Contralateral Muscle Imbalances and Physiological Profile of Recreational Aerial Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Franklin, J. Intermediate Guide to Aerial Silks; Aerial Physique: Los Angeles, CA, USA, 2015. [Google Scholar]
- Franklin, J. Beginners Guide to Aerial Silks; Aerial Physique: Los Angeles, CA, USA, 2017. [Google Scholar]
- Malkogeorgos, A.; Zaggelidou, E.; Zaggelidis, G.; Christos, G. Physiological Elements Required by Dancers. Sports Sci. Rev. 2013, 22, 343–368. [Google Scholar] [CrossRef]
- Sleeper, M.D.; Kenyon, L.K.; Casey, E. Measuring Fitness in Female Gymnasts: The Gymnastics Functional Measurement Tool. Int. J. Sports Phys. Ther. 2012, 7, 124–138. [Google Scholar] [PubMed]
- Twitchett, A.E.; Koutedakis, A.Y.; Wyon, A.M. Physiological Fitness and Professional Classical Ballet Performance: A Brief Review. J. Strength Cond. Res. 2009, 23, 2732–2740. [Google Scholar] [CrossRef] [PubMed]
- Mellor, S. Beginning Aerial Silks Pose Guide; Aerial Physique: Los Angeles, CA, USA, 2015. [Google Scholar]
- Carlson, C. The natural history and management of hamstring injuries. Curr. Rev. Musculoskelet. Med. 2008, 1, 120–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerard, G.; Rosalind, C. Developments in the use of the Hamstring/Quadriceps Ratio for the Assessment of Muscle Balance. J. Sports Sci. Med. 2002, 1, 56–62. [Google Scholar]
- Teixeira, J.; Carvalho, P.; Moreira, C.; Santos, R. Isokinetic Assessment of Muscle Imbalances and Bilateral Differences between Knee Extensores and Flexores’ Strength in Basketball, Footbal, Handball and Volleyball Athletes. Int. J. Sports Sci. 2014, 4, 1–6. [Google Scholar]
- Ruas, C.V.; Pinto, R.S.; Haff, G.G.; Lima, C.D.; Pinto, M.D.; Brown, L.E. Alternative Methods of Determining Hamstrings-to-Quadriceps Ratios: A Comprehensive Review. Sports Med. Open 2019, 5, 11. [Google Scholar] [CrossRef]
- Wanke, E.M.; McCormack, M.; Koch, F.; Wanke, A.; Groneberg, D.A. Acute Injuries in Student Circus Artists with Regard to Gender Specific Differences. Asian J. Sports Med. 2012, 3, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Heyward, V.H. Advanced Fitness Assessment and Exercise Prescription, 7th ed.; Human Kinetics: Champaign, IL, USA, 2014. [Google Scholar]
- Beam, W.; Adams, G. Exercise Physiology Laboratory Manual, 6th ed.; McGraw-Hill Education: New York, NY, USA, 2011. [Google Scholar]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2018. [Google Scholar]
- Zabik, R.M.; Dawson, M.L. Comparison of Force and Peak EMG during a Maximal Voluntary Isometric Contraction at Selected Angles in the Range of Motion for Knee Extension. Percept. Mot. Ski. 1996, 83, 976–978. [Google Scholar] [CrossRef]
- Lester, M.E.; Sharp, M.A.; Werling, W.C.; Walker, L.A.; Cohen, B.S.; Ruediger, T.M. Effect of Specific Short-Term Physical Training on Fitness Measures in Conditioned Men. J. Strength Cond. Res. 2014, 28, 679–688. [Google Scholar] [CrossRef]
- Reese, N.B. Joint Range of Motion and Muscle Length Testing, 2nd ed.; Saunders/Elsevier: St. Louis, MO, USA; Amsterdam, The Netherlands, 2010. [Google Scholar]
- Fieseler, G.; Laudner, K.G.; Irlenbusch, L.; Meyer, H.; Schulze, S.; Delank, K.S.; Hermassi, S.; Bartels, T.; Schwesig, R. Inter-and intrarater reliability of goniometry and hand held dynamometry for patients with subacromial impingement syndrome. J. Exerc. Rehabil. 2017, 13, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Novak, L.P.; Magill, L.A.; Schutte, J.E. Maximal oxygen intake and body composition of female dancers. Graefe’s Arch. Clin. Exp. Ophthalmol. 1978, 39, 277–282. [Google Scholar] [CrossRef]
- George, D.; Elias, Z.; George, P. Physiological Profile of Elite Greek Gymnasts. J. Phys. Educ. Sport 2013, 13, 27–32. [Google Scholar]
- Trexler, E.; Smith-Ryan, A.; Roelofs, E.; Hirsch, K. Body Composition, Muscle Quality and Scoliosis in Female Collegiate Gymnasts: A Pilot Study. Int. J. Sports Med. 2015, 36, 1087–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marina, M.; Rodríguez, F.A. Physiological Demands of Young Women’s Competitive Gymnastic Routines. Biol. Sport 2014, 31, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Carrick-Ranson, G.; Hastings, J.L.; Bhella, P.S.; Shibata, S.; Fujimoto, N.; Palmer, D.; Boyd, K.; Levine, B.D. The Effect of Age-related Differences in Body Size and Composition on Cardiovascular Determinants of VO2max. J. Gerontol. Ser. A Bio. Sci. Med. Sci. 2013, 68, 608–616. [Google Scholar] [CrossRef]
- Kenney, W.L.; Wilmore, J.H.; Costill, D.L. Physiology of Sport and Exercise, 7th ed.; Human Kinetics: Champaign, IL, USA, 2019. [Google Scholar]
- Wyon, M.A.; Deighan, M.A.; Nevill, A.M.; Doherty, M.; Morrison, S.L.; Allen, N.; Jobson, S.J.; George, S. The Cardiorespiratory, Anthropometric, and Performance Characteristics of an International/National TouringBallet Company. J. Strength Cond. Res. 2007, 21, 389. [Google Scholar] [CrossRef]
- Liiv, H.; Jürimäe, T.; Mäestu, J.; Purge, P.; Hannus, A.; Jürimäe, J. Physiological characteristics of Elite Dancers of Different Dance Styles. Eur. J. Sport Sci. 2014, 14, 429–436. [Google Scholar] [CrossRef]
- Azevedo, M.A.; Oliveira, R.R.; Vaz, R.J.; Cortes, R.N. Professional Dancers Distinct Biomechanical Pattern during Multidirectional Landings. Med. Sci. Sports Exerc. 2019, 51, 539–547. [Google Scholar] [CrossRef]
- Thompson, B.J.; Cazier, C.S.; Bressel, E.; Dolny, D.G. A Lower Extremity Strength-Based Profile of NCAA Division I Women’s Basketball and Gymnastics Athletes: Implications for Knee Joint Injury Risk Assessment. J. Sports Sci. 2018, 36, 1749–1756. [Google Scholar] [CrossRef]
- Chmelar, R.D.; Schultz, B.B.; Ruhling, R.O.; Shepherd, T.A.; Zupan, M.F.; Fitt, S.S. A Physiologic Profile Comparing Levels and Styles of Female Dancers. Physician Sportsmed. 1988, 16, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Ruas, C.V.; McManus, R.T.; Bentes, C.M.; Costa, P.B. Acute Effects of Proprioceptive Neuromuscular Facilitation on Peak Torque and Muscle Imbalance. J. Funct. Morphol. Kinesiol. 2018, 3, 63. [Google Scholar] [CrossRef]
- Ruas, C.V.; Minozzo, F.; Pinto, M.D.; Brown, L.E.; Pinto, R.S. Lower-Extremity Strength Ratios of Professional Soccer Players According to Field Position. J. Strength Cond. Res. 2015, 29, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Cronin, T.J.; Lawton, T.T.; Harris, T.N.; Kilding, T.A.; McMaster, T.D. A Brief Review of Handgrip Strength and Sport Performance. J. Strength Cond. Res. 2017, 31, 3187–3217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trosclair, D.; Bellar, D.; Judge, L.W.; Smith, J.; Mazerat, N.; Brignac, A. Hand-Grip Strength as a Predictor of Muscular Strength and Endurance. J. Strength Cond. Res. 2011, 25, S99. [Google Scholar] [CrossRef]
- Pool, J.; Binkhorst, R.A.; Vos, J.A. Some anthropometric and physiological data in relation to performance of top female gymnasts. Graefe’s Arch. Clin. Exp. Ophthalmol. 1969, 27, 329–338. [Google Scholar] [CrossRef]
- Mkaouer, B.; Hammoudi-Nassib, S.; Amara, S.; Chaabène, H. Evaluating the Physical and Basic Gymnastics Skills Assessment for Talent Identification in Men’s Artistic Gymnastics Proposed by the International Gymnastics Federation. Biol. Sport. 2018, 35, 383–392. [Google Scholar] [CrossRef]
- Bressel, E.; Yonker, J.C.; Kras, J.; Heath, E.M. Comparison of Static and Dynamic Balance in Female Collegiate Soccer, Basketball, and Gymnastics Athletes. J. Athl. Train. 2007, 42, 42–46. [Google Scholar]
- Martinez, B.R.; Curtolo, M.; Lucato, A.C.S.; Yi, L.C. Balance control, hamstring flexibility and range of motion of the hip rotators in ballet dancers. Eur. J. Physiother. 2014, 16, 212–218. [Google Scholar] [CrossRef]
- Gupta, A.; Fernihough, B.; Bailey, G.; Bombeck, P.; Clarke, A.; Hopper, D. An evaluation of differences in hip external rotation strength and range of motion between female dancers and non-dancers. Br. J. Sports Med. 2004, 38, 778–783. [Google Scholar] [CrossRef] [Green Version]
- Oreb, G.; Ruzić, L.; Matković, B.; Misigoj-Duraković, M.; Vlasić, J.; Ciliga, D. Physical fitness, menstrual cycle disorders and smoking habit in Croatian National Ballet and National Folk Dance Ensembles. Coll. Antropol. 2006, 30, 279. [Google Scholar] [PubMed]
- Lima, C.D.; Brown, L.E.; Ruas, C.V.; Behm, D.G. Effects of Static Versus Ballistic Stretching on Hamstring:Quadriceps Strength Ratio and Jump Performance in Ballet Dancers and Resistance Trained Women. J. Dance Med. Sci. 2018, 22, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.B.; Ruas, C.V.; Smith, C.M. Effects of Stretching and Fatigue on Peak Torque, Muscle Imbalance, and Stability. J. Sports Med. Phys. Fit. 2018, 58, 957. [Google Scholar]
- Davlin, C.D. Dynamic Balance in High Level Athletes. Percept. Mot. Ski. 2004, 98, 1171. [Google Scholar] [CrossRef]
- Ambegaonkar, J.P.; Caswell, S.V.; Winchester, J.B.; Shimokochi, Y.; Cortes, N.; Caswell, A.M. Balance Comparisons Between Female Dancers and Active Nondancers. Res. Q. Exerc. Sport 2013, 84, 24–29. [Google Scholar] [CrossRef]
N = 13 | Strength | Flexibility | Balance and Body Fat Percentage | Predicted VO2max (mL·k−1·min−1) | ||
---|---|---|---|---|---|---|
Dominant Hand Grip (kg) | 25.5 ± 4.3 (20–36) | Sit and Reach (cm) | 44.5 ± 6.0 (30–52) | Unipedal Balance Eyes Open (sec) | 45.1 ± 0 (45.1) | 41.8 ± 2.4 (38.47–45.12) |
Non-Dominant Hand Grip (kg) | 24.4 ± 4.3 (20–32) | Hip Flexion (°) | 128.2 ± 11.4 (113–145) | Unipedal Balance Eyes Closed (sec) | 13.7 ± 12.5 (3.4–45.1) | |
Back (kg) | 83.7 ± 18.0 (60–115) | Hamstring Muscle Length (°) | 108.5 ± 8.5 (94–125) | Skinfolds Body Fat (%) | 18.4 ± 3.4 | |
Dominant Knee Extension (kg) | 33.8 ± 9.4 (20–50) | Hip Extension (°) | 33.5 ± 8.4 (20–46) | |||
Non-Dominant Knee Extension (kg) | 45.5 ± 15.7 (24–71) | Hip Abduction (°) | 45.2 ± 6.7 (34–55) | |||
Dominant Knee Flexion (kg) | 16.8 ± 7.1 (10–35) | Hip Adduction (°) | 113.6 ± 14.7 (82–150) | |||
Non-Dominant Knee Flexion (kg) | 16.4 ± 6.1 (9–27) | Shoulder Flexion (°) | 178.8 ± 3 (170–180) | |||
Dominant H:Q Ratio (kg) | 0.52 ± 0.19 (0.25–0.88) | Shoulder Extension (°) | 63.8 ± 15.4 (39–90) | |||
Non-Dominant H:Q Ratio (kg) | 0.39 ± 0.17 (0.23–0.72) | Shoulder Abduction (°) | 179.8 ± 0.6 (178–180) | |||
Pull-ups | 4.56 ± 3.81 (0–12) | Shoulder Adduction (°) | 64.5 ± 10.4 (51–83) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggieri, R.M.; Costa, P.B. Contralateral Muscle Imbalances and Physiological Profile of Recreational Aerial Athletes. J. Funct. Morphol. Kinesiol. 2019, 4, 49. https://doi.org/10.3390/jfmk4030049
Ruggieri RM, Costa PB. Contralateral Muscle Imbalances and Physiological Profile of Recreational Aerial Athletes. Journal of Functional Morphology and Kinesiology. 2019; 4(3):49. https://doi.org/10.3390/jfmk4030049
Chicago/Turabian StyleRuggieri, Rachel M., and Pablo B. Costa. 2019. "Contralateral Muscle Imbalances and Physiological Profile of Recreational Aerial Athletes" Journal of Functional Morphology and Kinesiology 4, no. 3: 49. https://doi.org/10.3390/jfmk4030049
APA StyleRuggieri, R. M., & Costa, P. B. (2019). Contralateral Muscle Imbalances and Physiological Profile of Recreational Aerial Athletes. Journal of Functional Morphology and Kinesiology, 4(3), 49. https://doi.org/10.3390/jfmk4030049