Performance Metrics of Anaerobic Power in Professional Mixed Martial Arts (MMA) Fighters
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MMA | Mixed Martial Arts |
WAnT | Wingate Anaerobic Test |
CMJ | Countermovement Jump |
RSImod | modified reactive strength index |
References
- Alm, P. Physiological Characters in Mixed Martial Arts. Am. J. Sports Sci. 2013, 1, 12–17. [Google Scholar] [CrossRef]
- James, L.P.; Haff, G.G.; Kelly, V.G.; Beckman, E.M. Towards a Determination of the Physiological Characteristics Distinguishing Successful Mixed Martial Arts Athletes: A Systematic Review of Combat Sport Literature. Sports Med. 2016, 46, 1525–1551. [Google Scholar] [CrossRef]
- James, L.P.; Haff, G.G.; Kelly, V.G.; Beckman, E.M. Physiological determinants of mixed martial arts performance and method of competition outcome. Int. J. Sports Sci. Coach. 2018, 13, 978–984. [Google Scholar] [CrossRef]
- Kirk, C.; Clark, D.R.; Langan-Evans, C.; Morton, J.P. The physical demands of mixed martial arts: A narrative review using the ARMSS model to provide a hierarchy of evidence. J. Sports Sci. 2020, 38, 2819–2841. [Google Scholar] [CrossRef]
- Peacock, C.; Mena, M.; Sanders, G.; Silver, T.; Kalman, D.; Antonio, J. Sleep Data, Physical Performance, and Injuries in Preparation for Professional Mixed Martial Arts. Sports 2018, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Plush, M.G.; Guppy, S.N.; Nosaka, K.; Barley, O.R. Developing a Comprehensive Testing Battery for Mixed Martial Arts. Int. J. Exerc. Sci. 2021, 14, 941–961. [Google Scholar] [CrossRef]
- Barley, O.R.; Chapman, D.W.; Guppy, S.N.; Abbiss, C.R. Considerations When Assessing Endurance in Combat Sport Athletes. Front. Physiol. 2019, 10, 205. [Google Scholar] [CrossRef] [PubMed]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-Sprint Ability—Part I. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef]
- Daanen, H.A.M.; Lamberts, R.P.; Kallen, V.L.; Jin, A.; Van Meeteren, N.L.U. A Systematic Review on Heart-Rate Recovery to Monitor Changes in Training Status in Athletes. Int. J. Sports Physiol. Perform. 2012, 7, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.J.; Hasan, S.S.; Woo, J.J.; Nawabi, D.H.; Ramkumar, P.N. The Fundamentals and Applications of Wearable Sensor Devices in Sports Medicine: A Scoping Review. Arthroscopy 2025, 41, 473–492. [Google Scholar] [CrossRef]
- Schaer, A.; Helander, O.; Buffa, F.; Müller, A.; Schneider, K.; Maurenbrecher, H.; Becsek, B.; Chatzipirpiridis, G.; Ergeneman, O.; Pané, S.; et al. Integrated Pedal System for Data Driven Rehabilitation. Sensors 2021, 21, 8115. [Google Scholar] [CrossRef] [PubMed]
- Vanegas, E.; Salazar, Y.; Igual, R.; Plaza, I. Force-Sensitive Mat for Vertical Jump Measurement to Assess Lower Limb Strength: Validity and Reliability Study. JMIR Mhealth Uhealth 2021, 9, e27336. [Google Scholar] [CrossRef] [PubMed]
- Franchini, E. Energy System Contributions during Olympic Combat Sports: A Narrative Review. Metabolites 2023, 13, 297. [Google Scholar] [CrossRef]
- Sanders, G.J.; Howard, M.; Carpenter, R.; Peacock, C.A.; Byers, P. Heart Rate, Oxygen Uptake and Anaerobic Thresholds During a Maximal Treadmill Test with World Class Mixed Martial Arts Fighters. Sports Innov. J. 2024, 5, 38–48. [Google Scholar] [CrossRef]
- Batra, A.; Finlay, M.; Kirk, C. Jump performance and field-based anaerobic capacity profiles of international standard amateur mixed martial arts athletes. Rev. Artes Marciales Asiat. 2025, 20, 18–29. [Google Scholar] [CrossRef]
- Markovic, G.; Dizdar, D.; Jukic, I.; Cardinale, M. Reliability and Factorial Validity of Squat and Countermovement Jump Tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar]
- Van Hooren, B.; Zolotarjova, J. The Difference Between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms With Practical Applications. J. Strength Cond. Res. 2017, 31, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- James, L.P.; Beckman, E.M.; Kelly, V.G.; Haff, G.G. The Neuromuscular Qualities of Higher- and Lower-Level Mixed-Martial-Arts Competitors. Int. J. Sports Physiol. Perform. 2017, 12, 612–620. [Google Scholar] [CrossRef]
- James, L.P.; Connick, M.; Haff, G.G.; Kelly, V.G.; Beckman, E.M. The Countermovement Jump Mechanics of Mixed Martial Arts Competitors. J. Strength Cond. Res. 2020, 34, 982–987. [Google Scholar] [CrossRef]
- Davis, D.S.; Bosley, E.E.; Gronell, L.C.; Keeney, S.A.; Rossetti, A.M.; Mancinelli, C.A.; Petronis, J.J. The relationship of body segment length and vertical jump displacement in recreational athletes. J. Strength Cond. Res. 2006, 20, 136–140. [Google Scholar] [PubMed]
- Leard, J.S.; Cirillo, M.A.; Katsnelson, E.; Kimiatek, D.A.; Miller, T.W.; Trebincevic, K.; Garbalosa, J.C. Validity of two alternative systems for measuring vertical jump height. J. Strength Cond. Res. 2007, 21, 1296–1299. [Google Scholar] [PubMed]
- Merrigan, J.J.; Rentz, L.E.; Hornsby, W.G.; Wagle, J.P.; Stone, J.D.; Smith, H.T.; Galster, S.M.; Joseph, M.; Hagen, J.A. Comparisons of Countermovement Jump Force-Time Characteristics Among National Collegiate Athletic Association Division I American Football Athletes: Use of Principal Component Analysis. J. Strength Cond. Res. 2022, 36, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, J.L.; McBride, J.M.; Cormie, P.; McCaulley, G.O. Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength. J. Strength Cond. Res. 2008, 22, 699–707. [Google Scholar] [CrossRef]
- Stephenson, M.L.; Smith, D.T.; Heinbaugh, E.M.; Moynes, R.C.; Rockey, S.S.; Thomas, J.J.; Dai, B. Total and Lower Extremity Lean Mass Percentage Positively Correlates With Jump Performance. J. Strength Cond. Res. 2015, 29, 2167–2175. [Google Scholar] [CrossRef]
- Driller, M.W.; Argus, C.K.; Shing, C.M. The reliability of a 30-s sprint test on the Wattbike cycle ergometer. Int. J. Sports Physiol. Perform. 2013, 8, 379–383. [Google Scholar] [CrossRef]
- Wainwright, B.; Cooke, C.B.; O’Hara, J.P. The validity and reliability of a sample of 10 Wattbike cycle ergometers. J. Sports Sci. 2017, 35, 1451–1458. [Google Scholar] [CrossRef]
- Tortu, E.; Ouergui, I.; Ulupinar, S.; Özbay, S.; Gençoğlu, C.; Ardigò, L.P. The contribution of energy systems during 30-second lower body Wingate anaerobic test in combat sports athletes: Intermittent versus single forms and gender comparison. PLoS ONE 2024, 19, e0303888. [Google Scholar] [CrossRef]
- Popadic Gacesa, J.Z.; Barak, O.F.; Grujic, N.G. Maximal anaerobic power test in athletes of different sport disciplines. J. Strength Cond. Res. 2009, 23, 751–755. [Google Scholar] [CrossRef]
- I Lovell, D.; Bousson, M.; McLellan, C. The Use of Performance Tests for the Physiological Monitoring of Training in Combat Sports: A Case Study of a World Ranked Mixed Martial Arts Fighter. J. Athl. Enhanc. 2013, 2, 2–6. [Google Scholar] [CrossRef]
- Comyns, T.M.; Murphy, J.; O’Leary, D. Reliability, Usefulness, and Validity of Field-Based Vertical Jump Measuring Devices. J. Strength Cond. Res. 2023, 37, 1594–1599. [Google Scholar] [CrossRef] [PubMed]
- Kenny, I.C.; Cairealláin, A.Ó.; Comyns, T.M. Validation of an electronic jump mat to assess stretch-shortening cycle function. J. Strength Cond. Res. 2012, 26, 1601–1608. [Google Scholar] [CrossRef]
- Montalvo, S.; Gonzalez, M.P.; Dietze-Hermosa, M.S.; Eggleston, J.D.; Dorgo, S. Common Vertical Jump and Reactive Strength Index Measuring Devices: A Validity and Reliability Analysis. J. Strength Cond. Res. 2021, 35, 1234–1243. [Google Scholar] [CrossRef]
- Xu, J.; Turner, A.; Comfort, P.; Harry, J.R.; McMahon, J.J.; Chavda, S.; Bishop, C. A Systematic Review of the Different Calculation Methods for Measuring Jump Height During the Countermovement and Drop Jump Tests. Sports Med. 2023, 53, 1055–1072. [Google Scholar] [CrossRef] [PubMed]
- Castagna, C.; Ganzetti, M.; Ditroilo, M.; Giovannelli, M.; Rocchetti, A.; Manzi, V. Concurrent validity of vertical jump performance assessment systems. J. Strength Cond. Res. 2013, 27, 761–768. [Google Scholar] [CrossRef]
- Dobbin, N.; Hunwicks, R.; Highton, J.; Twist, C. Validity of a Jump Mat for assessing Countermovement Jump Performance in Elite Rugby Players. Int. J. Sports Med. 2016, 38, 99–104. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Kitamura, K.; Cal Abad, C.C.; Marques, G.; Guerriero, A.; Moraes, J.E.; Nakamura, F.Y. Validity and Usability of a New System for Measuring and Monitoring Variations in Vertical Jump Performance. J. Strength Cond. Res. 2017, 31, 2579–2585. [Google Scholar] [CrossRef]
- Bringhurst, R.F.; Wagner, D.R.; Schwartz, S. Wingate Anaerobic Test Reliability on the Velotron With Ice Hockey Players. J. Strength Cond. Res. 2020, 34, 1716–1722. [Google Scholar] [CrossRef]
- Bar-Or, O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef]
- Fujii, N.; Fujisawa, K.; Dobashi, K.; Cao, Y.; Matsutake, R.; Lai, Y.-F.; Nishiyasu, T. Effects of High-Intensity Exercise Repetition Number During Warm-up on Physiological Responses, Perceptions, Readiness, and Performance. Res. Q. Exerc. Sport 2023, 94, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Patti, A.; Giustino, V.; Hirose, N.; Messina, G.; Cataldi, S.; Grigoli, G.; Marchese, A.; Mulè, G.; Drid, P.; Palma, A.; et al. Effects of an experimental short-time high-intensity warm-up on explosive muscle strength performance in soccer players: A pilot study. Front. Physiol. 2022, 13, 984305. [Google Scholar] [CrossRef] [PubMed]
- Gouvêa, A.L.; Fernandes, I.A.; César, E.P.; Silva, W.A.B.; Gomes, P.S.C. The effects of rest intervals on jumping performance: A meta-analysis on post-activation potentiation studies. J. Sports Sci. 2013, 31, 459–467. [Google Scholar] [CrossRef]
- Kohler, R.M.; Rundell, K.W.; Evans, T.M.; Levine, A.M. Peak power during repeated wingate trials: Implications for testing. J. Strength Cond. Res. 2010, 24, 370–374. [Google Scholar] [CrossRef]
- Dal Pupo, J.; Gheller, R.G.; Dias, J.A.; Rodacki, A.L.; Moro, A.R.; Santos, S.G. Reliability and validity of the 30-s continuous jump test for anaerobic fitness evaluation. J. Sci. Med. Sport 2014, 17, 650–655. [Google Scholar] [CrossRef]
- Kasabalis, A.; Douda, H.; Tokmakidis, S.P. Relationship between anaerobic power and jumping of selected male volleyball players of different ages. Percept. Mot. Ski. 2005, 100, 607–614. [Google Scholar] [CrossRef]
- Dunn, E.C.; Humberstone, C.E.; Franchini, E.; Iredale, K.F.; Blazevich, A.J. Relationships Between Punch Impact Force and Upper- and Lower-Body Muscular Strength and Power in Highly Trained Amateur Boxers. J. Strength Cond. Res. 2022, 36, 1019–1025. [Google Scholar] [CrossRef]
- Kostikiadis, I.N.; Methenitis, S.; Tsoukos, A.; Veligekas, P.; Terzis, G.; Bogdanis, G.C. The Effect of Short-Term Sport-Specific Strength and Conditioning Training on Physical Fitness of Well-Trained Mixed Martial Arts Athletes. J. Sports Sci. Med. 2018, 17, 348–358. [Google Scholar]
- Coswig, V.S.; Gentil, P.; Bueno, J.C.A.; Follmer, B.; Marques, V.A.; Del Vecchio, F.B. Physical fitness predicts technical-tactical and time-motion profile in simulated Judo and Brazilian Jiu-Jitsu matches. PeerJ 2018, 6, e4851. [Google Scholar] [CrossRef] [PubMed]
- Olah, V.; Trebicky, V.; Malecek, J.; Michalicka, V.; Wasik, J.; Vagner, M. Is Countermovement Jump Height and One Repetition Maximum Back Squat Associated With the Peak Force of a Front Kick With and Without Carried Load? J. Strength Cond. Res. 2025, 39, 880–889. [Google Scholar] [PubMed]
- Chen, C.; Ali, Z.; Rehman Rashid, M.A.; Samethanovna, M.U.; Wu, G.; Mukhametkali, S.; Dilnur, T. Relationship between isokinetic strength of the knee joint and countermovement jump performance in elite boxers. PeerJ 2023, 11, e16521. [Google Scholar] [CrossRef]
- Chottidao, M.; Kuo, C.-H.; Tsai, S.-C.; Hwang, I.-S.; Lin, J.-J.; Tsai, Y.-S. A Comparison of Plyometric and Jump Rope Training Programs for Improving Punching Performance in Junior Amateur Boxers. Front. Bioeng. Biotechnol. 2022, 10, 878527. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Nakamura, F.Y.; Artioli, G.G.; Kobal, R.; Kitamura, K.; Cal Abad, C.C.; Cruz, I.F.; Romano, F.; Pereira, L.A.; Franchini, E. Strength and Power Qualities Are Highly Associated With Punching Impact in Elite Amateur Boxers. J. Strength Cond. Res. 2016, 30, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Ambroży, T.; Maciejczyk, M.; Klimek, A.T.; Wiecha, S.; Stanula, A.; Snopkowski, P.; Pałka, T.; Jaworski, J.; Ambroży, D.; Rydzik, Ł.; et al. The Effects of Intermittent Hypoxic Training on Anaerobic and Aerobic Power in Boxers. Int. J. Environ. Res. Public Health 2020, 17, 9361. [Google Scholar] [CrossRef]
- San Juan, A.F.; López-Samanes, Á.; Jodra, P.; Valenzuela, P.L.; Rueda, J.; Veiga-Herreros, P.; Pérez-López, A.; Domínguez, R. Caffeine Supplementation Improves Anaerobic Performance and Neuromuscular Efficiency and Fatigue in Olympic-Level Boxers. Nutrients 2019, 11, 2120. [Google Scholar] [CrossRef]
- Zhang, Y.; Diao, P.; Wang, J.; Li, S.; Fan, Q.; Han, Y.; Liang, Y.; Wang, Z.; Del Coso, J. The Effect of Post-Activation Potentiation Enhancement Alone or in Combination with Caffeine on Anaerobic Performance in Boxers: A Double-Blind, Randomized Crossover Study. Nutrients 2024, 16, 235. [Google Scholar] [CrossRef]
- García-Pallarés, J.; López-Gullón, J.M.; Muriel, X.; Díaz, A.; Izquierdo, M. Physical fitness factors to predict male Olympic wrestling performance. Eur. J. Appl. Physiol. 2011, 111, 1747–1758. [Google Scholar] [CrossRef]
- Kotikangas, J.; Walker, S.; Peltonen, H.; Hakkinen, K. Time Course of Neuromuscular Fatigue During Different Resistance Exercise Loadings in Power Athletes, Strength Athletes, and Nonathletes. J. Strength Cond. Res. 2024, 38, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, H.C.; Jung, H.S.; Yoon, J.D. Influence of performance level on anaerobic power and body composition in elite male judoists. J. Strength Cond. Res. 2011, 25, 1346–1354. [Google Scholar] [CrossRef]
- Bridge, C.A.; Ferreira Da Silva Santos, J.; Chaabène, H.; Pieter, W.; Franchini, E. Physical and Physiological Profiles of Taekwondo Athletes. Sports Med. 2014, 44, 713–733. [Google Scholar] [CrossRef]
- Chaabène, H.; Hachana, Y.; Franchini, E.; Mkaouer, B.; Chamari, K. Physical and Physiological Profile of Elite Karate Athletes. Sports Med. 2012, 42, 829–843. [Google Scholar] [PubMed]
- Čular, D.; Ivančev, V.; Zagatto, A.M.; Milić, M.; Beslija, T.; Sellami, M.; Padulo, J. Validity and Reliability of the 30-s Continuous Jump for Anaerobic Power and Capacity Assessment in Combat Sport. Front. Physiol. 2018, 9, 543. [Google Scholar] [CrossRef] [PubMed]
- Chaabène, H.; Tabben, M.; Mkaouer, B.; Franchini, E.; Negra, Y.; Hammami, M.; Amara, S.; Chaabène, R.B.; Hachana, Y. Amateur Boxing: Physical and Physiological Attributes. Sports Med. 2015, 45, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Miarka, B.; Brito, C.J.; Bello, F.D.; Amtmann, J. Motor actions and spatiotemporal changes by weight divisions of mixed martial arts: Applications for training. Hum. Mov. Sci. 2017, 55, 73–80. [Google Scholar] [CrossRef]
- Taati, B.; Arazi, H.; Bridge, C.A.; Franchini, E. A new taekwondo-specific field test for estimating aerobic power, anaerobic fitness, and agility performance. PLoS ONE 2022, 17, e0264910. [Google Scholar] [CrossRef]
- Gannon, E.A.; Higham, D.G.; Gardner, B.W.; Nan, N.; Zhao, J.; Bisson, L.J. Changes in Neuromuscular Status Across a Season of Professional Men’s Ice Hockey. J. Strength Cond. Res. 2021, 35, 1338–1344. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Matos, B.; Clemente, F.M.; Bezerra, P.; Camões, M.; Rosemann, T.; Knechtle, B. Normative Data of the Wingate Anaerobic Test in 1 Year Age Groups of Male Soccer Players. Front. Physiol. 2018, 9, 1619. [Google Scholar] [CrossRef] [PubMed]
- Roe, G.; Darrall-Jones, J.; Till, K.; Phibbs, P.; Read, D.; Weakley, J.; Jones, B. To Jump or Cycle? Monitoring Neuromuscular Function in Rugby Union Players. Int. J. Sports Physiol. Perform. 2017, 12, 690–696. [Google Scholar] [CrossRef] [PubMed]
Variable | Vertical (cm) | Peak Power (W) | Avg Power (W) | Fatigue Index (%) |
---|---|---|---|---|
Vertical (cm) | - | 0.004 * | <0.001 * | 0.002 * |
Peak Power (W) | 0.004 * | - | <0.001 * | <0.001 * |
Avg Power (W) | <0.001 * | <0.001 * | - | 0.045 * |
Fatigue Index (%) | 0.002 * | <0.001 * | 0.045 * | - |
Dependent Variable | Lighter Group (<83.9 kg) | Heavier Group (≥83.9 kg) | T-Stat | p-Value | Cohen’s D |
---|---|---|---|---|---|
Age (years) | 29.00 ± 4.80 | 31.00 ± 6.10 | −0.87 | 0.39 | −0.36 |
Height (cm) | 175.20 ± 8.00 | 188.70 ± 7.10 | −4.01 | <0.001 * | −1.79 |
Weight (kg) | 76.30 ± 8.70 | 99.50 ± 6.00 | −7.09 | <0.001 * | −3.00 |
Dependent Variable | Lighter Group (<83.9 kg) | Heavier Group (≥83.9 kg) | T-Stat | p-Value | Cohen’s D |
---|---|---|---|---|---|
Vertical (cm) | 68.15 ± 7.26 | 59.69 ± 9.46 | 1.74 | 0.11 | 1.00 |
Peak Power (W) | 648.67 ± 106.86 | 823.17 ± 122.45 | −2.63 | 0.03 * | −1.52 |
Avg Power (W) | 533.50 ± 63.50 | 552.17 ± 89.20 | −0.42 | 0.69 | −0.24 |
Fatigue Index (%) | 29.17 ± 6.18 | 35.17 ± 6.55 | −1.63 | 0.13 | −0.94 |
Relative Peak Power (W/kg) | 8.15 ± 1.59 | 8.90 ± 1.42 | −0.76 | 0.468 | −0.50 |
Relative Avg Power (W/kg) | 6.69 ± 0.95 | 5.93 ± 1.33 | 1.06 | 0.320 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanflink, J.; Peacock, C.A.; Sanders, G.J.; Antonio, J. Performance Metrics of Anaerobic Power in Professional Mixed Martial Arts (MMA) Fighters. J. Funct. Morphol. Kinesiol. 2025, 10, 358. https://doi.org/10.3390/jfmk10030358
Hanflink J, Peacock CA, Sanders GJ, Antonio J. Performance Metrics of Anaerobic Power in Professional Mixed Martial Arts (MMA) Fighters. Journal of Functional Morphology and Kinesiology. 2025; 10(3):358. https://doi.org/10.3390/jfmk10030358
Chicago/Turabian StyleHanflink, Jessica, Corey A. Peacock, Gabriel J. Sanders, and Jose Antonio. 2025. "Performance Metrics of Anaerobic Power in Professional Mixed Martial Arts (MMA) Fighters" Journal of Functional Morphology and Kinesiology 10, no. 3: 358. https://doi.org/10.3390/jfmk10030358
APA StyleHanflink, J., Peacock, C. A., Sanders, G. J., & Antonio, J. (2025). Performance Metrics of Anaerobic Power in Professional Mixed Martial Arts (MMA) Fighters. Journal of Functional Morphology and Kinesiology, 10(3), 358. https://doi.org/10.3390/jfmk10030358