Impact of a Four-Week NCAA-Compliant Pre-Season Strength and Conditioning Program on Body Composition in NCAA Division II Women’s Basketball
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Four-Weeks Pre-Season Training Protocol
2.3. Body Composition Assessment
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Inferential Statistics
3.2.1. Lean Body Mass (LBM)
3.2.2. Body Fat Percentage (%)
4. Discussion
4.1. Changes in Lean Body Mass
4.2. Changes in Body Fat Percentage
4.3. Model Insights and Covariate Effects
4.4. Practical Applications
4.5. Key Takeways for Coaches
- Capitalize on the Pre-Season as a High-Impact Window. View the short pre-season not as a constraint, but as a critical opportunity. Our data show that significant, positive changes in body composition (~1.5 kg LBM gain, ~1.3% BF loss) are achievable in just four weeks, setting a strong physiological foundation for the competitive season.
- Prioritize High-Intensity, High-Quality Training. The key to driving these changes is training intensity and quality, not just volume.
- ○
- Resistance Training Focus: Center your program on compound lifts (e.g., squats, deadlifts, Olympic lift variations) in the 75–85% 1RM range. Pair these with low-volume plyometrics (e.g., box jumps) to enhance the power-to-weight ratio.
- ○
- Session Density: To comply with NCAA time limits (e.g., 4 h/week of S&C), structure sessions around exercise density. Utilize supersets and manage rest periods to keep sessions concise and effective (e.g., 3–4 sessions of ‚â§45–60 min each).
- Link Training to On-Court Performance. Clearly communicate the “why” behind the training. Emphasize that favorable changes in body composition directly support on-court strength, endurance, and potential injury resilience.
- ○
- Pragmatic Monitoring: While DEXA is the gold standard for annual validation, use practical tools like BIA to track body composition trends throughout the pre-season.
- ○
- Performance Proxies: Supplement body composition data with performance metrics. Improvements in vertical jump, sprint times, or agility tests can serve as excellent proxies for an enhanced power-to-weight ratio.
4.6. Limitations and Future Directions
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NCAA | National Collegiate Athletic Association |
SC | Strength and conditioning |
BC | Body composition |
LD | Linear dichroism |
LBM | Lean body mass |
BF% | Body fat percentage |
DEXA | Dual energy X-ray absorptiometry |
BIA | Bioelectrical impedance analysis |
LMM | Linear mixed model |
REML | Restricted maximum likelihood |
BODPOD | Air displacement plethysmography |
References
- Mexis, D.; Nomikos, T.; Kostopoulos, N. Effect of Pre-Season Training on Physiological and Biochemical Indices in Basketball Players-A Systematic Review. Sports 2022, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Love, D.; Otte, F.; Davids, K. Skill adaptation in basketball coaching—Harnessing periodization and individualization in scheduling NBA shooting practice. Int. J. Sports Sci. Coach. 2025, 17479541251341425. [Google Scholar] [CrossRef]
- Diaz-Martinez, A.S.; Vaquero-Cristobal, R.; Albaladejo-Saura, M.; Esparza-Ros, F. Effect of pre-season and in-season training on anthropometric variables, somatotype, body composition and body proportion in elite basketball players. Sci. Rep. 2024, 14, 7537. [Google Scholar] [CrossRef] [PubMed]
- Api, G.; Arruda, D. Comparison of Periodization Models: A Critical Review with Practical Applications. J. Appl. Sports Sci. 2022, 6, 77–105. [Google Scholar] [CrossRef]
- Santos, A.C.; Turner, T.J.; Bycura, D.K. Current and Future Trends in Strength and Conditioning for Female Athletes. Int. J. Environ. Res. Public Health 2022, 19, 2687. [Google Scholar] [CrossRef] [PubMed]
- Philipp, N.M.; Blackburn, S.D.; Cabarkapa, D.; Fry, A.C. The Effects of a Low-Volume, High-Intensity Preseason Microcycle on Neuromuscular Performance in Collegiate Female Basketball Players. J. Strength Cond. Res. 2024, 38, 2136–2146. [Google Scholar] [CrossRef] [PubMed]
- Towner, R.; Larson, A.; Gao, Y.; Ransdell, L.B. Longitudinal monitoring of workloads in women’s division I (DI) collegiate basketball across four training periods. Front. Sports Act. Living 2023, 5, 1108965. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, Z.; Stamatis, A.; Padgett, R.N.; Sanders, B.K. NCAA In-Season Coaching Time Regulations Negate Strength and Conditioning Gains in Women’s Division-II Basketball Team. Int. J. Sports Sci. 2019, 9, 92–99. [Google Scholar]
- Andreyo, E.; Unverzagt, C.; Tompkins, J.; Dawes, J.J.; Croll, S. A Needs Analysis and Training Considerations for Female Adolescent Basketball Players. Strength Cond. J. 2024, 46, 320–337. [Google Scholar] [CrossRef]
- Stamatis, A.; Morgan, G.B.; Nyamaruze, P.; Koutakis, P. Mental Toughness Development via Military-Style Training in the NCAA: A Three-Phase, Mixed-Method Study of the Perspectives of Strength and Conditioning Coaches. Sports 2022, 10, 92. [Google Scholar] [CrossRef] [PubMed]
- Huynh, P.; Guadagnino, S.; Zendler, J.; Agresta, C. Physical demands of collegiate basketball practice: A preliminary report on novel methods and metrics. Front. Sports Act. Living 2024, 6, 1324650. [Google Scholar] [CrossRef] [PubMed]
- Stamatis, A.; Deal, P.J.; Morgan, G.B.; Forsse, J.S.; Papadakis, Z.; McKinley-Barnard, S.; Scudamore, E.M.; Koutakis, P. Can athletes be tough yet compassionate to themselves? Practical implications for NCAA mental health best practice no. 4. PLoS ONE 2020, 15, e0244579. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.C.; Sagas, M. Understanding the differences in U.S. NCAA Division I coaches and athletes’ preferences on time demands measures. Cogent Soc. Sci. 2024, 10, 2302218. [Google Scholar] [CrossRef]
- National Collegiate Athletic Association. Division II Philosophy Statement. 2025. Available online: https://www.ncaa.org/sports/2013/11/15/division-ii-philosophy-statement.aspx (accessed on 25 April 2025).
- National Collegiate Athletic Association. Division II, 2024–2025 Manual. 2024. Available online: https://www.ncaapublications.com/p-4704-2023-24-and-2024-25-ncaa-womens-basketball-rules-book-online-only.aspx?CategoryID=0&SectionID=0&ManufacturerID=0&DistributorID=0&GenreID=0&VectorID=0& (accessed on 1 May 2024).
- Mexis, D.; Nomikos, T.; Kostopoulos, N. Effect of Three Pre-Season Training Protocols with Different Training Frequencies on Biochemical and Performance Markers in Professional Female Basketball Players. Appl. Sci. 2025, 15, 1833. [Google Scholar] [CrossRef]
- Mexis, D.; Nomikos, T.; Mitsopoulos, N.; Kostopoulos, N. Effect of a 6-Week Preseason Training Protocol on Physiological and Muscle Damage Markers in High-Level Female and Male Basketball Players. Sports 2023, 11, 229. [Google Scholar] [CrossRef] [PubMed]
- Sansone, P.; Makivic, B.; Csapo, R.; Hume, P.; Martinez-Rodriguez, A.; Bauer, P. Body Fat of Basketball Players: A Systematic Review and Meta-Analysis. Sports Med. Open 2022, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Martinez, J.; Perez-Carcamo, J.; Coñapi-Union, B.; Canales-Canales, S.; Negron-Molina, M.; Avila-Valencia, S.; Cid-Calfucura, I.; Herrera-Valenzuela, T.; Cisterna, D.; Branco, B.H.M.; et al. Relationship between Body Composition and Physical Performance by Sex in Professional Basketball Players. Appl. Sci. 2024, 14, 9165. [Google Scholar] [CrossRef]
- Papaevangelou, E.; Papadopoulou, Z.; Michailidis, Y.; Mandroukas, A.; Nikolaidis, P.T.; Margaritelis, N.V.; Metaxas, T. Changes in Cardiorespiratory Fitness during a Season in Elite Female Soccer, Basketball, and Handball Players. Appl. Sci. 2023, 13, 9593. [Google Scholar] [CrossRef]
- Correas-Gomez, L.; Benitez-Flores, S.; Calleja-Gonzalez, J.; Carnero, E.A. Quality of lean body mass and jump capacity in high performance young basketball players lean body mass and jump capacity. J. Sports Sci. 2023, 41, 1667–1677. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.L.; Baker, B.S.; Mercer, R.A.J.; McLean, B.D. Examining the Influence of Season Phase, Age, and Anthropometrics on Body Composition Trends in National Basketball Association Athletes. J. Strength Cond. Res. 2025, 39, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Kuo, S.; Dommel, A.; Sayer, R.D. Body Composition Changes in College Basketball Players Over Summer Training. Int. J. Sports Exerc. Med. 2022, 8, 232. [Google Scholar] [CrossRef] [PubMed]
- Fields, J.B.; Merrigan, J.J.; White, J.B.; Jones, M.T. Seasonal and Longitudinal Changes in Body Composition by Sport-Position in NCAA Division I Basketball Athletes. Sports 2018, 6, 85. [Google Scholar] [CrossRef] [PubMed]
- Carbuhn, A.F.; Fernandez, T.E.; Bragg, A.F.; Green, J.S.; Crouse, S.F. Sport and training influence bone and body composition in women collegiate athletes. J. Strength Cond. Res. 2010, 24, 1710–1717. [Google Scholar] [CrossRef] [PubMed]
- Stanforth, P.R.; Crim, B.N.; Stanforth, D.; Stults-Kolehmainen, M.A. Body composition changes among female NCAA division 1 athletes across the competitive season and over a multiyear time frame. J. Strength Cond. Res. 2014, 28, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Siders, W.A.; Bolonchuk, W.W.; Lukaski, H.C. Effects of participation in a collegiate sport season on body composition. J. Sports Med. Phys. Fitness 1991, 31, 571–576. [Google Scholar] [PubMed]
- Ladwig, E.; Shim, A.L.; Yom, J.P.; Cross, P.; Beebe, J. Preseason and post season body composition does not change relative to playing time in Division I female basketball players. Int. J. Exerc. Sci. 2013, 6, 208–216. [Google Scholar] [CrossRef]
- Marzilli, T.S. The effects of a preseason strength training program on a division II collegiate women’s basketball team. Int. J. Fit. 2008, 4, 7. [Google Scholar]
- Lukonaitiene, I.; Kamandulis, S.; Paulauskas, H.; Domeika, A.; Pliauga, V.; Kreivyte, R.; Stanislovaitiene, J.; Conte, D. Investigating the workload, readiness and physical performance changes during intensified 3-week preparation periods in female national Under18 and Under20 basketball teams. J. Sports Sci. 2020, 38, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Hilfer, A.; Oligchlaeger, A.; Henderson, M.; Whitehead, M.; Arabas, J.; Mayhew, J.; Houser, J. Accuracy of Bioelectric Impedance Analysis Devices to Estimate Body Fat and Fat-Free Mass in College Women Athletes: Body composition in women athletes. Int. J. Strength Cond. 2023, 3. [Google Scholar] [CrossRef]
- Campa, F.; Gobbo, L.A.; Stagi, S.; Cyrino, L.T.; Toselli, S.; Marini, E.; Coratella, G. Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. Eur. J. Appl. Physiol. 2022, 122, 561–589. [Google Scholar] [CrossRef] [PubMed]
- Dzator, S.; Weerasekara, I.; Shields, M.; Haslam, R.; James, D. Agreement Between Dual-Energy X-ray Absorptiometry and Bioelectric Impedance Analysis for Assessing Body Composition in Athletes: A Systematic Review and Meta-Analysis. Clin. J. Sport. Med. 2023, 33, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.G.; Triplett, N.T. Essentials of Strength Training and Conditioning, 4th ed.; Human Kinetics: Champaign, IL, USA, 2021. [Google Scholar]
- Lopez, P.; Taaffe, D.R.; Galvao, D.A.; Newton, R.U.; Nonemacher, E.R.; Wendt, V.M.; Bassanesi, R.N.; Turella, D.J.P.; Rech, A. Resistance training effectiveness on body composition and body weight outcomes in individuals with overweight and obesity across the lifespan: A systematic review and meta-analysis. Obes. Rev. 2022, 23, e13428. [Google Scholar] [CrossRef] [PubMed]
- Zouita, A.; Darragi, M.; Bousselmi, M.; Sghaeir, Z.; Clark, C.C.T.; Hackney, A.C.; Granacher, U.; Zouhal, H. The Effects of Resistance Training on Muscular Fitness, Muscle Morphology, and Body Composition in Elite Female Athletes: A Systematic Review. Sports Med. 2023, 53, 1709–1735. [Google Scholar] [CrossRef] [PubMed]
- Stankovic, M.; Djordjevic, D.; Trajkovic, N.; Milanovic, Z. Effects of High-Intensity Interval Training (HIIT) on Physical Performance in Female Team Sports: A Systematic Review. Sports Med. Open 2023, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Hammert, W.B.; Kataoka, R.; Yamada, Y.; Song, J.S.; Kang, A.; Spitz, R.W.; Loenneke, J.P. Progression of total training volume in resistance training studies and its application to skeletal muscle growth. Physiol. Meas. 2024, 45, 08TR03. [Google Scholar] [CrossRef] [PubMed]
- Camera, D.M. Evaluating the Effects of Increased Protein Intake on Muscle Strength, Hypertrophy and Power Adaptations with Concurrent Training: A Narrative Review. Sports Med. 2022, 52, 441–461. [Google Scholar] [CrossRef] [PubMed]
- Callahan, M.J.; Parr, E.B.; Hawley, J.A.; Camera, D.M. Can High-Intensity Interval Training Promote Skeletal Muscle Anabolism? Sports Med. 2021, 51, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, K.R.; Greenwalt, C.E.; Saylor, H.E.; Gould, L.M.; Harrison, C.H.; Brewer, G.J.; Blue, M.N.M.; Ferrando, A.A.; Huffman, K.M.; Mayer-Davis, E.J.; et al. High-intensity interval training and essential amino acid supplementation: Effects on muscle characteristics and whole-body protein turnover. Physiol. Rep. 2020, 9, e14655. [Google Scholar] [CrossRef] [PubMed]
- Gharahdaghi, N.; Phillips, B.E.; Szewczyk, N.J.; Smith, K.; Wilkinson, D.J.; Atherton, P.J. Links Between Testosterone, Oestrogen, and the Growth Hormone/Insulin-Like Growth Factor Axis and Resistance Exercise Muscle Adaptations. Front. Physiol. 2020, 11, 621226. [Google Scholar] [CrossRef] [PubMed]
- Van Every, D.W.; D’Souza, A.C.; Phillips, S.M. Hormones, Hypertrophy, and Hype: An Evidence-Guided Primer on Endogenous Endocrine Influences on Exercise-Induced Muscle Hypertrophy. Exerc. Sport Sci. Rev. 2024, 52, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Noguera, F.J.; Chung, L.H.; Guadalupe-Grau, A.; Montoro-Garcia, S.; Alcaraz, P.E. Comparison of Hormonal, Inflammatory, Muscle Damage and Oxidative Stress Biomarkers Changes in Response to High-Intensity Interval, Circuit and Concurrent Exercise Bouts. Sports 2025, 13, 184. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, C.; Villagrán, F.; Santibañez, S.; Vargas, C.A. Intermittent Fasting, Nutritional Supplementation, and Resistance Training as Strategy for Body Weight Loss: An Update. Int. J. Morphol. 2021, 39, 172–178. [Google Scholar] [CrossRef]
- Hadjispyrou, S.; Dinas, P.C.; Delitheos, S.M.; Koumprentziotis, I.A.; Chryssanthopoulos, C.; Philippou, A. The Effect of High-Intensity Interval Training on Mitochondrial-Associated Indices in Overweight and Obese Adults: A Systematic Review and Meta-Analysis. Front. Biosci. 2023, 28, 281. [Google Scholar] [CrossRef] [PubMed]
- Kolnes, K.J.; Petersen, M.H.; Lien-Iversen, T.; Hojlund, K.; Jensen, J. Effect of Exercise Training on Fat Loss-Energetic Perspectives and the Role of Improved Adipose Tissue Function and Body Fat Distribution. Front. Physiol. 2021, 12, 737709. [Google Scholar] [CrossRef] [PubMed]
- Batterson, P.M.; McGowan, E.M.; Stierwalt, H.D.; Ehrlicher, S.E.; Newsom, S.A.; Robinson, M.M. Two weeks of high-intensity interval training increases skeletal muscle mitochondrial respiration via complex-specific remodeling in sedentary humans. J. Appl. Physiol. 2023, 134, 339–355. [Google Scholar] [CrossRef] [PubMed]
- Mezghani, N.; Ammar, A.; Boukhris, O.; Abid, R.; Hadadi, A.; Alzahrani, T.M.; Trabelsi, O.; Boujelbane, M.A.; Masmoudi, L.; Ouergui, I.; et al. The Impact of Exercise Training Intensity on Physiological Adaptations and Insulin Resistance in Women with Abdominal Obesity. Healthcare 2022, 10, 2533. [Google Scholar] [CrossRef] [PubMed]
- Garibotti, M.C.; Perry, C.G.R. Strength athletes and mitochondria: It’s about ‘time’. J. Physiol. 2023, 601, 2753–2754. [Google Scholar] [CrossRef] [PubMed]
- Dawes, J.J.; Spiteri, T. Relationship between pre-season testing performance and playing time among NCAA DII basketball players. Sports Exerc. Med. 2016, 2, 47–54. [Google Scholar] [CrossRef]
- Judge, L.W.; Petersen, J.; Huffman, O.; Razon, S. Addressing the Adoption Gap: Exploring Resistance to Evidence-Based Practices among NCAA Coaches. J. Appl. Sport Manag. 2024, 16, 4. [Google Scholar] [CrossRef]
- Rauff, E.L.; Herman, A.; Berninger, D.; Machak, S.; Shultz, S.P. Using sport science data in collegiate athletics: Coaches’ perspectives. Int. J. Sports Sci. Coach. 2022, 17, 500–509. [Google Scholar] [CrossRef]
- Blue, M.N.M.; Tinsley, G.M.; Hirsch, K.R.; Ryan, E.D.; Ng, B.K.; Smith-Ryan, A.E. Validity of total body water measured by multi-frequency bioelectrical impedance devices in a multi-ethnic sample. Clin. Nutr. ESPEN 2023, 54, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Son, J.W.; Han, B.D.; Bennett, J.P.; Heymsfield, S.; Lim, S. Development and clinical application of bioelectrical impedance analysis method for body composition assessment. Obes. Rev. 2025, 26, e13844. [Google Scholar] [CrossRef] [PubMed]
- Mecherques-Carini, M.; Albaladejo-Saura, M.; Esparza-Ros, F.; Baglietto, N.; Vaquero-Cristobal, R. Validity between dual-energy x-ray absorptiometry and bioelectrical impedance for segmental fat analysis and a novel low-cost model developed using anthropometry in young adults. J. Transl. Med. 2025, 23, 40. [Google Scholar] [CrossRef] [PubMed]
- Baglietto, N.; Vaquero-Cristobal, R.; Albaladejo-Saura, M.; Mecherques-Carini, M.; Esparza-Ros, F. Assessing skeletal muscle mass and lean body mass: An analysis of the agreement among dual X-ray absorptiometry, anthropometry, and bioelectrical impedance. Front. Nutr. 2024, 11, 1445892. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- The Jamovi Project. Jamovi, Version 2.6. 2024. Available online: https://www.jamovi.org (accessed on 25 April 2025).
- West, B.T.; Welch, K.B.; Galecki, A.T. Linear Mixed Models: A Practical Guide Using Statistical Software; Chapman and Hall: Boca Raton, FL, USA, 2022. [Google Scholar]
- Mundo, A.I.; Tipton, J.R.; Muldoon, T.J. Generalized additive models to analyze nonlinear trends in biomedical longitudinal data using R: Beyond repeated measures ANOVA and linear mixed models. Stat. Med. 2022, 41, 4266–4283. [Google Scholar] [CrossRef] [PubMed]
- van Wely, M. Mixed models for repetitive measurements: The basics. Fertil. Steril. 2024, 12, 914–917. [Google Scholar] [CrossRef] [PubMed]
- Little, T.D. Longitudinal Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2024. [Google Scholar]
- Baayen, R.H.; Davidson, D.J.; Bates, D.M. Mixed-effects modeling with crossed random effects for subjects and items. J. Mem. Lang. 2008, 59, 390–412. [Google Scholar] [CrossRef]
- Singer, J.D.; Willett, J.B. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Gallucci, M. GAMLj: General Analyses for Linear Models. 2020. Available online: https://gamlj.github.io (accessed on 20 April 2025).
- Gallucci, M. Model Goodness of Fit in GAMLj. 2020. Available online: https://gamlj.github.io/details_goodness.html (accessed on 4 April 2025).
- Pinheiro, J.; Bates, D. Mixed-Effects Models in S and S-PLUS; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Yu, Z.; Guindani, M.; Grieco, S.F.; Chen, L.; Holmes, T.C.; Xu, X. Beyond t test and ANOVA: Applications of mixed-effects models for more rigorous statistical analysis in neuroscience research. Neuron 2022, 110, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Harrison, X.A.; Donaldson, L.; Correa-Cano, M.E.; Evans, J.; Fisher, D.N.; Goodwin, C.E.D.; Robinson, B.S.; Hodgson, D.J.; Inger, R. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 6, e4794. [Google Scholar] [CrossRef] [PubMed]
- Dobrosielski, D.A.; Leppert, K.M.; Knuth, N.D.; Wilder, J.N.; Kovacs, L.; Lisman, P.J. Body Composition Values of NCAA Division 1 Female Athletes Derived From Dual-Energy X-Ray Absorptiometry. J. Strength Cond. Res. 2021, 35, 2886–2893. [Google Scholar] [CrossRef] [PubMed]
- Wilborn, C.D.; Taylor, L.W.; Foster, C.A.; Campbell, B.; McAdams, M.; Dugan, K.; Lewing, M. The Effects of Pre- and Post-Exercise Whey vs. Casein Protein Consumption on Body Composition and Performance Measures in Collegiate Female Athletes. Med. Sci. Sports Exerc. 2010, 42, 774. [Google Scholar] [CrossRef]
- Markos, J.; Fernandez, T.E.; Bragg, A.F.; Green, J.S.; Crouse, S.F.; Carbuhn, A.F. Sport Specificity And Training Influence Bone And Body Composition In Women Collegiate Athletes. Med. Sci. Sports Exerc. 2009, 41, 288. [Google Scholar] [CrossRef]
- Stone, M.H.; Hornsby, W.G.; Suarez, D.G.; Duca, M.; Pierce, K.C. Training Specificity for Athletes: Emphasis on Strength-Power Training: A Narrative Review. J. Funct. Morphol. Kinesiol. 2022, 7, 102. [Google Scholar] [CrossRef] [PubMed]
- Kilinc, F. An intensive combined training program modulates physical, physiological, biomotoric, and technical parameters in women basketball players. J. Strength Cond. Res. 2008, 22, 1769–1778. [Google Scholar] [CrossRef] [PubMed]
- Gallant, T.L.; Ong, L.F.; Wong, L.; Sparks, M.; Wilson, E.; Puglisi, J.L.; Gerriets, V.A. Low Energy Availability and Relative Energy Deficiency in Sport: A Systematic Review and Meta-analysis. Sports Med. 2025, 55, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Noone, J.; Mucinski, J.M.; DeLany, J.P.; Sparks, L.M.; Goodpaster, B.H. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab. 2024, 36, 702–724. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Coratella, G.; Cerullo, G.; Noriega, Z.; Francisco, R.; Charrier, D.; Irurtia, A.; Lukaski, H.; Silva, A.M.; Paoli, A. High-standard predictive equations for estimating body composition using bioelectrical impedance analysis: A systematic review. J. Transl. Med. 2024, 22, 515. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.; Caldwell, A.R.; Mesquida, C.; Ladell, A.J.M.; Encarnacion-Martinez, A.; Tual, A.; Denys, A.; Cameron, B.; Van Hooren, B.; Parr, B.; et al. Estimating the Replicability of Sports and Exercise Science Research. Sports Med. 2025. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Bongiovanni, T.; Rossi, A.; Cerullo, G.; Casolo, A.; Martera, G.; Trecroci, A.; Moro, T.; Paoli, A. Athletic bioimpedance-based equations underestimate fat free mass components in male elite soccer players: Development and validation of new soccer-specific predictive models. J. Transl. Med. 2023, 21, 912. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, Z.; Panoutsakopoulos, V.; Schwarz, A.; Antonio, J. Caffeine’s influence on vertical jump height: A real-life collegiate student-athlete approach. J. Int. Soc. Sports Nutr. 2025, 22, 2501063. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Lacar, J.; Singh, M.; Bird, S.P.; Charest, J.; Huyghe, T.; Calleja-Gonzalez, J. How Sleep Affects Recovery and Performance in Basketball: A Systematic Review. Brain Sci. 2022, 12, 1570. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.P.; Parsons-Smith, R.L.; King, R.; Terry, P.C. Wellness, Mood, Sleep, and Performance in a Women’s National Basketball Team during International Competition. J. Hum. Kinet. 2025, 96, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, Z.; Walsh, S.M.; Morgan, G.B.; Deal, P.J.; Stamatis, A. Is Mindfulness the Common Ground Between Mental Toughness and Self-Compassion in Student Athletes? A Cross-Sectional Study. Eur. J. Investig. Heal. Psychol. Educ. 2025, 15, 95. [Google Scholar] [CrossRef] [PubMed]
- Baranauskas, M.; Kupciunaite, I.; Lieponiene, J.; Stukas, R. Association between Variation in Body Fat Mass Magnitude and Intake of Nutrients, including Carbohydrates, Fat, and B Vitamins, in a Cohort of Highly Trained Female Athletes. Foods 2023, 12, 4152. [Google Scholar] [CrossRef] [PubMed]
- Larrosa, M.; Gil-Izquierdo, A.; Gonzalez-Rodriguez, L.G.; Alferez, M.J.M.; San Juan, A.F.; Sanchez-Gomez, A.; Calvo-Ayuso, N.; Ramos-Alvarez, J.J.; Fernandez-Lazaro, D.; Lopez-Grueso, R.; et al. Nutritional Strategies for Optimizing Health, Sports Performance, and Recovery for Female Athletes and Other Physically Active Women: A Systematic Review. Nutr. Rev. 2025, 83, e1068–e1089. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, M.A.; Thomson, R.L.; Moran, L.J.; Wycherley, T.P. The Impact of Menstrual Cycle Phase on Athletes’ Performance: A Narrative Review. Int. J. Environ. Res. Public Health 2021, 18, 1667. [Google Scholar] [CrossRef] [PubMed]
- Niering, M.; Wolf-Belala, N.; Seifert, J.; Tovar, O.; Coldewey, J.; Kuranda, J.; Muehlbauer, T. The Influence of Menstrual Cycle Phases on Maximal Strength Performance in Healthy Female Adults: A Systematic Review with Meta-Analysis. Sports 2024, 12, 31. [Google Scholar] [CrossRef] [PubMed]
- Oosthuyse, T.; Strauss, J.A.; Hackney, A.C. Understanding the female athlete: Molecular mechanisms underpinning menstrual phase differences in exercise metabolism. Eur. J. Appl. Physiol. 2023, 123, 423–450. [Google Scholar] [CrossRef] [PubMed]
- Christina, S. Basketball Strength and Conditioning. 2025. Available online: https://www.ncaa.org/sports/2014/12/11/basketball-strength-and-conditioning.aspx?path=ssi (accessed on 20 March 2025).
- Cetiner-Oksin, B.; Guzel, Y.; Aktitiz, S.; Kosar, S.N.; Turnagol, H.H. Energy balance and energy availability of female basketball players during the preparation period. J. Am. Nutr. Assoc. 2023, 42, 807–813. [Google Scholar] [CrossRef] [PubMed]
95% Confidence Interval Mean | 95% Confidence Interval Std. Dev. | ||||||
---|---|---|---|---|---|---|---|
Mean | Std. Error of Mean | Upper | Lower | Std. Deviation | Upper | Lower | |
Age (y) | 20.56 | 0.45 | 21.52 | 19.61 | 1.79 | 2.77 | 1.32 |
Height (cm) | 173.88 | 1.61 | 177.32 | 170.43 | 6.46 | 10.00 | 4.77 |
Body mass (kg) | |||||||
Pre | 76.19 | 5.04 | 86.93 | 65.45 | 20.16 | 31.20 | 14.89 |
Post | 76.83 | 4.84 | 87.14 | 66.51 | 19.36 | 29.97 | 14.30 |
BF% | |||||||
Pre | 25.26 | 2.06 | 29.64 | 20.87 | 8.23 | 12.74 | 6.08 |
Post | 23.99 | 1.89 | 28.02 | 19.95 | 7.57 | 11.71 | 5.59 |
LBM (kg) | |||||||
Pre | 52.86 | 1.95 | 57.02 | 48.70 | 7.81 | 12.08 | 5.77 |
Post | 54.34 | 1.93 | 58.46 | 50.23 | 7.72 | 11.94 | 5.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadakis, Z. Impact of a Four-Week NCAA-Compliant Pre-Season Strength and Conditioning Program on Body Composition in NCAA Division II Women’s Basketball. J. Funct. Morphol. Kinesiol. 2025, 10, 266. https://doi.org/10.3390/jfmk10030266
Papadakis Z. Impact of a Four-Week NCAA-Compliant Pre-Season Strength and Conditioning Program on Body Composition in NCAA Division II Women’s Basketball. Journal of Functional Morphology and Kinesiology. 2025; 10(3):266. https://doi.org/10.3390/jfmk10030266
Chicago/Turabian StylePapadakis, Zacharias. 2025. "Impact of a Four-Week NCAA-Compliant Pre-Season Strength and Conditioning Program on Body Composition in NCAA Division II Women’s Basketball" Journal of Functional Morphology and Kinesiology 10, no. 3: 266. https://doi.org/10.3390/jfmk10030266
APA StylePapadakis, Z. (2025). Impact of a Four-Week NCAA-Compliant Pre-Season Strength and Conditioning Program on Body Composition in NCAA Division II Women’s Basketball. Journal of Functional Morphology and Kinesiology, 10(3), 266. https://doi.org/10.3390/jfmk10030266