee Extension. Percept. Mot. Ski. 1996, 83, 976–978. [Google Scholar] [CrossRef]
- Lester, M.E.; Sharp, M.A.; Werling, W.C.; Walker, L.A.; Cohen, B.S.; Ruediger, T.M. Effect of Specific Short-Term Physical Training on Fitness Measures in Conditioned Men. J. Strength Cond. Res. 2014, 28, 679–688. [Google Scholar] [CrossRef]
- Reese, N.B. Joint Range of Motion and Muscle Length Testing, 2nd ed.; Saunders/Elsevier: St. Louis, MO, USA; Amsterdam, The Netherlands, 2010. [Google Scholar]
- Fieseler, G.; Laudner, K.G.; Irlenbusch, L.; Meyer, H.; Schulze, S.; Delank, K.S.; Hermassi, S.; Bartels, T.; Schwesig, R. Inter-and intrarater reliability of goniometry and hand held dynamometry for patients with subacromial impingement syndrome. J. Exerc. Rehabil. 2017, 13, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Novak, L.P.; Magill, L.A.; Schutte, J.E. Maximal oxygen intake and body composition of female dancers. Graefe’s Arch. Clin. Exp. Ophthalmol. 1978, 39, 277–282. [Google Scholar] [CrossRef]
- George, D.; Elias, Z.; George, P. Physiological Profile of Elite Greek Gymnasts. J. Phys. Educ. Sport 2013, 13, 27–32. [Google Scholar]
- Trexler, E.; Smith-Ryan, A.; Roelofs, E.; Hirsch, K. Body Composition, Muscle Quality and Scoliosis in Female Collegiate Gymnasts: A Pilot Study. Int. J. Sports Med. 2015, 36, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Marina, M.; Rodríguez, F.A. Physiological Demands of Young Women’s Competitive Gymnastic Routines. Biol. Sport 2014, 31, 217–222. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Carrick-Ranson, G.; Hastings, J.L.; Bhella, P.S.; Shibata, S.; Fujimoto, N.; Palmer, D.; Boyd, K.; Levine, B.D. The Effect of Age-related Differences in Body Size and Composition on Cardiovascular Determinants of VO2max. J. Gerontol. Ser. A Bio. Sci. Med. Sci. 2013, 68, 608–616. [Google Scholar] [CrossRef]
- Kenney, W.L.; Wilmore, J.H.; Costill, D.L. Physiology of Sport and Exercise, 7th ed.; Human Kinetics: Champaign, IL, USA, 2019. [Google Scholar]
- Wyon, M.A.; Deighan, M.A.; Nevill, A.M.; Doherty, M.; Morrison, S.L.; Allen, N.; Jobson, S.J.; George, S. The Cardiorespiratory, Anthropometric, and Performance Characteristics of an International/National TouringBallet Company. J. Strength Cond. Res. 2007, 21, 389. [Google Scholar] [CrossRef]
- Liiv, H.; Jürimäe, T.; Mäestu, J.; Purge, P.; Hannus, A.; Jürimäe, J. Physiological characteristics of Elite Dancers of Different Dance Styles. Eur. J. Sport Sci. 2014, 14, 429–436. [Google Scholar] [CrossRef]
- Azevedo, M.A.; Oliveira, R.R.; Vaz, R.J.; Cortes, R.N. Professional Dancers Distinct Biomechanical Pattern during Multidirectional Landings. Med. Sci. Sports Exerc. 2019, 51, 539–547. [Google Scholar] [CrossRef]
- Thompson, B.J.; Cazier, C.S.; Bressel, E.; Dolny, D.G. A Lower Extremity Strength-Based Profile of NCAA Division I Women’s Basketball and Gymnastics Athletes: Implications for Knee Joint Injury Risk Assessment. J. Sports Sci. 2018, 36, 1749–1756. [Google Scholar] [CrossRef]
- Chmelar, R.D.; Schultz, B.B.; Ruhling, R.O.; Shepherd, T.A.; Zupan, M.F.; Fitt, S.S. A Physiologic Profile Comparing Levels and Styles of Female Dancers. Physician Sportsmed. 1988, 16, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Ruas, C.V.; McManus, R.T.; Bentes, C.M.; Costa, P.B. Acute Effects of Proprioceptive Neuromuscular Facilitation on Peak Torque and Muscle Imbalance. J. Funct. Morphol. Kinesiol. 2018, 3, 63. [Google Scholar] [CrossRef]
- Ruas, C.V.; Minozzo, F.; Pinto, M.D.; Brown, L.E.; Pinto, R.S. Lower-Extremity Strength Ratios of Professional Soccer Players According to Field Position. J. Strength Cond. Res. 2015, 29, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Cronin, T.J.; Lawton, T.T.; Harris, T.N.; Kilding, T.A.; McMaster, T.D. A Brief Review of Handgrip Strength and Sport Performance. J. Strength Cond. Res. 2017, 31, 3187–3217. [Google Scholar] [CrossRef] [PubMed]
- Trosclair, D.; Bellar, D.; Judge, L.W.; Smith, J.; Mazerat, N.; Brignac, A. Hand-Grip Strength as a Predictor of Muscular Strength and Endurance. J. Strength Cond. Res. 2011, 25, S99. [Google Scholar] [CrossRef]
- Pool, J.; Binkhorst, R.A.; Vos, J.A. Some anthropometric and physiological data in relation to performance of top female gymnasts. Graefe’s Arch. Clin. Exp. Ophthalmol. 1969, 27, 329–338. [Google Scholar] [CrossRef]
- Mkaouer, B.; Hammoudi-Nassib, S.; Amara, S.; Chaabène, H. Evaluating the Physical and Basic Gymnastics Skills Assessment for Talent Identification in Men’s Artistic Gymnastics Proposed by the International Gymnastics Federation. Biol. Sport. 2018, 35, 383–392. [Google Scholar] [CrossRef]
- Bressel, E.; Yonker, J.C.; Kras, J.; Heath, E.M. Comparison of Static and Dynamic Balance in Female Collegiate Soccer, Basketball, and Gymnastics Athletes. J. Athl. Train. 2007, 42, 42–46. [Google Scholar]
- Martinez, B.R.; Curtolo, M.; Lucato, A.C.S.; Yi, L.C. Balance control, hamstring flexibility and range of motion of the hip rotators in ballet dancers. Eur. J. Physiother. 2014, 16, 212–218. [Google Scholar] [CrossRef]
- Gupta, A.; Fernihough, B.; Bailey, G.; Bombeck, P.; Clarke, A.; Hopper, D. An evaluation of differences in hip external rotation strength and range of motion between female dancers and non-dancers. Br. J. Sports Med. 2004, 38, 778–783. [Google Scholar] [CrossRef]
- Oreb, G.; Ruzić, L.; Matković, B.; Misigoj-Duraković, M.; Vlasić, J.; Ciliga, D. Physical fitness, menstrual cycle disorders and smoking habit in Croatian National Ballet and National Folk Dance Ensembles. Coll. Antropol. 2006, 30, 279. [Google Scholar] [PubMed]
- Lima, C.D.; Brown, L.E.; Ruas, C.V.; Behm, D.G. Effects of Static Versus Ballistic Stretching on Hamstring:Quadriceps Strength Ratio and Jump Performance in Ballet Dancers and Resistance Trained Women. J. Dance Med. Sci. 2018, 22, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.B.; Ruas, C.V.; Smith, C.M. Effects of Stretching and Fatigue on Peak Torque, Muscle Imbalance, and Stability. J. Sports Med. Phys. Fit. 2018, 58, 957. [Google Scholar]
- Davlin, C.D. Dynamic Balance in High Level Athletes. Percept. Mot. Ski. 2004, 98, 1171. [Google Scholar] [CrossRef]
- Ambegaonkar, J.P.; Caswell, S.V.; Winchester, J.B.; Shimokochi, Y.; Cortes, N.; Caswell, A.M. Balance Comparisons Between Female Dancers and Active Nondancers. Res. Q. Exerc. Sport 2013, 84, 24–29. [Google Scholar] [CrossRef]
N = 13 | Strength | Flexibility | Balance and Body Fat Percentage | Predicted VO2max (mL·k−1·min−1) | ||
---|---|---|---|---|---|---|
Dominant Hand Grip (kg) | 25.5 ± 4.3 (20–36) | Sit and Reach (cm) | 44.5 ± 6.0 (30–52) | Unipedal Balance Eyes Open (sec) | 45.1 ± 0 (45.1) | 41.8 ± 2.4 (38.47–45.12) |
Non-Dominant Hand Grip (kg) | 24.4 ± 4.3 (20–32) | Hip Flexion (°) | 128.2 ± 11.4 (113–145) | Unipedal Balance Eyes Closed (sec) | 13.7 ± 12.5 (3.4–45.1) | |
Back (kg) | 83.7 ± 18.0 (60–115) | Hamstring Muscle Length (°) | 108.5 ± 8.5 (94–125) | Skinfolds Body Fat (%) | 18.4 ± 3.4 | |
Dominant Knee Extension (kg) | 33.8 ± 9.4 (20–50) | Hip Extension (°) | 33.5 ± 8.4 (20–46) | |||
Non-Dominant Knee Extension (kg) | 45.5 ± 15.7 (24–71) | Hip Abduction (°) | 45.2 ± 6.7 (34–55) | |||
Dominant Knee Flexion (kg) | 16.8 ± 7.1 (10–35) | Hip Adduction (°) | 113.6 ± 14.7 (82–150) | |||
Non-Dominant Knee Flexion (kg) | 16.4 ± 6.1 (9–27) | Shoulder Flexion (°) | 178.8 ± 3 (170–180) | |||
Dominant H:Q Ratio (kg) | 0.52 ± 0.19 (0.25–0.88) | Shoulder Extension (°) | 63.8 ± 15.4 (39–90) | |||
Non-Dominant H:Q Ratio (kg) | 0.39 ± 0.17 (0.23–0.72) | Shoulder Abduction (°) | 179.8 ± 0.6 (178–180) | |||
Pull-ups | 4.56 ± 3.81 (0–12) | Shoulder Adduction (°) | 64.5 ± 10.4 (51–83) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggieri, R.M.; Costa, P.B. Contralateral Muscle Imbalances and Physiological Profile of Recreational Aerial Athletes. J. Funct. Morphol. Kinesiol. 2019, 4, 49. https://doi.org/10.3390/jfmk4030049
Ruggieri RM, Costa PB. Contralateral Muscle Imbalances and Physiological Profile of Recreational Aerial Athletes. Journal of Functional Morphology and Kinesiology. 2019; 4(3):49. https://doi.org/10.3390/jfmk4030049
Chicago/Turabian StyleRuggieri, Rachel M., and Pablo B. Costa. 2019. "Contralateral Muscle Imbalances and Physiological Profile of Recreational Aerial Athletes" Journal of Functional Morphology and Kinesiology 4, no. 3: 49. https://doi.org/10.3390/jfmk4030049
APA StyleRuggieri, R. M., & Costa, P. B. (2019). Contralateral Muscle Imbalances and Physiological Profile of Recreational Aerial Athletes. Journal of Functional Morphology and Kinesiology, 4(3), 49. https://doi.org/10.3390/jfmk4030049