Power Output, Lactatemia, and Maximum Oxygen Consumption During a Specific Off-Water Incremental Test in International-Level Podium-Winner Kayak and Rowing Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Physiological Assessment
2.2.1. Cardiopulmonary Exhaustion Test on Paddle Ergometer
2.2.2. Cardiopulmonary Exhaustion Test on Rowing Ergometer
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Maximal Oxygen Consumption
4.2. Second Ventilatory Threshold
4.3. Power Output and Lactatemia
4.4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McKenzie, D.; Berglund, B. Handbook of Sports Medicine and Science: Canoeing; Wiley Online Library: Hoboken, NJ, USA, 2019. [Google Scholar]
- Hunter, A.; Cochrane, J.; Sachlikidis, A. Canoe slalom competition analysis. Sports Biomech. 2008, 7, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.canoeicf.com (accessed on 5 May 2025).
- Bishop, D. Physiological predictors of flat-water kayak performance in women. Eur. J. Appl. Physiol. 2000, 82, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Zouhal, H.; Le Douairon Lahaye, S.; Ben Abderrahaman, A.; Minter, G.; Herbez, R.; Castagna, C. Energy system contribution to Olympic distances in flat water kayaking (500 and 1000 m) in highly trained subjects. J. Strength Cond. Res. 2012, 26, 825–831. [Google Scholar] [CrossRef]
- Zamparo, P.; Capelli, C.; Guerrini, G. Energetics of kayaking at submaximal and maximal speeds. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 542–548. [Google Scholar] [CrossRef]
- Secher, N.H.; Volianitis, S. The Handbook of Sports Medicine and Science: Rowing; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Available online: https://worldrowing.com (accessed on 5 May 2025).
- de Campos Mello, F.; de Moraes Bertuzzi, R.C.; Grangeiro, P.M.; Franchini, E. Energy systems contributions in 2000 m race simulation: A comparison among rowing ergometers and water. Eur. J. Appl. Physiol. 2009, 107, 615–619. [Google Scholar] [CrossRef]
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef]
- Michael, J.S.; Rooney, K.B.; Smith, R. The metabolic demands of kayaking: A review. J. Sports Sci. Med. 2008, 7, 1. [Google Scholar] [PubMed]
- Bourdin, M.; Messonnier, L.; Hager, J.P.; Lacour, J.R. Peak power output predicts rowing ergometer performance in elite male rowers. Int. J. Sports Med. 2004, 25, 368–373. [Google Scholar] [CrossRef]
- Zeiher, J.; Ombrellaro, K.J.; Perumal, N.; Keil, T.; Mensink, G.B.M.; Finger, J.D. Correlates and Determinants of Cardiorespiratory Fitness in Adults: A Systematic Review. Sports Med. Open 2019, 5, 39. [Google Scholar] [CrossRef]
- Lundby, C.; Montero, D.; Joyner, M. Biology of VO2max: Looking under the physiology lamp. Acta Physiol. 2017, 220, 218–228. [Google Scholar] [CrossRef]
- Poole, D.C.; Jones, A.M. Measurement of the maximum oxygen uptake Vo2max: Vo2peak is no longer acceptable. J. Appl. Physiol. 2017, 122, 997–1002. [Google Scholar] [CrossRef]
- Crisafulli, O.; Baptista, R.; Drid, P.; Grattarola, L.; Bottoni, G.; Lavaselli, E.; Negro, M.; Tupler, R.; Quintiero, V.; D’Antona, G. Analysis of Body Fluid Distribution, Phase Angle and Its Association with Maximal Oxygen Consumption in Facioscapulohumeral Dystrophy: An Observational Study. Health Sci. Rep. 2025, 8, e70335. [Google Scholar] [CrossRef]
- Apollonatou, V.; Lykouras, D.; Kargiotis, O.; Kasdagli, M.I.; Lagiou, O.; Papathanasopoulos, P.; Spiropoulos, K.; Karkoulias, K. Cardiopulmonary exercise testing in people with minimally impaired multiple sclerosis. Mult. Scler. Relat. Disord. 2023, 79, 105016. [Google Scholar] [CrossRef]
- Thrue, C.; Hvid, L.G.; Gamborg, M.; Dawes, H.; Dalgas, U.; Langeskov-Christensen, M. Aerobic capacity in persons with Parkinson’s disease: A systematic review. Disabil. Rehabil. 2023, 45, 2409–2421. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, L.A.; Arena, R.; Myers, J. Reference Standards for Cardiorespiratory Fitness Measured with Cardiopulmonary Exercise Testing: Data from the Fitness Registry and the Importance of Exercise National Database. Mayo Clin. Proc. 2015, 90, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Takken, T.; Mylius, C.F.; Paap, D.; Broeders, W.; Hulzebos, H.J.; Van Brussel, M.; Bongers, B.C. Reference values for cardiopulmonary exercise testing in healthy subjects—An updated systematic review. Expert Rev. Cardiovasc. Ther. 2019, 17, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Olekšák, F.; Dvoran, P.; Jakušová, Ľ.; Ďurdík, P.; Igaz, M.; Bánovčin, P. Reference Values for Cardiopulmonary Exercise Testing in Young Male Slovak Athletes. Acta Medica 2021, 64, 119–124. [Google Scholar] [CrossRef]
- Daniels, J.; Daniels, N. Running economy of elite male and elite female runners. Med. Sci. Sports Exerc. 1992, 24, 483–489. [Google Scholar] [CrossRef]
- Heil, D.P. Body mass scaling of peak oxygen uptake in 20- to 79-yr-old adults. Med. Sci. Sports Exerc. 1997, 29, 1602–1608. [Google Scholar] [CrossRef]
- Welsman, J.R.; Armstrong, N.; Nevill, A.M.; Winter, E.M.; Kirby, B.J. Scaling peak VO2 for differences in body size. Med. Sci. Sports Exerc. 1996, 28, 259–265. [Google Scholar] [CrossRef]
- Buresh, R.; Berg, K. Scaling oxygen uptake to body size and several practical applications. J. Strength Cond. Res. 2002, 16, 461–465. [Google Scholar] [PubMed]
- Astrand PaR, K. Textbook of Work Physiology; McGraw-Hill Book Company: New York, NY, USA, 1990. [Google Scholar]
- Lamberts, R.P.; Davidowitz, K.J. Allometric scaling and predicting cycling performance in (well-) trained female cyclists. Int. J. Sports Med. 2014, 35, 217–222. [Google Scholar] [CrossRef]
- Chamari, K.; Moussa-Chamari, I.; Boussaïdi, L.; Hachana, Y.; Kaouech, F.; Wisløff, U. Appropriate interpretation of aerobic capacity: Allometric scaling in adult and young soccer players. Br. J. Sports Med. 2005, 39, 97–101. [Google Scholar] [CrossRef]
- Bergh, U.; Sjödin, B.; Forsberg, A.; Svedenhag, J. The relationship between body mass and oxygen uptake during running in humans. Med. Sci. Sports Exerc. 1991, 23, 205–211. [Google Scholar] [CrossRef]
- Tartaruga, M.P.; Brisswalter, J.; Mota, C.B.; Alberton, C.L.; Gomeñuka, N.A.; Peyré-Tartaruga, L.A. Mechanical work and long-distance performance prediction: The influence of allometric scaling. J. Hum. Kinet. 2013, 38, 73–82. [Google Scholar] [CrossRef]
- Jensen, K.; Johansen, L.; Secher, N.H. Influence of body mass on maximal oxygen uptake: Effect of sample size. Eur. J. Appl. Physiol. 2001, 84, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R., Jr.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Cosgrove, M.J.; Wilson, J.; Watt, D.; Grant, S.F. The relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m ergometer test. J. Sports Sci. 1999, 17, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Borges, T.O.; Dascombe, B.; Bullock, N.; Coutts, A.J. Physiological characteristics of well-trained junior sprint kayak athletes. Int. J. Sports Physiol. Perform. 2015, 10, 593–599. [Google Scholar] [CrossRef]
- van Someren, K.A.; Howatson, G. Prediction of flatwater kayaking performance. Int. J. Sports Physiol. Perform. 2008, 3, 207–218. [Google Scholar] [CrossRef]
- Buglione, A.; Lazzer, S.; Colli, R.; Introini, E.; Di Prampero, P.E. Energetics of best performances in elite kayakers and canoeists. Med. Sci. Sports Exerc. 2011, 43, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Xueyan, G.; Pengcheng, G.; Xianglin, K.; Rusanova, O.; Diachenko, A.; Kudria, M. The physical characteristics of elite and qualified female canoe paddlers in China. Sport. Mont 2021, 19, 107–110. [Google Scholar]
- García-Pallarés, J.; Carrasco, L.; Díaz, A.; Sánchez-Medina, L. Post-season detraining effects on physiological and performance parameters in top-level kayakers: Comparison of two recovery strategies. J. Sports Sci. Med. 2009, 8, 622–628. [Google Scholar]
- Tesch, P.A. Physiological characteristics of elite kayak paddlers. Can. J. Appl. Sport. Sci. 1983, 8, 87–91. [Google Scholar]
- Bielik, V.; Lendvorský, L.; Vajda, M.; Lopata, P.; Ružbarský, P.; Masselli Dos Reis, I.G.; Messias, L.H.D. Comparison of Aerobic and Muscular Power Between Junior/U23 Slalom and Sprint Paddlers: An Analysis of International Medalists and Non-medalists. Front. Physiol. 2020, 11, 617041. [Google Scholar] [CrossRef] [PubMed]
- Bielik, V.; Dalcheco Messias, L.H.; Vajda, M.; Lopata, P.; Chudý, J.; Manchado-Gobatto, F.B. Is the aerobic power a delimitating factor for performance on canoe slalom? An analysis of Olympic Slovak canoe slalom medalists and non-Olympics since Beijing 2008 to Rio 2016. J. Hum. Sport Exerc. 2019, 14, 876–892. [Google Scholar] [CrossRef]
- Haraldsdottir, K.; Sanfilippo, J.; Dawes, S.; Watson, A. Contribution of Lean Mass Distribution on Aerobic Fitness and Performance in NCAA Division I Female Rowers. J. Strength Cond. Res. 2022, 36, 1956–1960. [Google Scholar] [CrossRef]
- Huerta Ojeda, Á.; Riquelme Guerra, M.; Coronado Román, W.; Yeomans, M.-M.; Fuentes-Kloss, R. Kinetics of ventilatory and mechanical parameters of novice male rowers on the rowing ergometer. Int. J. Perform. Anal. Sport 2022, 22, 422–436. [Google Scholar] [CrossRef]
- Lindenthaler, J.R.; Rice, A.J.; Versey, N.G.; McKune, A.J.; Welvaert, M. Differences in Physiological Responses During Rowing and Cycle Ergometry in Elite Male Rowers. Front. Physiol. 2018, 9, 1010. [Google Scholar] [CrossRef]
- Mikulic, P. Anthropometric and metabolic determinants of 6000-m rowing ergometer performance in internationally competitive rowers. J. Strength Cond. Res. 2009, 23, 1851–1857. [Google Scholar] [CrossRef]
- Venables, M.C.; Achten, J.; Jeukendrup, A.E. Determinants of fat oxidation during exercise in healthy men and women: A cross-sectional study. J. Appl. Physiol. 2005, 98, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Randell, R.K.; Rollo, I.; Roberts, T.J.; Dalrymple, K.J.; Jeukendrup, A.E.; Carter, J.M. Maximal Fat Oxidation Rates in an Athletic Population. Med. Sci. Sports Exerc. 2017, 49, 133–140. [Google Scholar] [CrossRef]
- Faude, O.; Kindermann, W.; Meyer, T. Lactate threshold concepts: How valid are they? Sports Med. 2009, 39, 469–490. [Google Scholar] [CrossRef]
- Hurley, B.F.; Hagberg, J.M.; Allen, W.K.; Seals, D.R.; Young, J.C.; Cuddihee, R.W.; Holloszy, J.O. Effect of training on blood lactate levels during submaximal exercise. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1984, 56, 1260–1264. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, H.G.; Messias, L.H.D.; Reis, I.G.M.; Gobatto, C.A.; Sousa, F.A.B.; Serra, C.C.S.; Manchado-Gobatto, F.B. Aerobic Evaluation in Elite Slalom Kayakers Using a Tethered Canoe System: A New Proposal. Int. J. Sports Physiol. Perform. 2017, 12, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Messias, L.H.; Ferrari, H.G.; Sousa, F.A.; Dos Reis, I.G.; Serra, C.C.; Gobatto, C.A.; Manchado-Gobatto, F.B. All-out Test in Tethered Canoe System can Determine Anaerobic Parameters of Elite Kayakers. Int. J. Sports Med. 2015, 36, 803–808. [Google Scholar] [CrossRef]
- van Someren, K.A.; Oliver, J.E. The efficacy of ergometry determined heart rates for flatwater kayak training. Int. J. Sports Med. 2002, 23, 28–32. [Google Scholar] [CrossRef]
- Tran, J.; Rice, A.J.; Main, L.C.; Gastin, P.B. Profiling the training practices and performances of elite rowers. Int. J. Sports Physiol. Perform. 2015, 10, 572–580. [Google Scholar] [CrossRef]
- Seiler, S.; Jøranson, K.; Olesen, B.V.; Hetlelid, K.J. Adaptations to aerobic interval training: Interactive effects of exercise intensity and total work duration. Scand. J. Med. Sci. Sports 2013, 23, 74–83. [Google Scholar] [CrossRef]
- Laursen, P.B.; Shing, C.M.; Peake, J.M.; Coombes, J.S.; Jenkins, D.G. Influence of high-intensity interval training on adaptations in well-trained cyclists. J. Strength Cond. Res. 2005, 19, 527–533. [Google Scholar] [CrossRef]
- Tesch, P.A.; Lindeberg, S. Blood lactate accumulation during arm exercise in world class kayak paddlers and strength trained athletes. Eur. J. Appl. Physiol. Occup. Physiol. 1984, 52, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.; Bonetti, D.; Dawson, B. The influence of pacing strategy on VO2 and supramaximal kayak performance. Med. Sci. Sports Exerc. 2002, 34, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, O.; Grattarola, L.; Bottoni, G.; Lacetera, J.; Lavaselli, E.; Beretta-Piccoli, M.; Tupler, R.; Soldini, E.; D’Antona, G. Maximal Oxygen Consumption Is Negatively Associated with Fat Mass in Facioscapulohumeral Dystrophy. Int. J. Environ. Res. Public Health 2024, 21, 979. [Google Scholar] [CrossRef]
- Crisafulli, O.; Bottoni, G.; Lacetera, J.; Fassio, F.; Grattarola, L.; Lavaselli, E.; Giovanetti, G.; Tupler, R.; Negro, M.; D’Antona, G. Bioimpedance analysis of fat free mass and its subcomponents and relative associations with maximal oxygen consumption in facioscapulohumeral dystrophy. Eur. J. Appl. Physiol. 2024, 10, 157–165. [Google Scholar] [CrossRef]
- Lucía, A.; Hoyos, J.; Pérez, M.; Chicharro, J.L. Heart rate and performance parameters in elite cyclists: A longitudinal study. Med. Sci. Sports Exerc. 2000, 32, 1777–1782. [Google Scholar] [CrossRef] [PubMed]
- Raa, A.; Sunde, G.A.; Bolann, B.; Kvåle, R.; Bjerkvig, C.; Eliassen, H.S.; Wentzel-Larsen, T.; Heltne, J.K. Validation of a point-of-care capillary lactate measuring device (Lactate Pro 2). Scand. J. Trauma Resusc. Emerg. Med. 2020, 28, 83. [Google Scholar] [CrossRef]
- Pyne, D.B.; Boston, T.; Martin, D.T.; Logan, A. Evaluation of the Lactate Pro blood lactate analyser. Eur. J. Appl. Physiol. 2000, 82, 112–116. [Google Scholar] [CrossRef]
- Bonaventura, J.M.; Sharpe, K.; Knight, E.; Fuller, K.L.; Tanner, R.K.; Gore, C.J. Reliability and accuracy of six hand-held blood lactate analysers. J. Sports Sci. Med. 2015, 14, 203–214. [Google Scholar]
- Cheng, B.; Kuipers, H.; Snyder, A.C.; Keizer, H.A.; Jeukendrup, A.; Hesselink, M. A new approach for the determination of ventilatory and lactate thresholds. Int. J. Sports Med. 1992, 13, 518–522. [Google Scholar] [CrossRef]
- Heuberger, J.; Gal, P.; Stuurman, F.E.; de Muinck Keizer, W.A.S.; Mejia Miranda, Y.; Cohen, A.F. Repeatability and predictive value of lactate threshold concepts in endurance sports. PLoS ONE 2018, 13, e0206846. [Google Scholar] [CrossRef]
- Şahin, M.; Aybek, E. Jamovi: An easy to use statistical software for the social scientists. Int. J. Assess. Tools Educ. 2019, 6, 670–692. [Google Scholar] [CrossRef]
- Losnegard, T.; Hallén, J. Elite cross-country skiers do not reach their running VO2max during roller ski skating. J. Sports Med. Phys. Fitness 2014, 54, 389–393. [Google Scholar] [PubMed]
- Schneider, D.A.; Lacroix, K.A.; Atkinson, G.R.; Troped, P.J.; Pollack, J. Ventilatory threshold and maximal oxygen uptake during cycling and running in triathletes. Med. Sci. Sports Exerc. 1990, 22, 257–264. [Google Scholar] [CrossRef] [PubMed]
- López-Belmonte, Ó.; Baldassarre, R.; Ruiz-Navarro, J.J.; Bonifazi, M.; Arellano, R.; Piacentini, M.F. Lactate Threshold and Swimming Performance in World-Class Open-Water Swimmers. Int. J. Sports Physiol. Perform. 2025, 20, 309–315. [Google Scholar] [CrossRef]
Variables | Kayak | Rowing | |
---|---|---|---|
Males (n = 8) | Females (n = 2) | Males (n = 5) | |
VO2max (L/min) | 4.45 (4.30–4.75) [4.30, 4.90] | 3.35 (3.32–3.38) | 5.10 (5.10–5.40) [4.3, 6.6] |
VO2max (mL/kg/min) | 58.8 (52.6–61.0) [51.70, 61.80] | 52.2 (51.9–52.5) | 58.0 (55.1–73.0) [53.10, 79.20] |
VO2max (mL/kg0.67/min) | 324 (277–333) [267.74, 343.03] | 319 (314–324) | 288 (280–409) [264.40, 409.03] |
VO2VT2 (mL/min) | 3045 (2820–3385) [2764.00, 3431.00] | 3001 (2973–3029) | 3723 (3392–3780) [3047.00, 4361.00] |
VO2VT2 (%VO2max) | 69.4 (64.9–71.9) [56.45, 72.53] | 88.6 (88.4–88.8) | 72.6 (62.9–85.1) [46.16, 87.99] |
POmax (W) | 225 (225–225) [225.00, 225.00] | 163 (151–174) | 440 (400–440) [400.00, 480.00] |
POVT2 (W) | 150 (144–175) [125.00, 175.00] | 125 (118–133) | 320 (240–320) [240.00, 360.00] |
POVT2 (%POmax) | 68.3 (63.9–75.7) [55.56, 77.78] | 77.1 (76.4–77.8) | 72.7 (60.0–80.0) [50.00, 81.82] |
POLT2 (W) | 151 (142–157) [135.80, 159.90] | 113 (109–116) | 314 (305–320) [299.70, 353.70] |
POLT2 (%POmax) | 66.2 (60.1–69.6) [59.48, 71.07] | 70.1 (67.4–72.7) | 73.7 (69.2–78.5) [68.11, 80.05] |
Lactatemiamax (mmol/L) | 12.0 (10.6–12.7) [10.20, 13.10] | 9.35 (8.07–10.6) | 12.3 (12.1–14.6) [8.40, 18.40] |
LactatemiaLT2 (mmol/L) | 2.92 (2.61–3.34) [2.44, 3.37] | 2.47 (2.32–2.62) | 3.92 (2.66–3.99) [2.59, 4.04] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crisafulli, O.; Fortunati, M.; Gemelli, T.; Grattarola, L.; Quintiero, V.; Febbi, M.; Drid, P.; Ramat, S.; D’Antona, G. Power Output, Lactatemia, and Maximum Oxygen Consumption During a Specific Off-Water Incremental Test in International-Level Podium-Winner Kayak and Rowing Athletes. J. Funct. Morphol. Kinesiol. 2025, 10, 203. https://doi.org/10.3390/jfmk10020203
Crisafulli O, Fortunati M, Gemelli T, Grattarola L, Quintiero V, Febbi M, Drid P, Ramat S, D’Antona G. Power Output, Lactatemia, and Maximum Oxygen Consumption During a Specific Off-Water Incremental Test in International-Level Podium-Winner Kayak and Rowing Athletes. Journal of Functional Morphology and Kinesiology. 2025; 10(2):203. https://doi.org/10.3390/jfmk10020203
Chicago/Turabian StyleCrisafulli, Oscar, Matteo Fortunati, Tiziano Gemelli, Luca Grattarola, Venere Quintiero, Massimiliano Febbi, Patrik Drid, Stefano Ramat, and Giuseppe D’Antona. 2025. "Power Output, Lactatemia, and Maximum Oxygen Consumption During a Specific Off-Water Incremental Test in International-Level Podium-Winner Kayak and Rowing Athletes" Journal of Functional Morphology and Kinesiology 10, no. 2: 203. https://doi.org/10.3390/jfmk10020203
APA StyleCrisafulli, O., Fortunati, M., Gemelli, T., Grattarola, L., Quintiero, V., Febbi, M., Drid, P., Ramat, S., & D’Antona, G. (2025). Power Output, Lactatemia, and Maximum Oxygen Consumption During a Specific Off-Water Incremental Test in International-Level Podium-Winner Kayak and Rowing Athletes. Journal of Functional Morphology and Kinesiology, 10(2), 203. https://doi.org/10.3390/jfmk10020203