Acute Effects of Different Types of Compression Legwear on Biomechanics of Countermovement Jump: A Statistical Parametric Mapping Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Indicators
2.4. Data Processing
2.5. Statistical Analysis
3. Results
3.1. Kinematics
3.2. Kinetics
3.2.1. Joint Moment
3.2.2. Joint Forces
3.2.3. Vertical Ground Reaction Force
4. Discussion
4.1. Legwear Effects on Propulsion Phase Biomechanics
4.2. Flight and Landing Phases: Implications for Risk of Injury
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CMJ | Countermovement jump |
CG | Compression garment |
GRF | Ground reaction force |
CT | Compression tight |
CS | Compression short |
CC | Control short |
SPM | Statistical parametric mapping |
vCOM | Velocity of center of mass |
HAMS | Hamstring |
SOL | Soleus |
VAS | Vastus |
GMAX | Gluteus maximus |
GAS | Gastrocnemius |
UP | Unweighting phase |
BP | Braking phase |
PP | Propulsion phase |
FP | Flight phase |
LP | Landing phase |
DF | Dorsiflexion |
PF | Plantarflexion |
ABD | Abduction |
ADD | Adduction |
IR | Internal rotation |
ER | External rotation |
FL | Flexion |
EXT | Extension |
VAR | Varus |
VAL | Valgus |
MED | Medial |
LAT | Lateral |
ANT | Anterior |
POST | Posterior |
COMP | Compression |
TENS | Tension |
References
- Carlock, J.M.; Smith, S.L.; Hartman, M.J.; Morris, R.T.; Ciroslan, D.A.; Pierce, K.C.; Newton, R.U.; Harman, E.A.; Sands, W.A.; Stone, M.H. The relationship between vertical jump power estimates and weightlifting ability: A field-test approach. J. Strength Cond. Res. 2004, 18, 534–539. [Google Scholar] [PubMed]
- Pehar, M.; Sekulic, D.; Sisic, N.; Spasic, M.; Uljevic, O.; Krolo, A.; Milanovic, Z.; Sattler, T. Evaluation of different jumping tests in defining position-specific and performance-level differences in high level basketball players. Biol. Sport 2017, 34, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.; Tilp, M.; Von Duvillard, S.; Mueller, E. Kinematic analysis of volleyball spike jump. Int. J. Sports Med. 2009, 30, 760–765. [Google Scholar] [CrossRef]
- Rowley, K.M.; Richards, J.G. Increasing plantarflexion angle during landing reduces vertical ground reaction forces, loading rates and the hip’s contribution to support moment within participants. J. Sports Sci. 2015, 33, 1922–1931. [Google Scholar] [CrossRef]
- Taylor, K.; Chapman, D.; Cronin, J.; Newton, M.J.; Gill, N. Fatigue monitoring in high performance sport: A survey of current trends. J. Aust. Strength Cond. 2012, 20, 12–23. [Google Scholar]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Doyle, T.L. Reliability of measures obtained during single and repeated countermovement jumps. Int. J. Sports Physiol. Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef]
- Taylor, K.-L.; Cronin, J.; Gill, N.D.; Chapman, D.W.; Sheppard, J. Sources of variability in iso-inertial jump assessments. Int. J. Sports Physiol. Perform. 2010, 5, 546–558. [Google Scholar] [CrossRef]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef]
- Yu, P.; Gong, Z.; Meng, Y.; Baker, J.S.; István, B.; Gu, Y. The acute influence of running-induced fatigue on the performance and biomechanics of a countermovement jump. Appl. Sci. 2020, 10, 4319. [Google Scholar] [CrossRef]
- Giatsis, G.; Panoutsakopoulos, V.; Kollias, I.A. Biomechanical differences of arm swing countermovement jumps on sand and rigid surface performed by elite beach volleyball players. J. Sports Sci. 2018, 36, 997–1008. [Google Scholar] [CrossRef]
- Louder, T.J.; Bressel, E.; Nardoni, C.; Dolny, D.G. Biomechanical comparison of loaded countermovement jumps performed on land and in water. J. Strength Cond. Res. 2019, 33, 25–35. [Google Scholar] [CrossRef] [PubMed]
- de Britto, M.A.; Lemos, A.L.; Dos Santos, C.S.; Stefanyshyn, D.J.; Carpes, F.P. Effect of a compressive garment on kinematics of jump-landing tasks. J. Strength Cond. Res. 2017, 31, 2480–2488. [Google Scholar] [CrossRef] [PubMed]
- Brown, F.; Gissane, C.; Howatson, G.; Van Someren, K.; Pedlar, C.; Hill, J. Compression garments and recovery from exercise: A meta-analysis. Sports Med. 2017, 47, 2245–2267. [Google Scholar] [CrossRef]
- Weakley, J.; Broatch, J.; O’Riordan, S.; Morrison, M.; Maniar, N.; Halson, S.L. Putting the squeeze on compression garments: Current evidence and recommendations for future research: A systematic scoping review. Sports Med. 2022, 52, 1141–1160. [Google Scholar] [CrossRef]
- Wannop, J.W.; Worobets, J.T.; Madden, R.; Stefanyshyn, D.J. Influence of compression and stiffness apparel on vertical jump performance. J. Strength Cond. Res. 2016, 30, 1093–1101. [Google Scholar] [CrossRef]
- Leabeater, A.; Vickery-Howe, D.; Perrett, C.; James, L.; Middleton, K.; Driller, M. Evaluating the effect of sports compression tights on balance, sprinting, jumping and change of direction tasks. Sports Biomech. 2024, 1–17. [Google Scholar] [CrossRef]
- Hughes, S.; Warmenhoven, J.; Haff, G.G.; Chapman, D.W.; Nimphius, S. Countermovement jump and squat jump force-time curve analysis in control and fatigue conditions. J. Strength Cond. Res. 2022, 36, 2752–2761. [Google Scholar] [CrossRef]
- Adams, R. Revised physical activity readiness questionnaire. Can. Fam. Physician 1999, 45, 992. [Google Scholar]
- Wade, L.; Lichtwark, G.A.; Farris, D.J. Comparisons of laboratory-based methods to calculate jump height and improvements to the field-based flight-time method. Scand. J. Med. Sci. Sports 2020, 30, 31–37. [Google Scholar] [CrossRef]
- Huang, R.; Ma, Y.; Lin, S.; Zheng, W.; Liu, L.; Jia, M. Correlation between the biomechanical characteristics and stability of the 143D movement during the balance phase in competitive Tai Chi. Front. Bioeng. Biotechnol. 2024, 12, 1449073. [Google Scholar] [CrossRef]
- Huang, R.; Ma, Y.; Lin, S.; Zheng, W.; Liu, L.; Jia, M. Research on the biomechanical laterality of athletes’ lower limbs during side kick in the competitive Taekwondo. Sci. Rep. 2025, 15, 10180. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.-Q.; Chan, M.-k.; Yick, K.-L.; Li, P.-L.; Yip, J.; Tse, C.-Y. Biomechanical Analysis Of Unilateral Transtibial Amputees Using Prosthetic Foot During Treadmill Walking At Varying Slopes: 1721. Med. Sci. Sports Exerc. 2023, 55, 581. [Google Scholar] [CrossRef]
- McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the key phases of the countermovement jump force-time curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef]
- De Ridder, R.; Willems, T.; Vanrenterghem, J.; Robinson, M.; Pataky, T.; Roosen, P. Gait kinematics of subjects with ankle instability using a multisegmented foot model. Med. Sci. Sports Exerc. 2013, 45, 2129–2136. [Google Scholar] [CrossRef]
- Penny, W.D.; Friston, K.J.; Ashburner, J.T.; Kiebel, S.J.; Nichols, T.E. Statistical Parametric Mapping: The Analysis of Functional Brain Images; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Pataky, T.C. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J. Biomech. 2010, 43, 1976–1982. [Google Scholar] [CrossRef]
- Pataky, T.C. One-dimensional statistical parametric mapping in Python. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 295–301. [Google Scholar] [CrossRef]
- Vanezis, A.; Lees, A. A biomechanical analysis of good and poor performers of the vertical jump. Ergonomics 2005, 48, 1594–1603. [Google Scholar] [CrossRef]
- Marshall, B.M.; Moran, K.A. Biomechanical factors associated with jump height: A comparison of cross-sectional and pre-to-posttraining change findings. J. Strength Cond. Res. 2015, 29, 3292–3299. [Google Scholar] [CrossRef]
- McErlain-Naylor, S.; King, M.; Pain, M.T.G. Determinants of countermovement jump performance: A kinetic and kinematic analysis. J. Sports Sci. 2014, 32, 1805–1812. [Google Scholar] [CrossRef]
- Williams, G.N.; Chmielewski, T.; Rudolph, K.S.; Buchanan, T.S.; Snyder-Mackler, L. Dynamic knee stability: Current theory and implications for clinicians and scientists. J. Orthop. Sports Phys. Ther. 2001, 31, 546–566. [Google Scholar] [CrossRef]
- Akl, A.-R. A comparison of biomechanical parameters between two methods of countermovement jump. Int. J. Sports Sci. Eng. 2013, 7, 123–128. [Google Scholar]
- McMahon, J.J.; Murphy, S.; Rej, S.J.; Comfort, P. Countermovement-jump-phase characteristics of senior and academy rugby league players. Int. J. Sports Physiol. Perform. 2017, 12, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Cleather, D.J.; Goodwin, J.E.; Bull, A.M. Intersegmental moment analysis characterizes the partial correspondence of jumping and jerking. J. Strength Cond. Res. 2013, 27, 89–100. [Google Scholar] [CrossRef]
- Vanrenterghem, J.; Lees, A.; De Clercq, D. Effect of forward trunk inclination on joint power output in vertical jumping. J. Strength Cond. Res. 2008, 22, 708–714. [Google Scholar] [CrossRef]
- Vanrenterghem, J.; Lees, A.; Lenoir, M.; Aerts, P.; De Clercq, D. Performing the vertical jump: Movement adaptations for submaximal jumping. Hum. Mov. Sci. 2004, 22, 713–727. [Google Scholar] [CrossRef]
- Shinchi, K.; Yamashita, D.; Yamagishi, T.; Aoki, K.; Miyamoto, N. Relationship between jump height and lower limb joint kinetics and kinematics during countermovement jump in elite male athletes. Sports Biomech. 2024, 23, 3454–3465. [Google Scholar] [CrossRef]
- Harry, J.R.; Simms, A.; Hite, M. Establishing phase definitions for jump and drop landings and an exploratory assessment of performance-related metrics to monitor during testing. J. Strength Cond. Res. 2022, 38, e62–e71. [Google Scholar] [CrossRef]
- Hite, M.D.; Simms, A.J.; Stewart, M.J.; Chowning, L.D.; Harry, J.R. Differences in countermovement jump landing characteristics and joint works across levels of perceived effort. J. Biomech. 2025, 184, 112645. [Google Scholar] [CrossRef]
- Cadens, M.; Planas-Anzano, A.; Peirau-Terés, X.; Benet-Vigo, A.; Fort-Vanmeerhaeghe, A. Neuromuscular and biomechanical jumping and landing deficits in young female handball players. Biology 2023, 12, 134. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt Jr, R.S.; Colosimo, A.J.; McLean, S.G.; Van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef]
- Cronin, B.; Johnson, S.T.; Chang, E.; Pollard, C.D.; Norcross, M.F. Greater hip extension but not hip abduction explosive strength is associated with lesser hip adduction and knee valgus motion during a single-leg jump-cut. Orthop. J. Sports Med. 2016, 4, 2325967116639578. [Google Scholar] [CrossRef] [PubMed]
- Stearns, K.M.; Powers, C.M. Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task. Am. J. Sports Med. 2014, 42, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, A.M.; Andriacchi, T.P. The mechanical consequences of dynamic frontal plane limb alignment for non-contact ACL injury. J. Biomech. 2006, 39, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Harry, J.R.; Barker, L.A.; Eggleston, J.D.; Dufek, J.S. Evaluating performance during maximum effort vertical jump landings. J. Appl. Biomech. 2018, 34, 403–409. [Google Scholar] [CrossRef]
- Mackala, K.; Stodólka, J.; Siemienski, A.; Coh, M. Biomechanical analysis of squat jump and countermovement jump from varying starting positions. J. Strength Cond. Res. 2013, 27, 2650–2661. [Google Scholar] [CrossRef]
- Nüesch, C.; Roos, E.; Egloff, C.; Pagenstert, G.; Mündermann, A. The effect of different running shoes on treadmill running mechanics and muscle activity assessed using statistical parametric mapping (SPM). Gait Posture 2019, 69, 1–7. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.-F.; Yick, K.-L.; Shi, Q.-Q.; Liu, L.; Li, C.-H. Acute Effects of Different Types of Compression Legwear on Biomechanics of Countermovement Jump: A Statistical Parametric Mapping Analysis. J. Funct. Morphol. Kinesiol. 2025, 10, 257. https://doi.org/10.3390/jfmk10030257
Huang R-F, Yick K-L, Shi Q-Q, Liu L, Li C-H. Acute Effects of Different Types of Compression Legwear on Biomechanics of Countermovement Jump: A Statistical Parametric Mapping Analysis. Journal of Functional Morphology and Kinesiology. 2025; 10(3):257. https://doi.org/10.3390/jfmk10030257
Chicago/Turabian StyleHuang, Rui-Feng, Kit-Lun Yick, Qiu-Qiong Shi, Lin Liu, and Chu-Hao Li. 2025. "Acute Effects of Different Types of Compression Legwear on Biomechanics of Countermovement Jump: A Statistical Parametric Mapping Analysis" Journal of Functional Morphology and Kinesiology 10, no. 3: 257. https://doi.org/10.3390/jfmk10030257
APA StyleHuang, R.-F., Yick, K.-L., Shi, Q.-Q., Liu, L., & Li, C.-H. (2025). Acute Effects of Different Types of Compression Legwear on Biomechanics of Countermovement Jump: A Statistical Parametric Mapping Analysis. Journal of Functional Morphology and Kinesiology, 10(3), 257. https://doi.org/10.3390/jfmk10030257