Impact of Hamstring Tightness on Muscle Activation in Healthy Young Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AKE | Active Knee Extension |
BMI | Body Mass Index |
EMG | Electromyography |
MVIC | Maximal Voluntary Isometric Contraction |
RMS | Root Mean Square |
sEMG | Surface Electromyography |
SENIAM | Surface Electromyography for the Non-Invasive Assessment of Muscles |
%MVIC | Percentage of Maximal Voluntary Isometric Contraction |
References
- Azzopardi, C.; Almeer, G.; Kho, J.; Beale, D.; James, S.L.; Botchu, R. Hamstring origin–anatomy, angle of origin and its possible clinical implications. J. Clin. Orthop. Trauma 2021, 13, 50–52. [Google Scholar] [CrossRef]
- Kenneally-Dabrowski, C.; Serpell, B.G. Where to next for hamstrings? A biomechanical and anatomical perspective. Br. J. Sports Med. 2024, 58, 287–288. [Google Scholar] [CrossRef] [PubMed]
- Sands, W.; McNeal, J. Mobility and flexibility training for young athletes. In Strength and Conditioning for Young Athletes, 2nd ed.; Lloyd, R.S., Oliver, J.L., Eds.; Routledge: New York, NY, USA, 2019; pp. 265–278. ISBN 978-1-351-11534-6. [Google Scholar]
- Stecco, C.; Pirri, C.; Fede, C.; Yucesoy, C.A.; De Caro, R.; Stecco, A. Fascial or muscle stretching? A narrative review. Appl. Sci. 2020, 11, 307. [Google Scholar] [CrossRef]
- Bourne, M.; Schuermans, J.; Witvrouw, E.; Aagaard, P.; Shield, A. Neuromuscular factors related to hamstring muscle function, performance and injury. In Prevention and Rehabilitation of Hamstring Injuries; Thorborg, K., Opar, D., Shield, A., Eds.; Springer: Cham, Switzerland, 2020; pp. 117–143. ISBN 978-3-030-31637-2. [Google Scholar]
- Koli, B.; Anap, D. Prevalence and severity of hamstring tightness among college student: A cross sectional study. Int. J. Clin. Biomed. Res. 2018, 4, 65–68. [Google Scholar] [CrossRef]
- Kanishka, G.K.; Sandamali, H.; Weerasinghe, I.; Binduhewa, L.; Dilshara, C.; De Silva, C.; Silva, D.; Balasuriya, A. Prevalence of hamstring tightness and associated factors among sewing machine operators. Ceylon J. Med. Sci. 2020, 56, 24–30. [Google Scholar] [CrossRef]
- Jabbar, M.; Mustansar, A.; Arif, S.; Ayub, T. Prevalence of hamstring tightness due to prolonged sitting among administrative staff of Government College University, Faisal Hospital and Commissioner Office Faisalabad. Pak. J. Phys. Ther. 2021, 4, 28–32. [Google Scholar] [CrossRef]
- Olivencia, O.; Godinez, G.M.; Dages, J.; Duda, C.; Kaplan, K.; Kolber, M.J. The reliability and minimal detectable change of the Ely and active knee extension tests. Int. J. Sports Phys. Ther. 2020, 15, 776–782. [Google Scholar] [CrossRef]
- Neto, T.; Jacobsohn, L.; Carita, A.I.; Oliveira, R. Reliability of the active-knee-extension and straight-leg-raise tests in subjects with flexibility deficits. J. Sport Rehabil. 2015, 24, 1–7. [Google Scholar] [CrossRef]
- Gajdosik, R.; Lusin, G. Hamstring muscle tightness. Phys. Ther. 1983, 63, 1085–1088. [Google Scholar] [CrossRef]
- Hansberger, B.L.; Loutsch, R.; Hancock, C.; Bonser, R.; Zeigel, A.; Baker, R.T. Evaluating the relationship between clinical assessments of apparent hamstring tightness: A correlational analysis. Int. J. Sports Phys. Ther. 2019, 14, 253–263. [Google Scholar] [CrossRef]
- Kang, M.-H.; Jung, D.-H.; An, D.-H.; Yoo, W.-G.; Oh, J.-S. Acute effects of hamstring-stretching exercises on the kinematics of the lumbar spine and hip during stoop lifting. Biomed. Res. 2013, 26, 329–336. [Google Scholar] [CrossRef]
- Guzmán-Muñoz, E.; Méndez-Rebolledo, G. Electromyography in the rehabilitation sciences. Salud Uninorte 2019, 34, 753–765. [Google Scholar] [CrossRef]
- Chowdhury, R.; Reaz, M.; Ali, M.; Bakar, A.; Chellappan, K.; Chang, T. Surface electromyography signal processing and classification techniques. Sensors 2013, 13, 12431–12466. [Google Scholar] [CrossRef]
- Guzmán-Muñoz, E.; Mendez-Rebolledo, G.; Sazo-Rodriguez, S.; Salazar-Méndez, J.; Valdes-Badilla, P.; Nuñez-Espinosa, C.; Herrera-Valenzuela, T. Quadriceps muscle reaction time in obese children. PeerJ 2024, 12, e17050. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Muñoz, E.E.; Mendez-Rebolledo, G.A.; Gatica-Rojas, V.F. Retraso de la latencia de activación de los músculos de cadera y rodilla en individuos con acortamiento de la banda iliotibial. Fisioterapia 2017, 39, 116–121. [Google Scholar] [CrossRef]
- Méndez-Rebolledo, G.; Guzmán-Muñoz, E.; Gatica-Rojas, V.; Zbinden-Foncea, H. Longer reaction time of the fibularis longus muscle and reduced postural control in basketball players with functional ankle instability: A pilot study. Phys. Ther. Sport 2015, 16, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Emami, M.; Arab, A.M.; Ghamkhar, L. The activity pattern of the lumbo-pelvic muscles during prone hip extension in athletes with and without hamstring strain injury. Int. J. Sports Phys. Ther. 2014, 9, 312–319. [Google Scholar]
- Iguchi, J.; Hojo, T.; Fujisawa, Y.; Kuzuhara, K.; Yanase, K.; Hirono, T.; Koyama, Y.; Tateuchi, H.; Ichihashi, N. Synergistic dominance induced by hip extension exercise alters biomechanics and muscular activity during sprinting and suggests a potential link to hamstring strain. J. Strength Cond. Res. 2023, 37, 1770–1776. [Google Scholar] [CrossRef]
- Nwabuko, O. An Overview of Research Study Designs in Quantitative Research Methodology: Research Article. Am. J. Med. Clin. Res. Rev. 2024, 3, 1–6. [Google Scholar] [CrossRef]
- Ishida, T.; Samukawa, M. Validity and Reliability of a Wearable Goniometer Sensor Controlled by a Mobile Application for Measuring Knee Flexion/Extension Angle during the Gait Cycle. Sensors 2023, 23, 3266. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Concha-Cisternas, Y.; Piñero, J.C.; Celis-Morales, C.; Valdés-Badilla, P.; Núñez-Espinosa, C.; Cigarroa, I.; Salazar-Méndez, J.; Alarcón-Rivera, M.; Guzmán-Muñoz, E. Effects of neuromuscular training on proprioception and muscular reaction time in older woman: Randomized controlled trial. J. Electromyogr. Kinesiol. 2025, 82, 102994. [Google Scholar] [CrossRef] [PubMed]
- Kilby, J.; Prasad, K. Extracting temporal and spectral parameters from surface electromyography signals during a fatigue contraction. Int. J. Signal Process. Syst. 2013, 1, 278–283. [Google Scholar] [CrossRef]
- Babault, N.; Pousson, M.; Michaut, A.; Van Hoecke, J. Effect of quadriceps femoris muscle length on neural activation during isometric and concentric contractions. J. Appl. Physiol. 2003, 94, 983–990. [Google Scholar] [CrossRef]
- Duchateau, J.; Enoka, R.M. Neural control of shortening and lengthening contractions: Influence of task constraints. J. Physiol. 2008, 586, 5853–5864. [Google Scholar] [CrossRef]
- Smilde, H.A.; Vincent, J.A.; Baan, G.C.; Nardelli, P.; Lodder, J.C.; Mansvelder, H.D.; Cope, T.C.; Maas, H. Changes in muscle spindle firing in response to length changes of neighboring muscles. J. Neurophysiol. 2016, 115, 3146–3155. [Google Scholar] [CrossRef]
- Doguet, V.; Nosaka, K.; Guével, A.; Thickbroom, G.; Ishimura, K.; Jubeau, M. Muscle length effect on corticospinal excitability during maximal concentric, isometric and eccentric contractions of the knee extensors. Exp. Physiol. 2017, 102, 1513–1523. [Google Scholar] [CrossRef]
Normal | Tightness | |||
---|---|---|---|---|
Variable | Mean | SD | Mean | SD |
Age (Years) | 21.08 | 2.1 | 21.46 | 2.18 |
Weight (Kg) | 72.85 | 11.5 | 73.31 | 11.38 |
Height (m) | 1.72 | 0.06 | 1.73 | 0.05 |
BMI (Kg/m2) | 24.62 | 3.61 | 24.57 | 3.71 |
AKE Test (°) | 11.75 | 4.39 | 32.31 | 5.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán-Muñoz, E.; Zurita-Leiva, C.; Gómez-Araya, F.; Concha-Cisternas, Y.; Castillo-Paredes, A.; Montalva-Valenzuela, F.; Yáñez-Sepúlveda, R.; Jofré-Saldía, E.; Molina-Márquez, I.; Vasquez-Muñoz, M. Impact of Hamstring Tightness on Muscle Activation in Healthy Young Adults. J. Funct. Morphol. Kinesiol. 2025, 10, 363. https://doi.org/10.3390/jfmk10040363
Guzmán-Muñoz E, Zurita-Leiva C, Gómez-Araya F, Concha-Cisternas Y, Castillo-Paredes A, Montalva-Valenzuela F, Yáñez-Sepúlveda R, Jofré-Saldía E, Molina-Márquez I, Vasquez-Muñoz M. Impact of Hamstring Tightness on Muscle Activation in Healthy Young Adults. Journal of Functional Morphology and Kinesiology. 2025; 10(4):363. https://doi.org/10.3390/jfmk10040363
Chicago/Turabian StyleGuzmán-Muñoz, Eduardo, Camila Zurita-Leiva, Felipe Gómez-Araya, Yeny Concha-Cisternas, Antonio Castillo-Paredes, Felipe Montalva-Valenzuela, Rodrigo Yáñez-Sepúlveda, Emilio Jofré-Saldía, Iván Molina-Márquez, and Manuel Vasquez-Muñoz. 2025. "Impact of Hamstring Tightness on Muscle Activation in Healthy Young Adults" Journal of Functional Morphology and Kinesiology 10, no. 4: 363. https://doi.org/10.3390/jfmk10040363
APA StyleGuzmán-Muñoz, E., Zurita-Leiva, C., Gómez-Araya, F., Concha-Cisternas, Y., Castillo-Paredes, A., Montalva-Valenzuela, F., Yáñez-Sepúlveda, R., Jofré-Saldía, E., Molina-Márquez, I., & Vasquez-Muñoz, M. (2025). Impact of Hamstring Tightness on Muscle Activation in Healthy Young Adults. Journal of Functional Morphology and Kinesiology, 10(4), 363. https://doi.org/10.3390/jfmk10040363