Blood Flow Restriction Training Prior to and After Anterior Cruciate Ligament Reconstruction: A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Strategy of Search and Databases
2.4. Selection of Sources of Evidence and Data Extraction
2.5. Risk of Bias, Quality of Evidence, and Quality of Exercise Reporting
2.6. Data Items and Synthesis of Results
3. Results
3.1. Study Characteristics and Strength of Recommendations
3.2. Outcome Measures
3.2.1. Body Composition
3.2.2. Neuromuscular Adaptations and Responses
3.2.3. Self-Report Questionnaires
3.2.4. Functional Measurements
3.2.5. Muscle Physiology and Biomarkers
3.2.6. Return to Activity Time
3.3. Exercise Parameters and Reporting Standards
4. Discussion
4.1. Limitations
4.2. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACL | Anterior cruciate ligament |
| ACLR | Anterior cruciate ligament reconstruction |
| BC | Body composition |
| BFR | Blood flow restriction |
| BFR-LL | Blood flow restriction light load |
| BFR-RT | Blood flow restriction resistance training |
| BMD | Bone mineral density |
| BMI | Body mass index |
| BTB | Bone-patella tendon-bone autograft |
| CBFR-HL | Concentric blood flow restriction with heavy load |
| CG | Comparison group |
| CKC | Closed kinetic chain |
| CSA | Cross-sectional area |
| DEXA | Dual-energy X-ray absorptiometry |
| EBFR-HL | Eccentric blood flow restriction with heavy load |
| FI | Fatigue indexes |
| FITT-VP | Frequency, intensity, type, time, volume, and progression |
| FM | Functional measurements |
| HL-RT | High load resistance training |
| HS | Hamstrings tendon |
| IG | Intervention group |
| IKDC | International Knee Documentation Committee |
| IL | Injured leg |
| KE | Knee extension |
| KOOS | Knee Injury and Osteoarthritis Outcome Score |
| LEFS | Lower extremity functional scale |
| LOP | Limb occlusive pressure |
| M | Man |
| MMHG | Millimeters of mercury |
| MRI | Magnetic resonance imaging |
| MPB | Muscle physiology and biomarkers |
| MVIC | Maximum voluntary isometric contraction |
| N | Sample number |
| NMAR | Neuromuscular adaptations and responses |
| N/S | Not specified |
| OKC | Open kinetic chain |
| POST | Posterior |
| POST-OP | Postoperative |
| PRE-OP | Preoperative |
| QRCT | Quasi-randomized controlled trial |
| QT | Quadriceps tendon |
| RCT | Randomized controlled trial |
| RM | Repetition maximum |
| RPE | Rate of perceived exertion |
| RTA | Return to activity |
| RT | Resistance training |
| SRQ | Self-report questionnaires |
| VAS | Visual analog scale |
| W | Woman |
| y.o | Years old |
Appendix A
| Database | Search Fields | Search Terms | Results |
|---|---|---|---|
| Web of Science | Topic (Title, abstract, key words) | (TS = (“vascular occlu *” OR “blood flow restrict *” OR “blood flow occlu *” OR kaatsu OR “partial occlu *”)) AND (TS = (“anterior cruciate ligament reconstruction” OR “ACLR” OR “anterior cruciate ligament surgery” OR “ACL surgery” OR “anterior cruciate ligament”)). | 89 |
| PEDro | Abstract & Title | blood flow restriction * AND anterior cruciate ligament * | 22 |
| Scopus | Title, abstract, key words | (TITLE-ABS-KEY(“vascular occlu *” OR “blood flow restrict *” OR “blood flow occlu *” OR “kaatsu” OR “partial occlu *” ) AND TITLE-ABS-KEY (“anterior cruciate ligament reconstruction” OR “ACLR” OR “anterior cruciate ligament surgery” OR “ACL surgery” OR “anterior cruciate ligament”)) | 112 |
| PUBMED | Title, abstract, key words | (TITLE-ABS-KEY = (“vascular occlu *” OR “blood flow restrict *” OR “blood flow occlu *” OR kaatsu OR “partial occlu *”)) AND (TITLE-ABS-KEY(“anterior cruciate ligament reconstruction” OR “ACLR” OR “anterior cruciate ligament surgery” OR “ACL surgery” OR “anterior cruciate ligament”)) | 74 |
| SPORTDiscuss | Subject terms | (vascular occlu * OR blood flow restrict * OR blood flow occlu * OR kaatsu OR partial occlu *) AND (anterior cruciate ligament reconstruction OR ACLR OR anterior cruciate ligament surgery OR ACL surgery OR anterior cruciate ligament) | 61 |
| Cochrane | Title, abstract, key words | (vascular occlu * OR blood flow restrict * OR blood flow occlu * OR kaatsu OR partial occlu *) AND (anterior cruciate ligament reconstruction OR ACLR OR anterior cruciate ligament surgery OR ACL surgery OR anterior cruciate ligament) | 83 |
Appendix B
| PEDro Scale | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total (0/10) | |
| PRE-OP | Žargi et al. (2016) [49] | Y | Y | Y | Y | N | Y | Y | Y | N | Y | Y | 8 |
| Žargi et al. (2018) [48] | Y | Y | Y | Y | N | Y | N | Y | N | Y | Y | 7 | |
| Kacin et al. (2021) [47] | Y | N | N | Y | Y | N | Y | Y | Y | Y | Y | 7 | |
| Tramer et al. (2022) [46] | Y | Y | N | Y | N | N | Y | Y | Y | Y | Y | 7 | |
| Okoroha et al. (2023) [38] | N | Y | Y | Y | N | N | N | N | Y | Y | Y | 6 | |
| POST-OP | Iversern et al. (2015) [44] | N | Y | N | Y | N | N | Y | Y | N | Y | Y | 6 |
| Hughes et al. (2019a) [40] | N | Y | Y | Y | N | N | Y | Y | N | Y | Y | 7 | |
| Hughes et al. (2019b) [41] | N | Y | Y | Y | N | N | Y | Y | N | Y | Y | 7 | |
| Curran et al. (2020) [43] | Y | Y | Y | Y | N | N | N | Y | N | Y | Y | 6 | |
| Alavi et al. (2020) [52] | Y | Y | N | Y | N | N | N | Y | Y | Y | Y | 7 | |
| Jack et al. (2022) [42] | N | Y | N | Y | N | N | Y | Y | N | Y | Y | 6 | |
| Vieira et al. (2022) [45] | Y | Y | Y | Y | N | N | N | Y | Y | Y | Y | 7 | |
| Khalil et al. (2023) [39] | N | Y | N | Y | Y | N | Y | Y | N | Y | Y | 7 | |
| Sevinc et al. (2024) [50] | Y | Y | N | Y | N | N | Y | Y | N | Y | Y | 6 | |
| PRE- and POST-OP | Erickson et al. (2024) [53] | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | 9 |
Appendix C
| Study | 1 | 2 | 3 | 4 | 5 | 6 | 7a | 7b | 8 | 9 | 10 | 11 | 12 | 13 | 14a | 14b | 15 | 16a | 16b | Overall | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PRE-OP | Žargi et al. (2016) [49] | Y | Y | N | Y | N | N | N | N | Y | Y | N | N | Y | Y | Y | N | Y | N | Y | 10 |
| Žargi et al. (2018) [48] | N | Y | Y | Y | N | N | N | N | Y | Y | N | N | Y | Y | Y | N | Y | N | N | 9 | |
| Kacin et al. (2021) [47] | Y | N | N | Y | N | N | N | N | Y | Y | N | N | Y | Y | Y | N | Y | N | N | 8 | |
| Joseph et al. (2022) [46] | Y | N | Y | Y | N | N | N | Y | Y | Y | N | Y | Y | Y | Y | N | Y | N | N | 10 | |
| Okoroha et al. (2023) [38] | Y | Y | Y | Y | N | N | N | N | Y | Y | N | Y | Y | Y | Y | N | Y | N | N | 12 | |
| TOTAL(%) [46,47,48,49] | 80 | 60 | 60 | 100 | 0 | 0 | 0 | 20 | 100 | 100 | 0 | 40 | 100 | 100 | 100 | 0 | 100 | 0 | 20 | 51.6% | |
| POST-OP | Iversern et al. (2015) [44] | Y | N | Y | Y | N | N | Y | Y | Y | Y | N | N | Y | Y | Y | N | Y | N | N | 11 |
| Hughes et al. (2019a) [40] | Y | Y | N | Y | Y | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 17 | |
| Hughes et al. (2019b) [41] | Y | Y | N | Y | Y | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 17 | |
| Curran et al. (2020) [43] | Y | N | N | Y | N | N | Y | Y | Y | N | N | N | Y | Y | Y | Y | Y | Y | N | 11 | |
| Alavi et al. (2020) [52] | N | N | N | Y | N | N | N | N | Y | N | N | N | Y | Y | Y | Y | Y | N | N | 7 | |
| Jack et al. (2022) [42] | Y | Y | N | Y | N | N | N | Y | Y | N | N | Y | Y | Y | Y | Y | Y | N | N | 11 | |
| Vieira et al. (2022) [45] | Y | N | N | Y | Y | N | Y | Y | Y | N | N | Y | Y | Y | Y | Y | Y | Y | N | 13 | |
| Khalil et al. (2023) [39] | N | N | N | N | N | N | N | Y | N | Y | N | N | Y | Y | Y | N | Y | N | N | 6 | |
| Sevinc et al. (2024) [50] | Y | Y | N | N | N | N | N | Y | Y | Y | N | Y | Y | Y | Y | Y | Y | N | N | 11 | |
| TOTAL (%) [40,41,42,43,44,45,50] | 77.8 | 44.4 | 11.1 | 77.8 | 33.3 | 0 | 55.6 | 88.9 | 88.9 | 55.6 | 22.2 | 55.6 | 100 | 100 | 100 | 77.8 | 100 | 42.9 | 22.2 | 60.8% | |
| PRE- and POST-OP | Erickson et al. (2024) [53] | Y | Y | Y | Y | N | N | Y | Y | Y | N | Y | N | Y | Y | Y | Y | Y | N | N | 13 |
Appendix D

Appendix E
![]() | ![]() | ![]() | |
|---|---|---|---|
| Outcome/Phase | PRE-OP | Early POST-OP (0–2 m) | Medium POST-OP (>2 m) |
| Body Composition | BFR-RT ≥ CSA LL-RT/Sham-BFR (B) | BFR-LL = CSA vs. HL-RT (A) BFR-LL + home-based isometric protocol = Strength/CSA vs. Sham-BFR (C) | BFR-LL = CSA vs. HL-RT (A) BFR-LL ↑ bone mass/lean mass vs. LL-RT (A) |
| Neuromuscular Adaptations | BFR-LL ↑ Strength vs. LL-RT/Sham-BFR (A) | BFR-LL ≥ knee extensors Strength vs. HL-RT (B) | BFR-LL + cross-education = Strength vs. Sham-BFR (B) |
| Self-Reported Outcomes | BFR-LL (home-based PRE-OP) ≥ Strength/CSA vs. LL-RT (B) | BFR-RT ↓Pain vs. HL-RT (S) BFR-LL ↑Pain immediate vs. HL-RT (C) | BFR-LL = Pain/Function vs. LL-RT (B) |
| Functional Measurements | BFR-LL = ROM/Y-balance vs. LL-RT/Sham-BFR (C) | BFR-LL ↑Y-balance vs. HL-RT (A) BFR-LL ↑ knee ROM vs. HL-RT (A) BFR-LL = knee laxity vs. HL-RT (A) | BFR-LL ↑ Y-balance vs. LL-RT(A) |
| Muscle Physiology and Biomarkers | BFR-LL ↑ Vascular/VEGF-A vs. Sham-BFR (S) | No reported | BFR-RT ↓ Atrophy biomarkers vs. LL-RT (B) |
| Return to Activity Time | No reported | No reported | BFR-LL ↓ RTS vs. LL-RT (A) BFR-HL = RTS vs. HL-RT (C) |
References
- Chia, L.; De Oliveira Silva, D.; Whalan, M.; McKay, M.J.; Sullivan, J.; Fuller, C.W.; Pappas, E. Non-Contact Anterior Cruciate Ligament Injury Epidemiology in Team-Ball Sports: A Systematic Review with Meta-Analysis by Sex, Age, Sport, Participation Level, and Exposure Type. Sports Med. 2022, 52, 2447–2467. [Google Scholar] [CrossRef]
- Weitz, F.K.; Sillanpää, P.J.; Mattila, V.M. The incidence of paediatric ACL injury is increasing in Finland. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 363–368. [Google Scholar] [CrossRef]
- Bram, J.T.; Magee, L.C.; Mehta, N.N.; Patel, N.M.; Ganley, T.J. Anterior Cruciate Ligament Injury Incidence in Adolescent Athletes: A Systematic Review and Meta-Analysis. Am. J. Sports Med. 2020, 49, 1962–1972. [Google Scholar] [CrossRef]
- Paudel, Y.R.; Sommerfeldt, M.; Voaklander, D. Increasing incidence of anterior cruciate ligament reconstruction: A 17-year population-based study. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Allahabadi, S.; Rubenstein, W.J.; Lansdown, D.A.; Feeley, B.T.; Pandya, N.K. Incidence of anterior cruciate ligament graft tears in high-risk populations: An analysis of professional athlete and pediatric populations. Knee 2020, 27, 1378–1384. [Google Scholar] [CrossRef]
- Hespanhol, L.C.; Kamper, S.J. Prevention of non-contact anterior cruciate ligament injuries: PEDro synthesis. Br. J. Sports Med. 2015, 49, 133–134. [Google Scholar] [CrossRef]
- Eggerding, V.; Reijman, M.; Meuffels, D.E.; Van Es, E.; Van Arkel, E.; Van Den Brand, I.; van Linge, J.; Zijl, J.; Bierma-Zeinstra, S.M.A.; Koopmanschap, M. ACL reconstruction for all is not cost-effective after acute ACL rupture. Br. J. Sports Med. 2022, 56, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Stewart, B.A.; Momaya, A.M.; Silverstein, M.D.; Lintner, D. The Cost-Effectiveness of Anterior Cruciate Ligament Reconstruction in Competitive Athletes. Am. J. Sports Med. 2017, 45, 23–33. [Google Scholar] [CrossRef]
- Deviandri, R.; van der Veen, H.C.; Lubis, A.M.T.; van den Akker-Scheek, I.; Postma, M.J. Cost-effectiveness of ACL treatment is dependent on age and activity level: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2022, 31, 530–541, Erratum in Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 542. [Google Scholar] [CrossRef]
- Tim-Yun Ong, M.; Fu, S.C.; Mok, S.W.; Franco-Obregón, A.; Lok-Sze Yam, S.; Shu-Hang Yung, P. Persistent quadriceps muscle atrophy after anterior cruciate ligament reconstruction is associated with alterations in exercise-induced myokine production. Asia Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2022, 29, 35–42. [Google Scholar] [CrossRef]
- Baron, J.E.; Parker, E.A.; Duchman, K.R.; Westermann, R.W. Perioperative and Postoperative Factors Influence Quadriceps Atrophy and Strength After ACL Reconstruction: A Systematic Review. Orthop. J. Sports Med. 2020, 8, 2325967120930296. [Google Scholar] [CrossRef]
- Øiestad, B.E.; Juhl, C.B.; Culvenor, A.G.; Berg, B.; Thorlund, J.B. Knee extensor muscle weakness is a risk factor for the development of knee osteoarthritis: An updated systematic review and meta-analysis including 46,819 men and women. Br. J. Sports Med. 2022, 56, 349–355. [Google Scholar] [CrossRef]
- Spiering, B.A.; Clark, B.C.; Schoenfeld, B.J.; Foulis, S.A.; Pasiakos, S.M. Maximizing Strength: The Stimuli and Mediators of Strength Gains and Their Application to Training and Rehabilitation. J. Strength Cond. Res. 2023, 37, 919–929. [Google Scholar] [CrossRef]
- Jorgenson, K.W.; Phillips, S.M.; Hornberger, T.A. Identifying the Structural Adaptations That Drive the Mechanical Load-Induced Growth of Skeletal Muscle: A Scoping Review. Cells 2020, 9, 1658. [Google Scholar] [CrossRef] [PubMed]
- Swinton, P.A.; Schoenfeld, B.J.; Murphy, A. Dose–Response Modelling of Resistance Exercise Across Outcome Domains in Strength and Conditioning: A Meta-Analysis. Sports Med. 2024, 54, 1579–1594. [Google Scholar] [CrossRef] [PubMed]
- Kotsifaki, R.; Korakakis, V.; King, E.; Barbosa, O.; Maree, D.; Pantouveris, M.; Bjerregaard, A.; Luomajoki, J.; Wilhelmsen, J.; Whiteley, R. Aspetar clinical practice guideline on rehabilitation after anterior cruciate ligament reconstruction. Br. J. Sports Med. 2023, 57, 500–514. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.C.; Rivera, P.M.; Proppe, C.E.; Rojas, D.H.G.; Lawson, J.E. Acute effects of low load blood flow restricted and non restricted exercise on muscle excitation, neuromuscular efficiency, and average torque. J. Musculoskelet. Neuronal Interact. 2023, 23, 165. [Google Scholar]
- Olmos, A.A.; Montgomery, T.R.; Sears, K.N.; Dinyer, T.K.; Hammer, S.M.; Bergstrom, H.C.; Hill, E.C.; Succi, P.J.; Lawson, J.; Trevino, M.A. Blood flow restriction increases necessary muscle excitation of the elbow flexors during a single high-load contraction. Eur. J. Appl. Physiol. 2024, 124, 1807–1820. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Wang, L.; Quan, H.; Yu, W.; Li, T.; Li, W. The Effect of Blood Flow Restriction Exercise on Angiogenesis-Related Factors in Skeletal Muscle Among Healthy Adults: A Systematic Review and Meta-Analysis. Front. Physiol. 2022, 13, 814965. [Google Scholar] [CrossRef]
- Preobrazenski, N.; Islam, H.; Gurd, B.J. Molecular regulation of skeletal muscle mitochondrial biogenesis following blood flow-restricted aerobic exercise: A call to action. Eur. J. Appl. Physiol. 2021, 121, 1835–1847, Erratum in Eur. J. Appl. Physiol. 2021, 121, 2373–2374. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Gao, B.H. Integrative effects of resistance training and endurance training on mitochondrial remodeling in skeletal muscle. Eur. J. Appl. Physiol. 2024, 124, 2851–2865. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, A.M.; Silva, P.R.S.; Pedrinelli, A.; Hernandez, A.J. Aerobic fitness in professional soccer players after anterior cruciate ligament reconstruction. PLoS ONE 2018, 13, e0194432. [Google Scholar] [CrossRef] [PubMed]
- Ladlow, P.; Coppack, R.J.; Dharm-Datta, S.; Conway, D.; Sellon, E.; Patterson, S.D.; Bennett, A.N. Low-load resistance training with blood flow restriction improves clinical outcomes in musculoskeletal rehabilitation: A single-blind randomized controlled trial. Front. Physiol. 2018, 9, 397507. [Google Scholar] [CrossRef] [PubMed]
- Wernbom, M.; Järrebring, R.; Andreasson, M.A.; Augustsson, J. Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J. Strength Cond. Res. 2009, 23, 2389–2395. [Google Scholar] [CrossRef]
- Gopinatth, V.; Garcia, J.R.; Reid, I.K.; Knapik, D.M.; Verma, N.N.; Chahla, J. Blood Flow Restriction Enhances Recovery After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Arthroscopy 2025, 41, 1048–1060. [Google Scholar] [CrossRef]
- Lu, Y.; Patel, B.H.; Kym, C.; Nwachukwu, B.U.; Beletksy, A.; Forsythe, B.; Chahla, J. Perioperative Blood Flow Restriction Rehabilitation in Patients Undergoing ACL Reconstruction: A Systematic Review. Orthop. J. Sports Med. 2020, 8, 2325967120906822. [Google Scholar] [CrossRef]
- Koc, B.B.; Truyens, A.; Heymans, M.J.L.F.; Jansen, E.J.P.; Schotanus, M.G.M. Effect of Low-Load Blood Flow Restriction Training After Anterior Cruciate Ligament Reconstruction: A Systematic Review. Int. J. Sports Phys. Ther. 2022, 17, 334. [Google Scholar] [CrossRef]
- Telfer, S.; Calhoun, J.; Bigham, J.J.; Mand, S.; Gellert, J.M.; Hagen, M.S.; Kweon, C.Y.; Gee, A.O. Biomechanical Effects of Blood Flow Restriction Training After ACL Reconstruction. Med. Sci. Sports Exerc. 2021, 53, 115–123. [Google Scholar] [CrossRef]
- Peters, M.D.J.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, L.; McInerney, P.; Godfrey, C.M.; Khalil, H. Updated methodological guidance for the conduct of scoping reviews. JBI Evid. Synth. 2020, 18, 2119–2126. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Ardern, C.L.; Büttner, F.; Andrade, R.; Weir, A.; Ashe, M.C.; Holden, S.; Impellizzeri, F.M.; Delahunt, E.; Dijkstra, H.P.; Mathieson, S.; et al. Implementing the 27 PRISMA 2020 Statement items for systematic reviews in the sport and exercise medicine, musculoskeletal rehabilitation and sports science fields: The PERSiST (implementing Prisma in Exercise, Rehabilitation, Sport medicine and SporTs science) guidance. Br. J. Sports Med. 2022, 56, 175–195. [Google Scholar] [CrossRef] [PubMed]
- Howard, B.E.; Phillips, J.; Miller, K.; Tandon, A.; Mav, D.; Shah, M.R.; Holmgren, S.; Pelch, K.E.; Walker, V.; Rooney, A.A.; et al. SWIFT-Review: A text-mining workbench for systematic review. Syst. Rev. 2016, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Grainger, M.J.; Gray, C.T. Citationchaser: A tool for transparent and efficient forward and backward citation chasing in systematic searching. Res. Synth. Methods 2022, 13, 533–545. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef]
- Slade, S.C.; Dionne, C.E.; Underwood, M.; Buchbinder, R. Consensus on Exercise Reporting Template (CERT): Explanation and Elaboration Statement. Br. J. Sports Med. 2016, 50, 1428–1437. [Google Scholar] [CrossRef]
- Okoroha, K.R.; Tramer, J.S.; Khalil, L.S.; Jildeh, T.R.; Abbas, M.J.; Buckley, P.J.; Lindell, C.; Moutzouros, V. Effects of a Perioperative Blood Flow Restriction Therapy Program on Early Quadriceps Strength and Patient-Reported Outcomes After Anterior Cruciate Ligament Reconstruction. Orthop. J. Sports Med. 2023, 11, 23259671231209694. [Google Scholar] [CrossRef]
- Khalil, A.A.; Fayaz, N.A.; Fawzy, E.; Mohamed, N.A.; Waly, A.H.; Mohammed, M.M. Influence of Blood Flow Restriction Training on Knee Pain After Anterior Cruciate Ligament Reconstruction: A Double Blinded Randomized Controlled Trial. J. Popul. Ther. Clin. Pharmacol. 2023, 30, 30–38. [Google Scholar] [CrossRef]
- Hughes, L.; Patterson, S.D.; Haddad, F.; Rosenblatt, B.; Gissane, C.; McCarthy, D.; Clarke, T.; Ferris, G.; Dawes, J.; Paton, B. Examination of the comfort and pain experienced with blood flow restriction training during post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: A UK National Health Service trial. Phys. Ther. Sport 2019, 39, 90–98. [Google Scholar] [CrossRef]
- Hughes, L.; Rosenblatt, B.; Haddad, F.; Gissane, C.; McCarthy, D.; Clarke, T.; Ferris, G.; Dawes, J.; Paton, B.; Patterson, S.D. Comparing the Effectiveness of Blood Flow Restriction and Traditional Heavy Load Resistance Training in the Post-Surgery Rehabilitation of Anterior Cruciate Ligament Reconstruction Patients: A UK National Health Service Randomised Controlled Trial. Sports Med. 2019, 49, 1787–1805. [Google Scholar] [CrossRef]
- Jack, R.A.; Lambert, B.S.; Hedt, C.A.; Delgado, D.; Goble, H.; McCulloch, P.C. Blood Flow Restriction Therapy Preserves Lower Extremity Bone and Muscle Mass After ACL Reconstruction. Sports Health 2022, 15, 361–371. [Google Scholar] [CrossRef]
- Curran, M.T.; Bedi, A.; Mendias, C.L.; Wojtys, E.M.; Kujawa, M.V.; Palmieri-Smith, R.M. Blood Flow Restriction Training Applied with High-Intensity Exercise Does Not Improve Quadriceps Muscle Function After Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Trial. Am. J. Sports Med. 2020, 48, 825–837. [Google Scholar] [CrossRef]
- Iversen, E.; Røstad, V.; Larmo, A. Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J. Sport Health Sci. 2016, 5, 115–118. [Google Scholar] [CrossRef]
- Vieira de Melo, R.F.; Komatsu, W.R.; Freitas, M.S.d.; Vieira de Melo, M.E.; Cohen, M. Comparison of Quadriceps and Hamstring Muscle Strength After Exercises with and Without Blood Flow Restriction Following Anterior Cruciate Ligament Surgery: A Randomized Controlled Trial. J. Rehabil. Med. 2022, 54, jrm00337. [Google Scholar] [CrossRef]
- Tramer, J.S.; Khalil, L.S.; Jildeh, T.R.; Abbas, M.J.; McGee, A.; Lau, M.J.; Moutzouros, V.; Okoroha, K.R. Blood Flow Restriction Therapy for Two Weeks Prior to Anterior Cruciate Ligament Reconstruction Did Not Impact Quadriceps Strength Compared to Standard Therapy. Arthrosc. J. Arthrosc. Relat. Surg. 2022, 39, 373–381. [Google Scholar] [CrossRef]
- Kacin, A.; Drobnič, M.; Marš, T.; Miš, K.; Petrič, M.; Weber, D.; Žargi, T.T.; Martinčič, D.; Pirkmajer, S. Functional and molecular adaptations of quadriceps and hamstring muscles to blood flow restricted training in patients with ACL rupture. Scand. J. Med. Sci. Sport. 2021, 31, 1636–1646. [Google Scholar] [CrossRef] [PubMed]
- Žargi, T.; Drobnič, M.; Stražar, K.; Kacin, A. Short-term preconditioning with blood flow restricted exercise preserves quadriceps muscle endurance in patients after anterior cruciate ligament reconstruction. Front. Physiol. 2018, 9, 1150. [Google Scholar] [CrossRef] [PubMed]
- Žargi, T.G.; Drobnič, M.; Koder, J.; Strazar, K.; Kacin, A. The effects of preconditioning with ischemic exercise on quadriceps femoris muscle atrophy following anterior cruciate ligament reconstruction: A quasi-randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2016, 52, 310–320. [Google Scholar] [PubMed]
- Sevinc, C.; Gürler, V.; Harput, G.; Ocguder, A.; Ergen, F.B.; Tunay, V.B. Blood flow restriction training with cross education for quadriceps muscle recovery after anterior cruciate ligament reconstruction: A prospective, randomized, controlled, single-blind clinical trial. Knee Surg. Sports Traumatol. Arthrosc. 2024, 33, 3088–3097. [Google Scholar] [CrossRef]
- Grapar Žargi, T.; Drobnič, M.; Vauhnik, R.; Koder, J.; Kacin, A. Factors predicting quadriceps femoris muscle atrophy during the first 12 weeks following anterior cruciate ligament reconstruction. Knee 2017, 24, 319–328. [Google Scholar] [CrossRef]
- Alavi, A.; Rezaeian, N.; Ganji, R.; Yaghoubi, A. Effect of blood flow restriction on serum levels of some factors of muscle atrophy in male elite athletes after anterior cruciate ligament reconstruction. J. Basic Res. Med. Sci. 2021, 8, 45–52. [Google Scholar] [CrossRef]
- Erickson, L.N.; Owen, M.K.; Casadonte, K.R.; Janatova, T.; Lucas, K.; Spencer, K.; Brightwell, B.D.; Graham, M.C.; White, M.S.; Thomas, N.T.; et al. The Efficacy of Blood Flow Restriction Training to Improve Quadriceps Muscle Function After ACL Reconstruction. Med. Sci. Sports Exerc. 2024, 57, 227–237. [Google Scholar] [CrossRef]
- Kaya Utlu, D. Exercise. In Functional Exercise Anatomy and Physiology for Physiotherapists; Springer: Berlin/Heidelberg, Germany, 2023; pp. 3–18. [Google Scholar] [CrossRef]
- Whiteley, R. Blood Flow Restriction Training in Rehabilitation: A Useful Adjunct or Lucy’s Latest Trick? J. Orthop. Sports Phys. Ther. 2019, 49, 294–298. [Google Scholar] [CrossRef]
- Wengle, L.; Migliorini, F.; Leroux, T.; Chahal, J.; Theodoropoulos, J.; Betsch, M. The Effects of Blood Flow Restriction in Patients Undergoing Knee Surgery: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2022, 50, 2824–2833. [Google Scholar] [CrossRef]
- Charles, D.; White, R.; Reyes, C.; Palmer, D. A systematic review of the effects of blood flow restriction training on quadriceps muscle atrophy and circumference post ACL reconstruction. Int. J. Sports Phys. Ther. 2020, 15, 882. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, C.B.; Santamaría, P.I.-K.; Fernández-Matías, R.; Pecos-Martín, D.; Achalandabaso-Ochoa, A.; Fernández-Carnero, S.; Martínez-Amat, A.; Gallego-Izquierdo, T. Comparison of Blood Flow Restriction Training versus Non-Occlusive Training in Patients with Anterior Cruciate Ligament Reconstruction or Knee Osteoarthritis: A Systematic Review. J. Clin. Med. 2021, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.C.; Goldfine, L.R.; Barker, T.; Collingridge, D.S. What Can the First 2 Months Tell Us About Outcomes After Anterior Cruciate Ligament Reconstruction? J. Athl. Train. 2015, 50, 508–515. [Google Scholar] [CrossRef]
- Ithurburn, M.P.; Altenburger, A.R.; Thomas, S.; Hewett, T.E.; Paterno, M.V.; Schmitt, L.C. Young athletes after ACL reconstruction with quadriceps strength asymmetry at the time of return-to-sport demonstrate decreased knee function 1 year later. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 426–433. [Google Scholar] [CrossRef]
- Neuman, P.; Owman, H.; Müller, G.; Englund, M.; Tiderius, C.J.; Dahlberg, L.E. Knee cartilage assessment with MRI (dGEMRIC) and subjective knee function in ACL injured copers: A cohort study with a 20 year follow-up. Osteoarthr. Cartil. 2014, 22, 84–90. [Google Scholar] [CrossRef]
- Ngurah, G.; Aryana, W.; Febyan, F.; Dimitri, D.; Limena, S.; Kuswara, L.W. Functional Outcome of ACL Reconstruction Following Pre-reconstruction Rehabilitation vs. None Rehabilitation: A Systematic Review and Meta-analysis. Rev. Bras. Ortop. 2024, 59, 172–179. [Google Scholar] [CrossRef]
- Giesche, F.; Niederer, D.; Banzer, W.; Vogt, L. Evidence for the effects of prehabilitation before ACL-reconstruction on return to sport-related and self-reported knee function: A systematic review. PLoS ONE 2020, 15, e0240192. [Google Scholar] [CrossRef] [PubMed]
- Kacin, A.; Strazar, K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand. J. Med. Sci. Sports 2011, 21, e231–e241. [Google Scholar] [CrossRef] [PubMed]
- Maga, M.; Wachsmann-Maga, A.; Batko, K.; Włodarczyk, A.; Kłapacz, P.; Krężel, J.; Szopa, N.; Sliwka, A. Impact of Blood-Flow-Restricted Training on Arterial Functions and Angiogenesis—A Systematic Review with Meta-Analysis. Biomedicines 2023, 11, 1601. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Yang, X.; Nasiruddin, N.J.B.M.; Dong, D.; Bin Samsudin, S.; Qin, X.-M. Effects of blood flow restriction training on bone metabolism: A systematic review and meta-analysis. Front. Physiol. 2023, 14, 1212927. [Google Scholar] [CrossRef]
- Song, Y.; Wang, H.; Chen, L.; Shangguan, Y.; Jia, H. Effects of blood flow restriction training on bone turnover markers, microstructure, and biomechanics in rats. Front. Endocrinol. 2023, 14, 1194364. [Google Scholar] [CrossRef]
- Lixandrão, M.E.; Ugrinowitsch, C.; Berton, R.; Vechin, F.C.; Conceição, M.S.; Damas, F.; Libardi, C.A.; Roschel, H. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 361–378. [Google Scholar] [CrossRef]
- Hughes, L.; Patterson, S.D. Low intensity blood flow restriction exercise: Rationale for a hypoalgesia effect. Med. Hypotheses 2019, 132, 109370. [Google Scholar] [CrossRef]
- Song, J.S.; Spitz, R.W.; Yamada, Y.; Bell, Z.W.; Wong, V.; Abe, T.; Loenneke, J.P. Exercise-induced hypoalgesia and pain reduction following blood flow restriction: A brief review. Phys. Ther. Sport 2021, 50, 89–96. [Google Scholar] [CrossRef]
- Walker, A.; Hing, W.; Lorimer, A. The Influence, Barriers to and Facilitators of Anterior Cruciate Ligament Rehabilitation Adherence and Participation: A Scoping Review. Sports Med. Open 2020, 6, 32. [Google Scholar] [CrossRef]
- Uchino, S.; Saito, H.; Okura, K.; Kitagawa, T.; Sato, S. Effectiveness of a supervised rehabilitation compared with a home-based rehabilitation following anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Phys. Ther. Sport 2022, 55, 296–304. [Google Scholar] [CrossRef]
- Gamble, A.R.; Pappas, E.; O’Keeffe, M.; Ferreira, G.; Maher, C.G.; Zadro, J.R. Intensive supervised rehabilitation versus less supervised rehabilitation following anterior cruciate ligament reconstruction? A systematic review and meta-analysis. J. Sci. Med. Sport 2021, 24, 862–870. [Google Scholar] [CrossRef]
- Lundberg, M.; Archer, K.R.; Larsson, C.; Rydwik, E. Prehabilitation: The Emperor’s New Clothes or a New Arena for Physical Therapists? Phys. Ther. 2019, 99, 127–130. [Google Scholar] [CrossRef]
- Smith, T.O.; Davies, L.; Hing, C.B. Early versus delayed surgery for anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Reijman, M.; Eggerding, V.; van Es, E.; van Arkel, E.; Brand, I.v.D.; van Linge, J.; Zijl, J.; Waarsing, E.; Bierma-Zeinstra, S.; Meuffels, D. Early surgical reconstruction versus rehabilitation with elective delayed reconstruction for patients with anterior cruciate ligament rupture: COMPARE randomised controlled trial. Br. Med. J. 2021, 372, n375. [Google Scholar] [CrossRef] [PubMed]
- Wilk, K.E.; Arrigo, C.A.; Bagwell, M.S.; Finck, A.N. Considerations with Open Kinetic Chain Knee Extension Exercise Following ACL Reconstruction. Int. J. Sports Phys. Ther. 2021, 16, 282. [Google Scholar] [CrossRef]
- Pamboris, G.M.; Pavlou, K.; Paraskevopoulos, E.; Mohagheghi, A.A. Effect of open vs. closed kinetic chain exercises in ACL rehabilitation on knee joint pain, laxity, extensor muscles strength, and function: A systematic review with meta-analysis. Front. Sports Act. Living 2024, 6, 1416690. [Google Scholar] [CrossRef]
- Perriman, A.; Leahy, E.; Semciw, A.I. The effect of open-versus closed-kinetic-chain exercises on anterior tibial laxity, strength, and function following anterior cruciate ligament reconstruction: A systematic review and meta-analysis. J. Orthop. Sports Phys. Ther. 2018, 48, 552–566. [Google Scholar] [CrossRef]
- Subirats Bayego, E.; Subirats Vila, G.; Soteras Martínez, I. Exercise prescription: Indications, dosage and side effects. Med. Clin. 2011, 138, 18–24. [Google Scholar] [CrossRef]
- Hansford, H.J.; Wewege, M.A.; Cashin, A.G.; Hagstrom, A.D.; Clifford, B.K.; McAuley, J.H.; Jones, M.D. If exercise is medicine, why don’t we know the dose? An overview of systematic reviews assessing reporting quality of exercise interventions in health and disease. Br. J. Sports Med. 2022, 56, 692–700. [Google Scholar] [CrossRef]
- Carter, H.M.; Littlewood, C.; Webster, K.E.; Smith, B.E. The effectiveness of preoperative rehabilitation programmes on postoperative outcomes following anterior cruciate ligament (ACL) reconstruction: A systematic review. BMC Musculoskelet. Disord. 2020, 21, 647. [Google Scholar] [CrossRef]
- Refalo, M.C.; Helms, E.R.; Hamilton, D.L.; Fyfe, J.J. Influence of Resistance Training Proximity-to-Failure, Determined by Repetitions-in-Reserve, on Neuromuscular Fatigue in Resistance-Trained Males and Females. Sports Med. Open 2023, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Schoenfeld, B.J.; Orazem, J.; Sabol, F. Effects of resistance training performed to repetition failure or non-failure on muscular strength and hypertrophy: A systematic review and meta-analysis. J. Sport Health Sci. 2022, 11, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Sieljacks, P.; Degn, R.; Hollaender, K.; Wernbom, M.; Vissing, K. Non-failure blood flow restricted exercise induces similar muscle adaptations and less discomfort than failure protocols. Scand. J. Med. Sci. Sports 2019, 29, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Husmann, F.; Mittlmeier, T.; Bruhn, S.; Zschorlich, V.; Behrens, M. Impact of Blood Flow Restriction Exercise on Muscle Fatigue Development and Recovery. Med. Sci. Sports Exerc. 2018, 50, 436–446. [Google Scholar] [CrossRef]
- Freitas, E.D.S.; Miller, R.M.; Heishman, A.D.; Aniceto, R.R.; Silva, J.G.C.; Bemben, M.G. Perceptual responses to continuous versus intermittent blood flow restriction exercise: A randomized controlled trial. Physiol. Behav. 2019, 212, 112717. [Google Scholar] [CrossRef]
- Yasuda, T.; Loenneke, J.; Ogasawara, R.; Abe, T. Influence of continuous or intermittent blood flow restriction on muscle activation during low-intensity multiple sets of resistance exercise. Acta Physiol. Hung. 2013, 100, 419–426. [Google Scholar] [CrossRef]
- Caetano, D.; Oliveira, C.; Correia, C.; Barbosa, P.; Montes, A.; Carvalho, P. Rehabilitation outcomes and parameters of blood flow restriction training in ACL injury: A scoping review. Phys. Ther. Sport 2021, 49, 129–137. [Google Scholar] [CrossRef]
- McEwen, J.A.; Owens, J.G.; Jeyasurya, J. Why Is It Crucial to Use Personalized Occlusion Pressures in Blood Flow Restriction (BFR) Rehabilitation? J. Med. Biol. Eng. 2019, 39, 173–177. [Google Scholar] [CrossRef]
- Jacobs, E.; Rolnick, N.; Wezenbeek, E.; Stroobant, L.; Capelleman, R.; Arnout, N.; Witvrouw, E.; Schuermans, J. Investigating the autoregulation of applied blood flow restriction training pressures in healthy, physically active adults: An intervention study evaluating acute training responses and safety. Br. J. Sports Med. 2023, 57, 914–920. [Google Scholar] [CrossRef]
- Bond, C.W.; Hackney, K.J.; Brown, S.L.; Noonan, B.C. Blood Flow Restriction Resistance Exercise as a Rehabilitation Modality Following Orthopaedic Surgery: A Review of Venous Thromboembolism Risk. JOSPT 2018, 49, 17–27. [Google Scholar] [CrossRef]

| Inclusion Criteria | Exclusion Criteria | |
|---|---|---|
| Population | Healthy human patients affected by a primary ACL injury with or without concomitant meniscal procedures and surgically intervened exclusively with autograft (patellar, quadriceps, or hamstring tendon) were included. | Previous ACL injury, additional knee impairments, multiple reconstructive procedures, or those treated with allografts. |
| Intervention | Interventions that combined BFR and resistance exercises or endurance exercises applied during PRE- and/or POST-OP phases. Endurance exercises, including common aerobic modalities such as cycling or treadmill walking, were specifically included when combined with BFR (BFR-ET). The duration of the intervention should be at least one week for both PRE- and POST-OP. | Analyses were not conducted independently for interventions combining BFR with techniques such as electrostimulation or other modalities, or the duration of the interventions was lower than required in the inclusion criteria. |
| Comparator | Comparison group performing resistance exercises or endurance exercises with or without BFR or a placebo (i.e., Sham-BFR). | There is no control/comparison group. Articles that do not contain a comparative analysis with control/comparison groups without BFR during exercise interventions, or a placebo (i.e., simulated BFR). |
| Outcomes | Validated assessment analyzing muscular structural changes, muscle strength, neuromuscular adaptations and responses, functional changes, self-report questionnaires, pain, peripheral vascular and local metabolic parameters. | No reported validated tests providing quantitative values. |
| Study design | Randomized controlled trials or quasi-randomized controlled trials with pre-post measurements of one or more outcomes, comparing BFR to a control or comparison group. | Opinion articles, editorials, systematic reviews, case–control studies, case series studies, conference abstracts, in-progress articles, cohort articles, cross-sectional articles, and studies with results obtained without an initial evaluation. |
| Study Features a | Sample Characteristics | Intervention | Comparator Group | Study Variables | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Autograft Type | Intervention Time | NMAR | BC | FM | MBF | SRQ | RTA | |||
| Žargi et al. [49] Slovenia 2016 PRE-OP QRCT | N = 20(M16/W4); Age (y): IG 33 ± 7, CG 34 ± 10; BMI (kg/m2): IG 23.7 ± 3.1, CG 23.5 ± 3.9 | HS | 10 days prior to surgery. | Comparison Sham-BFR group. | ![]() | ![]() | ![]() | |||
| Žargi et al. [48] Slovenia 2018 PRE-OP QRCT | N = 20(M16/W4); Age (y): IG 34 ± 6, CG 35 ± 5; BMI (kg/m2): IG 24.3 ± 3.9, CG 23.9 ± 2.9 | HS | 8 days prior to surgery. | Comparison Sham-BFR group. | ![]() | ![]() | ||||
| Kacin et al. [47] Slovenia 2021 PRE-OP QRCT | N = 18 (M9/W9); Age (y): IG 38 ± 6, CG 38 ± 8, CG(I) 36 ± 9; BMI (kg/m2): IG 26.0 ± 4.9, CG 25.8 ± 5.4, CG(I) 24.8 ± 3.2 | HS | 3 weeks. | Comparison Sham-BFR group and CG for muscle biopsy analysis. | ![]() | ![]() | ||||
| Tramer et al. [46] United States 2022 PRE-OP RCT | N = 45 (M25/W20); Age (y): IG 26.5 ± 12.0, CG 27.0 ± 11.0; BMI (kg/m2): IG 25.3 ± 3.2, CG 26.8 ± 4.9. | BTB(34), HS (13), QT (3) | 14 days prior to surgery. | Comparison group without BFR. | ![]() | ![]() | ![]() | ![]() | ||
| Okoroha et al. [38] United States 2023 PRE-OP RCT | N = 46 (M28/W18); Age (y): IG 25.4 ± 10.6, CG 27.5 ± 12.0; BMI (kg/m2): IG 24.9 ± 3.1, CG 26.9 ± 5.3. | BTB (13), HS (7), QT (2) | 14 days prior to surgery. | Comparison group without BFR. | ![]() | ![]() | ![]() | |||
| Iversern et al. [44] POST-OP China 2015 POST-OP RCT | N = 24 (M14/W10); Age (y): IG 24.9 ± 7.4, CG 29.8 ± 9.3; BMI (kg/m2): N/S. | HS | 14 days. | Comparison group without BFR. | ![]() | |||||
| Hughes et al. (2019a) [40] England 2019 POST-OP RCT | N = 24 (M17/W7); Age (y): IG 29 ± 7, CG 29 ± 7; BMI (kg/m2): IG 25.4 ± 3.9, CG 26.4 ± 4.4. | HS | 8 weeks. | Comparison group HL-RT without BFR. | ![]() | |||||
| Hughes et al. (2019b) [41] England 2019 POST-OP RCT | N = 24 (M17/W7); Age (y): IG 29.0 ± 7.0, CG 29.0 ± 7.0; BMI (kg/m2): IG 25.4 ± 3.9, CG 26.4 ± 4.4. | HS | 8 weeks. | Comparison group HL-RT without BFR. | ![]() | ![]() | ![]() | ![]() | ||
| Curran et al. [43] United States 2020 POST-OP RCT | N = 34 (M15/W19); Age (y): CGcon 16.1 ± 2.6, IGcon 18.8 ± 3.9, CGecc 15.3 ± 0.9, IGecc 16.0 ± 1.7; BMI (kg/m2): N/S. | BTB(25), HS (6), QT (3) | 8 weeks. | Comparison group concentric and eccentric HL-RT without BFR. | ![]() | ![]() | ![]() | ![]() | ||
| Alavi et al. [52] Iran 2021 POST-OP RCT | N = 20 (M20/W0; Athletes); Age (y): IG 24.1 ± 4.9, CG 25.2 ± 2.6; BMI (kg/m2): IG 22.2 ± 6.4, CG 22.3 ± 8.6. | N/S | 12 weeks. | Comparison group without BFR. | ![]() | |||||
| Jack et al. [42] United States 2022 POST-OP RCT | N = 32 (M17/W15); Age (y): IG 28.1 ± 7.4, CG 24.1 ± 7.2; BMI (kg/m2): IG 25.2 ± 2.8, CG 26.9 ± 5.3. | BTB | 12 weeks. | Comparison group without BFR. | ![]() | ![]() | ![]() | |||
| Vieira et al. [45] Brasil 2022 POST-OP RCT | N = 24 (M17/W7); Age (y): IG 41.1 ± 9.8, CG 39.6 ± 10.8; BMI (kg/m2): IG 24.2 ± 3.0, CG 23.6 ± 2.4. | HS | 12 weeks. | Comparison group without BFR. | ![]() | ![]() | ||||
| Khalil et al. [39] United States 2023 POST-OP RCT | N = 36 (M31/W5); Age (y): IG 23.8 ± 3.9, CG 25.2 ± 4.8; BMI (kg/m2): IG 26.2 ± 3.9, CG 25.4 ± 2.1. | HS | 11 weeks | Comparison group without BFR. | ![]() | |||||
| Sevinc et al. [50] Turkey 2024 POST-OP RCT | N = 24 (M24/W0); Age (y): IG 24.7 ± 7.0, CG 25.3 ± 5.7; BMI (kg/m2): IG 24.1 ± 2.4, CG 23.9 ± 2.5. | HS | 8 weeks | Comparison group without BFR. | ![]() | ![]() | ||||
| Erickson et al. [53] United States 2024 PRE- AND POST-OP RCT | N = 48 (M28/W20, Athletes); Age (y): IG 21.1 ± 6.3, CG 21.5 ± 5.3; BMI (kg/m2): IG 24.9 ± 3.9, CG 25.7 ± 4.5. | BTB(45), HS (3) | 24 weeks | Comparison Sham-BFR group. | ![]() | ![]() | ![]() | |||
| Study Features a | Exercise Training Prescription | Cuff Parameters | Outcomes | ||
|---|---|---|---|---|---|
| Intervention Schedule | FITT-VP | Device and Pressure | Measures | Within and Between Changes and Summary | |
| Žargi et al. [49] Slovenia 2016 QRCT | PRE-OP Start: ten days PRE-OP. End: 48 h PRE-OP. | Freq: 3–4/wk (10 d); 5 sessions. Int: 40% 1RM, to volitional failure. Type: Single-leg knee ext. (OKC). Vol: 6 × failure. Rest: 45 s (sets 1,3,5, cuff on); 90 s(sets 2,4, cuff off). Prog: N/S. | Device: Pneumatic occlusion cuff (14 cm, contoured). Pressure: BFR-LL 150 mmHg; Sham-BFR 20 mmHg (not adjusted in real time). LOP: Arbitrary. | Isometric knee extension (KE): Maximal voluntary isometric contraction (MVIC, N). MRI: Cross-sectional area (CSA) of KE (cm3). Balance test: Anterior reach of star excursion; neuromuscular control (cm). | Summary: No sig. changes in short-term BFR-LL on POST-OP. |
| Žargi et al. [48] Slovenia 2018 QRCT | PRE-OP Start: eight days PRE-OP. End: 48 h PRE-OP. | Freq: 3–4/week (8 days); 5 sessions. Int: 40% 1RM, to volitional failure. Type: Single-leg knee extension (OKC). Vol: 6 × failure. Rest: 45 s (sets 1,3,5, cuff on); 90 s (sets 2,4, cuff off). Prog: N/S. | Device: Pneumatic occlusion cuff (14 cm, contoured). Pressure: BFR-LL 150 mmHg; Sham-BFR 20 mmHg (not adjusted in real time). LOP: Arbitrary. | Isometric KE: MVIC (N). EMG: Vastus medialis activation (mV). NIRS: Vastus lateralis muscle blood flow (mL·min−1·100 mL−1). | Time to contraction (wk 4 POST-OP): # IG ↑6%; # CG ↓51%. Time to contraction (wk 12 POST-OP): # IG ↑37%; # CG ↓3%. Sig. group interaction (p < 0.014, d = N/S). RMS-EMG amplitude (wk 4 POST-OP): # IG ↑43%; # CG ↓17%. RMS-EMG amplitude (wk 12 POST-OP): # IG ↓7%; # CG ↓6%. Sig. group interaction (p < 0.001, d = N/S). Muscle blood flow (wk 4 POST-OP): *,# IG ↑52%; *,# CG ↓37%. Muscle blood flow (wk 12 POST-OP): *,# IG ↑18%; *,# CG ↓11%. Sig. group interaction (p < 0.001, d = N/S). Summary: Short-term BFR-LL ↑ quadriceps endurance, fiber recruitment, and perfusion after ACLR. |
| Kacin et al. [47] Slovenia 2021 QRCT | PRE-OP Start: three weeks PRE-OP. End: N/S. | Freq: 3/week (3 weeks); 9 sessions. Int: 40% 1RM, to volitional failure. Type: Single-leg knee extension and flexion (OKC). Vol: 4 × failure. Rest: 45 s (sets 1,3,5, cuff on); 90 s (sets 2,4, cuff off). Prog: N/S. | Device: Double-chamber pneumatic cuff (13.5 cm, asymmetric). Pressure: BFR-LL 150 mmHg; Sham-BFR 20 mmHg (not adjusted in real time). LOP: Arbitrary. | Isokinetic KE/KF: Peak torque (Nm); hamstring/quadriceps ratio (%); fatigue index (%). MRI: CSA of KE and KF (mm2). Biopsy: mid-portion of vastus lateralis and semitendinosus; analysis of gene expression related to muscle growth, inflammation, and angiogenesis. | Isokinetic strength knee extensors (wk 3 POST-OP): Peak torque 60°/s: #,* IG ↑12%; # CG ↓1%; Interaction p = 0.018. Total work 60°/s: #,* IG ↑12%; # CG = 0%; Interaction p = 0.038. Peak torque 120°/s: #,* IG ↑9%; # CG ↓3%; Interaction p = 0.027. Total work 120°/s: #,* IG ↑8%; # CG ↓2%; Interaction p = 0.008. Isokinetic strength knee flexors (wk 3 POST-OP): Total work 60°/s: #,* IG ↑12%; * CG ↑1%; Interaction p = 0.026. Total work 120°/s: * IG ↑10%; #,* CG ↓5%; Interaction p = 0.030. Fatigue indexes knee extensors (wk 3 POST-OP): Peak torque 60°/s: #,* IG ↓60%; # CG ↓21%; Interaction p = 0.008. Total work 60°/s: #,* IG ↓54%; # CG ↓6%; Interaction p = 0.002. Peak torque 120°/s: #,* IG ↓52%; # CG ↓6%; Interaction p = 0.028. Total work 120°/s: #,* IG ↓45%; # CG ↑3%; Interaction p = 0.004. CSA knee extensors (wk 3 POST-OP): #,* IG ↑5%; # CG ↓1%; Interaction p = 0.018. Summary: BFR-LL ↑ hypertrophy, cross-sectional area, and quadriceps endurance; hamstrings less responsive. Specific physiological adaptation pattern in knee extensors and flexors detected. |
| Tramer et al. [46] United States 2022 RCT | PRE-OP Start: fourteen days PRE-OP. End: N/S. | Freq: 5/week (2 weeks); 10 sessions. Int: Body weight and light loads. Type: Quadriceps contractions, straight leg raises, long-arc quads, quarter squats (OKC & CKC). Vol: 4 × 30-15-15-failure. Rest: 30 s (no reperfusion); 2 min deflation between exercises. Prog: Load increased near failure. | Device: Single-chamber pneumatic tourniquet (size N/S). Pressure: BFR-LL 80% LOP (not adjusted in real time). LOP: Calculated via Doppler ultrasound (dorsalis pedis). | Isometric KE: Peak, average, and time-to-peak force (N, s). VAS: Pain. PROMIS: Physical function, pain, and depression. Knee ROM: Degrees. | Summary: Home-based exercise ↑ quadriceps peak force in both groups (no sig. differences). PRE-OP home-based BFR-LL protocol was feasible, accessible, and well tolerated. |
| Okoroha et al. [38] United States 2023 RCT | PRE-OP Start: fourteen days PRE-OP. End: N/S. | Freq: 5/week (2 weeks); 10 sessions. Int: N/S. Type: Quadriceps contractions, straight leg raises, long-arc quads, quarter squats (OKC & CKC). Vol: 4 × 30-15-15-15. Rest: 30 s (no reperfusion); 2 min deflation between exercises. Prog: N/S. | Device: Single-chamber pneumatic tourniquet (size N/S). Pressure: BFR-LL 80% LOP (not adjusted in real time). LOP: Calculated via Doppler ultrasound (dorsalis pedis). | Quadriceps circumference: Muscle volume (cm). Isometric KE: Peak torque and mean torque (Nm); time-to-peak torque (s). VAS: Pain. IKDC/KOOS: Knee function and symptoms. PROMIS: Physical function, pain, and depression. Knee ROM: Degrees. | Quadriceps index (wk 6 POST-OP): Mean force: # IG ↑57%; CG ↑40%; Statistically significant difference between groups (p = 0.029, d = 0.80). Summary: Incorporating BFR-LL into home-based PRE-OP exercise for ACLR → ↑ strength and improved patient-reported outcomes at 6 wk POST-OP. No significant differences at 3 and 6 mo between groups. Suggests perioperative BFR-LL may enhance early POST-OP quadriceps recovery. |
| Iversern et al. [44] China 2015 RCT | POST-OP Start: two days POST-OP. End: two weeks after start. | Freq: 2/day, 7/week (2 weeks); 28 sessions. Int: N/S. Type: Isometric quadriceps contractions, leg extensions over a roll, straight leg raises (OKC). Vol: 5 × 20 isometric contractions per occlusion. Rest: 3 min (cuff off). Prog: Exercise type progressed (isometric → dynamic). | Device: Pneumatic occlusion cuff (14 cm, contoured). Pressure: 130–180 mmHg, increasing 10 mmHg every 2 days (not adjusted in real time). LOP: Arbitrary. | MRI: CSA of KE (cm2). | KE CSA: CSA 40% (PRE-OP vs. POST-OP): # IG ↓13%; # CG ↓12%. CSA 50% (PRE-OP vs. POST-OP): # IG ↓11%; # CG ↓14%. Summary: Home-based BFR-LL rehabilitation intervention → no significant effect on quadriceps CSA (MRI) in athletes. |
| Hughes et al. (2019a) [40] England 2019 RCT | POST-OP Start: BFR-LL: 23 ± 2 days POST-OP. HL-RT: 24 ± 1 days POST-OP. End: N/S. | Freq: 2/week (8 weeks); 16 sessions. Int: BFR-LL 30% 1RM; HL-RT 70% 1RM. Type: Single-leg press (CKC). Vol: BFR 4 × 30-15-15-15; HL 3 × 10. Rest: 30 s (no reperfusion). Prog: Load increased 10% after 2 successful sessions. | Device: Automatic personalized tourniquet system (11.5 × 86 cm, 5 mm thick, variable contour nylon cuff). Pressure: 80% LOP (auto-regulated in real time). LOP: Calculated by automatic device. | Borg scale: Session, 24h post-training, and muscle pain, perceived exertion (0–11). | Session knee joint pain IL (wk 8 POST-OP): * IG ↓92%; * CG ↓60%. 24 h knee joint pain IL (wk 8 POST-OP): #* IG ↓100%; #* CG ↓91%. Session muscle pain IL (wk 8 POST-OP): * IG ↓31%; * CG ↓47%. Session muscle pain in IL (wk 8 POST-OP): * IG ↓26%; * CG ↓26%. Summary: BFR-LL ↓ knee pain during and 24 h after sessions vs. HL-RT. ↑ muscle pain in both limbs, but without affecting adherence. RPE similar between groups and unchanged during training. |
| Hughes et al. (2019) [41] England 2019 RCT | POST-OP Start: BFR-LL: 23 ± 2 days POST-OP. HL-RT: 24 ± 1 days POST-OP. End: N/S. | Freq: 2/week (8 weeks); 16 sessions. Int: BFR-LL 30% 1RM; HL-RT 70% 1RM. Type: Single-leg press (CKC). Vol: BFR 4×30-15-15-15; HL 3 × 10. Rest: 30 s (no reperfusion). Prog: Load increased 10% after mid-program test. | Device: Automatic personalized tourniquet system (11.5 × 86 cm, 5 mm thick, variable contour nylon cuff). Pressure: 80% LOP (auto-regulated in real time). LOP: Calculated by automatic device. | Isokinetic KE/KF: Strength (kg/kg·bm). Ultrasound (VL): Muscle thickness (cm), pennation angle (°), fascicle length (cm). IKDC/KOOS/LEFS: Knee and lower-limb function. KOOS-Pain: Pain (0–100). Modified star excursion: Dynamic balance (cm). Knee ROM: Degrees. Effusion: Mid-patella circumference (cm). KT-1000: Laxity (mm). | Summary: Both groups ↑ skeletal muscle hypertrophy and strength similarly. BFR-LL ↓ knee joint pain and effusion → greater overall improvement in functional outcomes. |
| Curran et al. [43] United States 2020 RCT | POST-OP Start: ten weeks POST-OP. End: N/S. | Freq: 2/week (8 weeks); 16 sessions. Int: Concentric BFR: C70%E20%; Eccentric BFR: C20%E70%. Type: Single-leg press (CKC). Vol: 4 × 10. Rest: 2 min (cuff off). Prog: Weekly load adjustment based on 1RM. | Device: Automatic personalized tourniquet system (11.5 × 86 cm, 5 mm thick, variable contour nylon cuff). Pressure: CBFR-RT and EBFR-RT at 80% LOP. LOP: Calculated by automatic device. | Isometric KE: MVIC (Nm). Isokinetic KE: Strength (Nm); pre-to-post change. EMG (superimposed burst): Quadriceps activation (%). Ultrasound: Rectus femoris muscle volume (cm3). IKDC: Knee function and symptoms. | Summary: BFR-HL did not significantly improve the recovery of quadriceps muscle strength, activation, or atrophy compared to HL-RT. |
| Alavi et al. [52] Iran 2021 RCT | POST-OP Start: three months POST-OP. End: twelve weeks after start. | Freq: 2/week (12 weeks); 24 sessions. Int: BFR-LL and RT 30–70% 1RM. Type: Multi-exercise rehabilitation (OKC & CKC: squats, step-ups, adduction, etc.). Vol: 2–4 × 10 RM. Rest: N/S. Prog: N/S. | Device: N/S. Pressure: 120–180 mmHg. LOP: N/S. | Serum biomarkers: Atrogin-1, MuRF1. | Serum Atrogin-1 levels (POST-OP week 0→12): #,¥ IG: ↓ −12.53% Serum MuRF1 levels (POST-OP week 0→12): ¥ IG: ↓ −15.47% Summary: BFR training ↓ circulating Atrogin-1 and MuRF1—two key proteins involved in muscle proteolysis—indicating a potential inhibitory effect on postoperative muscle atrophy and a positive influence on muscle mass preservation following ACLR. |
| Jack et al. [42] United States 2022 RCT | POST-OP Start: seven days POST-OP. End: twelve weeks after start. | Freq: 2/week (12 weeks); 24 sessions. Int: 30% 1RM. Type: Rehabilitation exercises (OKC & CKC). Vol: 4 × 30-15-15-15. Rest: 30 s (no reperfusion). Prog: Weekly exercise progression. | Device: Automatic personalized tourniquet system (11.5 × 86 cm, 5 mm thick, variable contour nylon cuff). Pressure: 80% LOP (auto-regulated in real time). LOP: Calculated by automatic device. | DEXA: Bone mineral density (g/cm2), bone and lean mass. Single-leg tests: Squat, leg press, hamstring curl (1RM, kg); eccentric step-down (reps to fatigue). Y-balance: Neuromuscular control (cm). | SL squat (week 8→12 POST−OP): * IG: ↑ 29%; * CG: ↑ 19% SL step−down: * IG: ↑ 39%; * CG: ↑ 38% SL press: * IG: ↑ 23%; * CG: ↑ 31% SL hamstring curl: * IG: ↑ 34%; * CG: ↑ 29% Anterior Y−balance: * IG: ↑ 9% Posteromedial Y−balance: * IG: ↑ 7%; * CG: ↑ 12% Posterolateral Y−balance: * IG: ↑ 9%; * CG: ↑ 16% Bone mass (whole limb): Week 6: # IG: = 0%; #,* CG: ↓ −2% Week 12: # IG: ↓ −1%; #,* CG: ↓ −3% Bone mass (femur): Week 6: * CG: ↓ −3% Week 12: #,* IG: ↓ −2%; #,* CG: ↓ −3% Site−specific BMD: Distal femur week 6: # IG: ↓ −3%; #,* CG: ↓ −8% Distal femur week 12: * IG: ↓ −5%; * CG: ↓ −8% Proximal tibia week 6: * CG: ↓ −5% Proximal tibia week 12: # IG: ↓ −2%; #,* CG: ↓ −8% Proximal fibula week 6: * IG: ↓ −7%; * CG: ↓ −13% Proximal fibula week 12: #,* IG: ↓ −7%; #,* CG: ↓ −15% Lean mass (whole limb): Week 6: # IG: ↓ −1%; #,* CG: ↓ −7% Week 12: # IG: ↑ 1%; #,* CG: ↓ −5% Lean mass (thigh): Week 6: * IG: ↓ −3%; #,* CG: ↓ −8% Week 12: * IG: ↑ 0%; #,* CG: ↓ −4% Summary: BFR−LL ↓ muscle and bone loss up to 12 weeks POST−OP and reduced RTS time vs. control group. |
| Vieira et al. [45] Brasil 2022 RCT | POST-OP Start: hospital discharge. End: twelve weeks after start. | Freq: 2/week (12 weeks); 24 sessions. Int: BFR-LL 30% 1RM; HL-RT 70% 1RM. Type: Leg press and flexor chair (OKC & CKC). Vol: BFR 4 × 30-15-15-15; HL 3 × 10. Rest: 30 s (no reperfusion); 5 min between exercises. Prog: Load increased 10% if all reps completed (weeks 4–12). | Device: Pneumatic cuff (10 × 80 cm). Pressure: BFR-LL 80% LOP (not adjusted in real time). LOP: Calculated via Doppler ultrasound (posterior tibial artery). | Isometric KE/KF: MVIC (Nm). Lysholm/IKDC/KOOS: Knee function and symptoms. | KE muscle strength (injured leg, week 12 POST−OP): * IG: ↑ 11%; * CG: ↓ −22%; p < 0.01, d = 1.9 KF muscle strength (injured leg, week 8 POST−OP): * IG: ↑ 5%; * CG: ↓ −25%; p < 0.01, d = 1.7 KF muscle strength (injured leg, week 12 POST−OP): * IG: ↑ 28%; * CG: ↓ −16%; p < 0.01, d = 3.4 Lysholm scale (week 8 POST−OP): # IG: ↑ 17%; * CG: ↑ 6% Lysholm scale (week 12 POST−OP): # IG: ↑ 17%; p = 0.001, d = 4.31 KOOS symptoms (weeks 4–12 POST−OP): * IG: ↑ 4% → #; IG: ↑ 13%; p < 0.01, d = 3.53 KOOS pain (weeks 4–12 POST−OP): * IG: ↑ 7% → #;* IG: ↑ 18%; * CG: ↓ −17% → ↓ −9%; p < 0.01, d = 1.96 KOOS daily activity (weeks 4–12 POST−OP): * IG: ↑ 4% → #;* IG: ↑ 20% p < 0.01, d = 2.38 KOOS quality of life (weeks 4–12 POST−OP): * IG: ↑ 13% → ↑ 30%; p < 0.01, d = 1.72 IKDC scale (weeks 4–12 POST−OP): * CG: ↓ −11% → #;* IG: ↑ 25%; p < 0.01, d = 3.23 Summary: BFR−LL ↑ quadriceps and hamstring strength and improved functional scores (Lysholm, KOOS, IKDC) more rapidly than control. |
| Khalil et al. [39] United States 2023 RCT | POST-OP Start: seven days POST-OP. End: until the end of the third postoperative month. | Freq: 3/week (11 weeks); 33 sessions. Int: BFR-LL 30% 1RM; HL-RT 70% 1RM. Type: Rehabilitation plus neuromuscular electrical stimulation, divided into early (CKC) and late (OKC & CKC) phases. Vol: 4 × 30-15-15-15. Rest: N/S. Prog: Phase-based exercise progression (postoperative timeline). | Device: N/S. Pressure: BFR-LL 80% LOP (not adjusted in real time). LOP: Calculated via Doppler ultrasound (site N/S). | VAS: Pain (0–100). | Summary: A conventional rehabilitation program ↓ knee pain post−ACLR. Adding BFR−LL to standard rehab showed no additional effect on pain reduction compared with conventional therapy alone. |
| Sevinc et al. [50] Turkey 2024 RCT | POST-OP Start: four weeks POST-OP. End: twelve weeks POST-OP. | Freq: 2/week (8 weeks); 16 sessions. Int: BFR + cross-education N/S; cross-education 7–8 RPE. Type: Isokinetic cross-education (uninjured limb) plus standard rehabilitation (weeks 0–12). Vol: 3 × 12 at 60°/s (10–90° flexion). Rest: 2 min between sets. Prog: N/A. | Device: Pneumatic cuff (5 cm width). Pressure: Continuous BFR + cross-education 80% LOP (not adjusted in real time). LOP: Calculated via Doppler ultrasound (posterior tibial artery, seated). | Isometric KE: MVIC (Nm). Ultrasound: Muscle thickness (mm) and CSA (cm2) of quadriceps. | Summary: Adding BFR to cross−education training did not confer additional benefits in strength recovery after ACLR. |
| Erickson et al. [53] United States 2024 RCT | PRE- and POST-OP Start: one month PRE-OP. End: four months of therapy if no weightbearing restrictions, five months if restrictions due to delayed loading. | Freq: 3/week (24 weeks); 72 sessions. Int: BFR-LL 20–30% 1RM; Sham-BFR 60–70% 1RM; failure by last set. Type: Pre- and postoperative rehabilitation (leg press, knee extension, step-ups, squats, straight leg raises). Vol: BFR 3 × 30-20-10; Sham-BFR 3 × 10. Rest: 30 s between sets; 1–2 min between exercises. Prog: Load, volume, or intensity increased if RPE <7. | Device: Automatic personalized tourniquet system (Easi-Fit cuff) for BFR-LL; non-automatic bands for Sham-BFR. Pressure: BFR-LL 60% occlusion (auto-regulated); Sham-BFR 20 mmHg. LOP: Calculated automatically. | Quadriceps strength: Isometric/isokinetic peak torque and rate of torque development. Morphology: CSA, pennation angle, fiber length, and volume. Knee biomechanics: Extensor moment and flexion angle. Estimation of muscle fibrosis: T1rho Measurement. Muscle biopsy: Fiber type, CSA, satellite cell content, collagen, fibro/adipogenic progenitor cells. | BFR−RT and Sham−BFR produced similar improvements in quadriceps muscle function post−ACLR. |
| Identified Knowledge Gaps from Scoping Review | Implications for Future Research |
|---|---|
| Lack of comparative studies and limited evidence | Few studies directly compare BFR-RT with other exercise modalities or control groups, limiting our understanding of its relative effects and outcomes across different populations and contexts. |
| Lack of studies with diverse in participant populations | Most BFR-RT and ACLR studies have included primarily young, healthy participants without additional pathologies. Future research should focus on specific sports, age groups, and surgical interventions to increase generalizability. |
| Lack of understanding of the physiological mechanisms | The physiological mechanisms underlying BFR-RT adaptations in ACLR recovery remain unclear. Further studies are needed to elucidate the specific responses and adaptations, providing deeper insight into how BFR-RT influences healing and recovery. |
| Lack of research on long-term effects | Longitudinal studies on prolonged BFR-RT effects, specifically examining the long-term effects on muscle function, physical and physiological parameters, as well as potential adverse effects, are limited. More research is needed to understand the long-term effects of BFR-RT interventions. |
| Lack of standardized protocols | The absence of consensus on standardized BFR-RT protocols and parameters challenges the translation of findings. Establishing evidence-based guidelines for optimal BFR-RT protocols is crucial for enhancing consistency and facilitating effective implementation of BFR-RT. |
| Lack of comparative studies and/or meta-analyses examining the dosage effects. | There is a need for comparative studies and/or future meta-analyses to elucidate the dosage effects of BFR-RT. This would help determine the optimal BFR-RT protocols and dosages for different populations and outcomes. |
| Lack of standardized scales for assessing the methodological description. | Scales are needed to accurately describe and compare key BFR-RT parameters, enhancing research transparency and reproducibility. |
| Lack of studies on the PRE-OP of BFR-RT application in ACLR: | There is a lack of studies investigating the effects of PRE-OP BFR-RT application as part of rehabilitation following an ACL injury. |
| Lack of standardized BFR devices | There is a need for studies that compare different BFR devices, as currently, no device has been validated their methods for calculating the Limb Occlusion Pressure (LOP). |
| Feasibility of blinding and use of sham conditions | Research must focus on developing and validating effective sham/placebo BFR conditions. Studies should also rigorously document and justify the blinding strategy (or lack thereof) to enhance internal validity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontanet, R.; Donat, R.; Carballeira, E. Blood Flow Restriction Training Prior to and After Anterior Cruciate Ligament Reconstruction: A Scoping Review. J. Funct. Morphol. Kinesiol. 2025, 10, 450. https://doi.org/10.3390/jfmk10040450
Fontanet R, Donat R, Carballeira E. Blood Flow Restriction Training Prior to and After Anterior Cruciate Ligament Reconstruction: A Scoping Review. Journal of Functional Morphology and Kinesiology. 2025; 10(4):450. https://doi.org/10.3390/jfmk10040450
Chicago/Turabian StyleFontanet, Roger, Rafel Donat, and Eduardo Carballeira. 2025. "Blood Flow Restriction Training Prior to and After Anterior Cruciate Ligament Reconstruction: A Scoping Review" Journal of Functional Morphology and Kinesiology 10, no. 4: 450. https://doi.org/10.3390/jfmk10040450
APA StyleFontanet, R., Donat, R., & Carballeira, E. (2025). Blood Flow Restriction Training Prior to and After Anterior Cruciate Ligament Reconstruction: A Scoping Review. Journal of Functional Morphology and Kinesiology, 10(4), 450. https://doi.org/10.3390/jfmk10040450









































