The Effect of Fitness on Performance, Exertion, and Cognition During Simulated Firefighter Occupational Tasks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants, Design, and Procedures
2.2. Body Composition Assessment
2.3. Aerobic Fitness
2.4. Baseline Cognitive Assessment
2.5. Vertical Jump (VJ)
2.6. Three Repetition Maximum Lifts (3RM)
2.7. Occupational Task Assessment (OTA)
2.8. Physiological Monitoring and Perceived Exertion Measurements
2.9. Statistical Analysis
3. Results
3.1. Demographic Values
3.2. Occupational Performance and Perceived Exertion
3.3. Physiological Response to OTA
3.4. Cognition During OTA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, D.L. Firefighter Fitness: Improving Performance and Preventing Injuries and Fatalities. Curr. Sports Med. Rep. 2011, 10, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Gledhill, N.; Jamnik, V.K. Characterization of the physical demands of firefighting. Can. J. Sport Sci. 1992, 17, 207–213. [Google Scholar] [PubMed]
- Abel, M.G.; Palmer, T.G.; Trubee, N. Exercise Program Design for Structural Firefighters. Strength Cond. J. 2015, 37, 8–19. [Google Scholar] [CrossRef]
- Von Heimburg, E.D.; Rasmussen, A.K.R.; Medbø, J.I. Physiological responses of firefighters and performance predictors during a simulated rescue of hospital patients. Ergonomics 2006, 49, 111–126. [Google Scholar] [CrossRef]
- Orr, R.; Simas, V.; Canetti, E.; Maupin, D.; Schram, B. Impact of Various Clothing Variations on Firefighter Mobility: A Pilot Study. Safety 2019, 5, 78. [Google Scholar] [CrossRef]
- Dreger, R.W.; Jones, R.L.; Petersen, S.R. Effects of the self-contained breathing apparatus and fire protective clothing on maximal oxygen uptake. Ergonomics 2006, 49, 911–920. [Google Scholar] [CrossRef]
- Barker, R.; Xiaomeng, F.; Shawn, D.; Emiel, D.; Huipu, G.; Robert, T.; Schmid, M. Identifying factors that contribute to structural firefighter heat strain in North America. Int. J. Occup. Saf. Ergon. 2022, 28, 2183–2192. [Google Scholar] [CrossRef]
- Park, H.; Kim, S.; Morris, K.; Moukperian, M.; Moon, Y.; Stull, J. Effect of firefighters’ personal protective equipment on gait. Appl. Ergon. 2015, 48, 42–48. [Google Scholar] [CrossRef]
- Park, K.; Rosengren, K.S.; Horn, G.P.; Smith, D.L.; Hsiao-Wecksler, E.T. Assessing gait changes in firefighters due to fatigue and protective clothing. Saf. Sci. 2011, 49, 719–726. [Google Scholar] [CrossRef]
- Park, K.; Hur, P.; Rosengren, K.S.; Horn, G.P.; Hsiao-Wecksler, E.T. Effect of load carriage on gait due to firefighting air bottle configuration. Ergonomics 2010, 53, 882–891. [Google Scholar] [CrossRef]
- Games, K.E.; Winkelmann, Z.K.; McGinnis, K.D.; McAdam, J.S.; Pascoe, D.D.; Sefton, J.M. Functional Performance of Firefighters After Exposure to Environmental Conditions and Exercise. J. Athl. Train. 2020, 55, 71–79. [Google Scholar] [CrossRef]
- Hemmatjo, R.; Motamedzade, M.; Aliabadi, M.; Kalatpour, O.; Farhadian, M. The Effect of Various Hot Environments on Physiological Responses and Information Processing Performance Following Firefighting Activities in a Smoke-Diving Room. Saf. Health Work 2017, 8, 386–392. [Google Scholar] [CrossRef]
- Larsen, B.; Snow, R.; Aisbett, B. Effect of heat on firefighters’ work performance and physiology. J. Therm. Biol. 2015, 53, 1–8. [Google Scholar] [CrossRef]
- Carballo-Leyenda, B.; Villa, J.G.; López-Satué, J.; Rodríguez-Marroyo, J.A. Wildland firefighters’ thermal exposure in relation to suppression tasks. Int. J. Wildland Fire 2021, 30, 475. [Google Scholar] [CrossRef]
- Willi, J.M.; Horn, G.P.; Madrzykowski, D. Characterizing a Firefighter’s Immediate Thermal Environment in Live-Fire Training Scenarios. Fire Technol. 2016, 52, 1667–1696. [Google Scholar] [CrossRef]
- Williams-Bell, F.M.; Aisbett, B.; Murphy, B.A.; Larsen, B. The Effects of Simulated Wildland Firefighting Tasks on Core Temperature and Cognitive Function under Very Hot Conditions. Front. Physiol. 2017, 8, 815. [Google Scholar] [CrossRef]
- Kujawski, S.; Słomko, J.; Tafil-Klawe, M.; Zawadka-Kunikowska, M.; Szrajda, J.; Newton, J.L.; Zalewski, P.; Klawe, J.J. The impact of total sleep deprivation upon cognitive functioning in firefighters. Neuropsychiatr. Dis. Treat. 2018, 14, 1171–1181. [Google Scholar] [CrossRef]
- Nelson, M.D.; Haykowsky, M.J.; Stickland, M.K.; Altamirano-Diaz, L.A.; Willie, C.K.; Smith, K.J.; Petersen, S.R.; Ainslie, P.N. Reductions in cerebral blood flow during passive heat stress in humans: Partitioning the mechanisms. J. Physiol. 2011, 589 Pt 16, 4053–4064. [Google Scholar] [CrossRef]
- Longordo, F.; Kopp, C.; Lüthi, A. Consequences of sleep deprivation on neurotransmitter receptor expression and function. Eur. J. Neurosci. 2009, 29, 1810–1819. [Google Scholar] [CrossRef]
- Thomas, S.N.; Schroeder, T.; Secher, N.H.; Mitchell, J.H. Cerebral blood flow during submaximal and maximal dynamic exercise in humans. J. Appl. Physiol. 1989, 67, 744–748. [Google Scholar]
- Querido, J.S.; Sheel, A.W. Regulation of cerebral blood flow during exercise. Sports Med. 2007, 37, 765–782. [Google Scholar]
- Young, S.N. How to increase serotonin in the human brain without drugs. J. Psychiatry Neurosci. JPN 2007, 32, 394. [Google Scholar]
- Fuss, J.; Steinle, J.; Bindila, L.; Auer, M.K.; Kirchherr, H.; Lutz, B.; Gass, P. A runner’s high depends on cannabinoid receptors in mice. Proc. Natl. Acad. Sci. USA 2015, 112, 13105–13108. [Google Scholar]
- Fortes, L.S.; Costa, M.D.C.; Perrier-Melo, R.J.; Brito-Gomes, J.L.; Nascimento-Júnior, J.R.A.; de Lima-Júnior, D.; Cyrino, E.S. Effect of Volume in Resistance Training on Inhibitory Control in Young Adults: A Randomized and Crossover Investigation. Front. Psychol. 2018, 9, 2028. [Google Scholar] [CrossRef]
- Daimiel, L.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Schröder, H.; Vioque, J.; Romaguera, D.; Martínez, J.A.; Wärnberg, J.; Lopez-Miranda, J.; et al. Physical fitness and physical activity association with cognitive function and quality of life: Baseline cross-sectional analysis of the PREDIMED-Plus trial. Sci. Rep. 2020, 10, 3472. [Google Scholar] [CrossRef]
- Chizewski, A.; Box, A.; Kesler, R.; Petruzzello, S.J. Fitness Fights Fires: Exploring the Relationship between Physical Fitness and Firefighter Ability. Int. J. Environ. Res. Public Health 2021, 18, 11733. [Google Scholar] [CrossRef]
- Ras, J.; Smith, D.L.; Kengne, A.P.; Soteriades, E.S.; Leach, L. Physical fitness, cardiovascular and musculoskeletal health, and occupational performance in firefighters. Front. Public Health 2023, 11, 1241250. [Google Scholar] [CrossRef]
- Agostinelli, P.; Hirschhorn, R.; Sefton, J. Exercise Habits and Resources for Southeastern US Firefighters. J. Occup. Environ. Med. 2023, 65, e351–e357. [Google Scholar] [CrossRef]
- Diem, J.E.; Stauber, C.E.; Rothenberg, R. Heat in the southeastern United States: Characteristics, trends, and potential health impact. PLoS ONE 2017, 12, e0177937. [Google Scholar] [CrossRef]
- Seo, M.-W.; Gann, J.; Lee, J.-M.; Heffernan, K.S.; Kim, J.Y.; Jung, H.C. Potential impact of metabolic syndrome on cognitive function in US firefighters. Front. Public Health 2023, 11, 1150121. [Google Scholar] [CrossRef]
- Gomez-Pinilla, F.; Hillman, C. The influence of exercise on cognitive abilities. Compr. Physiol. 2013, 3, 403–428. [Google Scholar] [CrossRef]
- Agostinelli, P.J.; Bordonie, N.C.; Linder, B.A.; Robbins, A.M.; Jones, P.L.; Mobley, C.B.; Miller, M.W.; Murrah, W.M.; Sefton, J.M. Impact of Acute Exercise on Performance and Physiological Stress During Simulated Firefighter Occupational Tasks. Sci. Rep. 2024, 14, 29778. [Google Scholar] [CrossRef]
- Agostinelli, P.J.; Bordonie, N.C.; Linder, B.A.; Robbins, A.M.; Jones, P.L.; Mobley, C.B.; Miller, M.W.; Murrah, W.M.; Sefton, J.M. Acute aerobic and resistance exercise do not impact cognitive flexibility or heart rate variability during subsequent simulated firefighter occupational tasks. Eur. J. Appl. Physiol. 2025, 125, 1037–1048. [Google Scholar] [CrossRef]
- Bruce, R.A.; Kusumi, F.; Hosmer, D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am. Heart J. 1973, 85, 546–562. [Google Scholar] [CrossRef]
- Basso, M.R.; Lowery, N.; Ghormley, C.; Bornstein, R.A. Practice Effects on the Wisconsin Card Sorting Test–64 Card Version Across 12 Months. Clin. Neuropsychol. 2001, 15, 471–478. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Kwak, K.; Kim, B.K.; Jang, T.W.; Sim, C.S.; Ahn, Y.S.; Choi, K.S.; Jeong, K.S. Association between Shift Work and Neurocognitive Function among Firefighters in South Korea: A Prospective Before-After Study. Int. J. Environ. Res. Public Health 2020, 17, 4647. [Google Scholar] [CrossRef]
- Schretlen, D.J. Modified Wisconsin Card Sorting Test®: M-WCST; Professional Manual; PAR: Lutz, FL, USA, 2010. [Google Scholar]
- Greve, K.W. The WCST-64: A Standardized Short-Form of the Wisconsin Card Sorting Test. Clin. Neuropsychol. 2001, 15, 228–234. [Google Scholar] [CrossRef]
- Steinke, A.; Kopp, B.; Lange, F. The Wisconsin Card Sorting Test: Split-Half Reliability Estimates for a Self-Administered Computerized Variant. Brain Sci. 2021, 11, 529. [Google Scholar] [CrossRef]
- Miles, S.; Howlett, C.A.; Berryman, C.; Nedeljkovic, M.; Moseley, G.L.; Phillipou, A. Considerations for using the Wisconsin Card Sorting Test to assess cognitive flexibility. Behav. Res. Methods 2021, 53, 2083–2091. [Google Scholar] [CrossRef]
- McGuigan, M. Administration, Scoring, and Interpretation of Selected Tests. In Essentials of Strength Training and Conditioning, 4th ed.; Haff, G.G., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2016; pp. 265–266. [Google Scholar]
- Sheppard, J.; Triplett, T. Program Design for Resistance Training. In Essentials of Strength and Conditioning, 4th ed.; Haff, G.G., Triplett, T., Eds.; Human Kinetics: Champaign, IL, USA, 2016; pp. 439–468. [Google Scholar]
- Aisbett, B.; Wolkow, A.; Sprajcer, M.; Ferguson, S.A. “Awake, smoky, and hot”: Providing an evidence-base for managing the risks associated with occupational stressors encountered by wildland firefighters. Appl. Ergon. 2012, 43, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Buller, M.J.; Tharion, W.J.; Cheuvront, S.N.; Montain, S.J.; Kenefick, R.W.; Castellani, J.; Latzka, W.A.; Roberts, W.S.; Richter, M.; Jenkins, O.C.; et al. Estimation of human core temperature from sequential heart rate observations. Physiol. Meas. 2013, 34, 781–798. [Google Scholar] [CrossRef] [PubMed]
- Buller, M.J.; Tharion, W.J.; Duhamel, C.M.; Yokota, M. Real-time core body temperature estimation from heart rate for first responders wearing different levels of personal protective equipment. Ergonomics 2015, 58, 1830–1841. [Google Scholar] [CrossRef] [PubMed]
- Agostinelli, P.; Linder, B.; Frick, K.; Bordonie, N.; Neal, F.; Sefton, J. Validity of Heart Rate Derived Core Temperature Estimation During Simulated Firefighting Tasks. Sci. Rep. 2023, 13, 22503. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Marcoulides, K.M.; Raykov, T. Evaluation of Variance Inflation Factors in Regression Models Using Latent Variable Modeling Methods. Educ. Psychol. Meas. 2019, 79, 874–882. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R Studio; RStudio, PBC: Boston, MA, USA, 2020. [Google Scholar]
- Dennison, K.J.; Mullineaux, D.R.; Yates, J.W.; Abel, M.G. The Effect of Fatigue and Training Status on Firefighter Performance. J. Strength Cond. Res. 2012, 26, 1101–1109. [Google Scholar] [CrossRef]
- Mason, M.R.; Heebner, N.R.; Abt, J.P.; Bergstrom, H.C.; Shapiro, R.; Langford, E.L.; Abel, M.G. The Acute Effect of High-Intensity Resistance Training on Subsequent Firefighter Performance. J. Strength Cond. Res. 2023, 37, 1507–1514. [Google Scholar] [CrossRef]
- Langford, E.L.; Bergstrom, H.C.; Lanham, S.; Eastman, A.Q.; Best, S.; Ma, X.; Mason, M.R.; Abel, M.G. Evaluation of Work Efficiency in Structural Firefighters. J. Strength Cond. Res. 2023, 37, 2457–2466. [Google Scholar] [CrossRef]
- Nazari, G.; Macdermid, J.C.; Sinden, K.E.; Overend, T.J. The Relationship between Physical Fitness and Simulated Firefighting Task Performance. Rehabil. Res. Pract. 2018, 2018, 3234176. [Google Scholar] [CrossRef]
- Buchheit, M. The 30-15 intermittent fitness test: Accuracy for individualizing interval training of young intermittent sport players. J. Strength Cond. Res. 2008, 22, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Weller, I.M.; Thomas, S.G.; Gledhill, N.; Paterson, D.; Quinney, A. A study to validate the modified Canadian Aerobic Fitness Test. Can. J. Appl. Physiol. 1995, 20, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Trabulo, M.; Mendes, M.; Mesquita, A.; Seabra-Gomes, R. Does the modified Bruce protocol induce physiological stress equal to that of the Bruce protocol? Rev. Port. Cardiol. 1994, 13, 735–736+753–760. [Google Scholar]
- Bolstad-Johnson, D.M.; Burgess, J.L.; Crutchfield, C.D.; Storment, S.; Gerkin, R.; Wilson, J.R. Characterization of Firefighter Exposures During Fire Overhaul. AIHAJ—Am. Ind. Hyg. Assoc. 2000, 61, 636–641. [Google Scholar] [CrossRef]
- Gainey, S.J.; Horn, G.P.; Towers, A.E.; Oelschlager, M.L.; Tir, V.L.; Drnevich, J.; Fent, K.W.; Kerber, S.; Smith, D.L.; Freund, G.G. Exposure to a firefighting overhaul environment without respiratory protection increases immune dysregulation and lung disease risk. PLoS ONE 2018, 13, e0201830. [Google Scholar] [CrossRef]
- Gladden, L.B. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004, 558, 5–30. [Google Scholar] [CrossRef]
- Farrell, P.A.; Wilmore, J.H.; Coyle, E.F.; Billing, J.E.; Costill, D.L. Plasma lactate accumulation and distance running performance. Med. Sci. Sports Exerc. 1979, 11, 338–344. [Google Scholar] [CrossRef]
- Weltman, A.; Weltman, J.Y.; Kanaley, J.A.; Rogol, A.D.; Veldhuis, J.D.; Hartman, M.L. Repeated bouts of exercise alter the blood lactate-RPE relation. Med. Sci. Sports Exerc. 1998, 30, 1113–1117. [Google Scholar] [CrossRef]
- Smith, J.C.; Nielson, K.A.; Woodard, J.L.; Seidenberg, M.; Durgerian, S.; Antuono, P.; Butts, A.M.; Hantke, N.C.; Lancaster, M.A.; Rao, S.M. Interactive effects of physical activity and APOE-ε4 on BOLD semantic memory activation in healthy elders. Neuroimage 2011, 54, 635–644. [Google Scholar] [CrossRef]
- Rovio, S.; Spulber, G.; Nieminen, L.J.; Niskanen, E.; Winblad, B.; Tuomilehto, J.; Nissinen, A.; Soininen, H.; Kivipelto, M. The effect of midlife physical activity on structural brain changes in the elderly. Neurobiol. Aging 2010, 31, 1927–1936. [Google Scholar] [CrossRef]
- Pajonk, F.-G.; Wobrock, T.; Gruber, O.; Scherk, H.; Berner, D.; Kaizl, I.; Kierer, A.; Müller, S.; Oest, M.; Meyer, T. Hippocampal plasticity in response to exercise in schizophrenia. Arch. Gen. Psychiatry 2010, 67, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, M.J.; Dempsey, P.C.; Grace, M.S.; Ellis, K.A.; Gardiner, P.A.; Green, D.J.; Dunstan, D.W. Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in brain health. Alzheimer’s Dement. 2017, 3, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Gaesser, G.A.; Tucker, W.J.; Jarrett, C.L.; Angadi, S.S. Fitness versus Fatness: Which Influences Health and Mortality Risk the Most? Curr. Sports Med. Rep. 2015, 14, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Barry, V.W.; Baruth, M.; Beets, M.W.; Durstine, J.L.; Liu, J.; Blair, S.N. Fitness vs. Fatness on All-Cause Mortality: A Meta-Analysis. Prog. Cardiovasc. Dis. 2014, 56, 382–390. [Google Scholar] [CrossRef]
- Mendelson, B.J.; Marciniak, R.A.; Wahl, C.A.; Ebersole, K.T. Body Composition Is Related to Maximal Effort Treadmill Test Time in Firefighters. Healthcare 2023, 11, 1607. [Google Scholar] [CrossRef]
- Moffatt, S.M.; Stewart, D.F.; Jack, K.; Dudar, M.D.; Bode, E.D.; Mathias, K.C.; Smith, D.L. Cardiometabolic health among United States firefighters by age. Prev. Med. Rep. 2021, 23, 101492. [Google Scholar] [CrossRef]
- Wright, H.E.; Larose, J.; McLellan, T.M.; Miller, S.; Boulay, P.; Kenny, G.P. Do older firefighters show long-term adaptations to work in the heat? J. Occup. Environ. Hyg. 2013, 10, 705–715. [Google Scholar] [CrossRef]
- Gendron, P.; Lajoie, C.; Laurencelle, L.; Lemoyne, J.; Trudeau, F. Physical training in the fire station and firefighters’ cardiovascular health. Occup. Med. 2020, 70, 224–230. [Google Scholar] [CrossRef]
- Gendron, P.; Lajoie, C.; Laurencelle, L.; Trudeau, F. Cardiovascular disease risk in female firefighters. J. Occup. Environ. Med. 2018, 68, 412–414. [Google Scholar] [CrossRef]
- Cheung, S.S.; McLellan, T.M. Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J. Appl. Physiol. 1998, 84, 1731–1739. [Google Scholar] [CrossRef]
Variable | Mean ± SD |
---|---|
Strength and Power | |
Composite strength and power z-scores | 0.00 ± 0.92 |
Barbell bench 3 repetition maximum lift | 78.25 ± 35.97 kg |
Barbell back squat 3 repetition maximum lift | 106.85 ± 34.07 kg |
Hex-bar deadlift 3 repetition maximum lift | 120.34 ± 42.12 kg |
Maximum vertical jump height | 52.86 ± 12.80 cm |
Aerobic Capacity | |
Composite aerobic capacity z-scores | 0.00 ± 0.71 |
VO2peak | 46.26 ± 7.34 mL/kg/min |
VO2 at lactate threshold | 29.51 ± 6.23 mL/kg/min |
Percent VO2peak at lactate threshold | 64.51 ± 12.83% |
Body Composition | |
Composite body composition z-scores | 0.00 ± 0.78 |
Lean mass | 57.21 ± 12.96 kg |
Fat mass | 16.56 ± 5.67 kg |
AC | BC | SP | TTC | RPE | BLC | CT | ST | HR | VE | |
---|---|---|---|---|---|---|---|---|---|---|
AC | 1.00 | |||||||||
BC | 0.16 | 1.00 | ||||||||
SP | 0.04 | 0.77 | 1.00 | |||||||
TTC | 0.13 | −0.59 | −0.62 | 1.00 | ||||||
RPE | −0.39 | −0.08 | −0.26 | −0.21 | 1.00 | |||||
BLC | −0.34 | 0.37 | 0.39 | −0.59 | 0.24 | 1.00 | ||||
CT | −0.25 | −0.25 | −0.09 | 0.01 | 0.35 | 0.35 | 1.00 | |||
ST | 0.17 | −0.03 | −0.02 | 0.34 | 0.11 | −0.45 | −0.07 | 1.00 | ||
HR | −0.15 | −0.10 | 0.10 | −0.25 | 0.33 | 0.56 | 0.77 | −0.41 | 1.00 | |
VR | −0.42 | 0.07 | −0.29 | −0.49 | 0.31 | 0.45 | 0.10 | −0.42 | 0.42 | 1.00 |
TE | −0.04 | −0.01 | −0.08 | −0.32 | −0.03 | 0.03 | −0.17 | 0.04 | 0.05 | 0.19 |
PE | 0.02 | 0.06 | 0.02 | −0.37 | 0.02 | 0.17 | −0.14 | −0.07 | 0.16 | 0.24 |
NPE | 0.17 | −0.17 | −0.18 | −0.12 | −0.05 | −0.11 | −0.12 | 0.07 | −0.03 | 0.08 |
Estimate | Std. Error | |
---|---|---|
Intercept | 1125.13 s | 34.91 s |
Strength and power z-score | −126.71 * s | 61.75 s |
Aerobic z-score | 64.36 s | 50.63 s |
Body composition z-score | −93.30 s | 73.57 s |
Estimate | Std. Error | |
---|---|---|
Intercept | 12.72 | 0.28 |
Strength and power z-score | −1.08 * | 0.49 |
Aerobic z-score | −0.95 * | 0.41 |
Body composition z-score | 0.92 | 0.58 |
Intercept | Strength and Power Z-Score | Aerobic Capacity Z-Score | Body Composition Z-Score | |||||
---|---|---|---|---|---|---|---|---|
Variables | Estimate | SE | Estimate | SE | Estimate | SE | Estimate | SE |
Core Temp (°C) | 37.55 | 0.06 | 0.05 | 0.11 | −0.10 | 0.09 | −0.16 | 0.13 |
Skin Temp (°C) | 36.32 | 0.09 | −0.42 * | 0.16 | 0.01 | 0.13 | 0.32 | 0.18 |
Heart rate (bpm) | 148.40 | 2.86 | 2.90 | 5.13 | −2.70 | 4.21 | −4.64 | 6.12 |
Ventilatory rate (brpm) | 37.63 | 0.90 | 0.61 | 1.61 | −2.77 | 1.32 | 0.79 | 1.92 |
BLC (mMol) | 8.03 | 0.60 | 1.08 | 1.07 | −2.08 * | 0.88 | 1.48 | 1.27 |
Intercept | Strength and Power Z-Score | Aerobic Capacity Z-Score | Body Composition Z-Score | |||||
---|---|---|---|---|---|---|---|---|
Variables | Estimate | SE | Estimate | SE | Estimate | SE | Estimate | SE |
Total errors | 8.23 | 0.43 | −0.49 | 0.78 | −0.18 | 0.62 | 0.42 | 0.90 |
Perseverative errors | 6.03 | 0.27 | −0.07 | 0.49 | 0.01 | 0.38 | 0.18 | 0.56 |
Non-perseverative errors | 2.26 | 0.29 | −0.27 | 0.51 | −0.35 | 0.41 | −0.05 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agostinelli, P.J.; Bordonie, N.C.; Linder, B.A.; Robbins, A.M.; Jones, P.L.; Reagan, L.F.; Mobley, C.B.; Miller, M.W.; Murrah, W.M.; Sefton, J.M. The Effect of Fitness on Performance, Exertion, and Cognition During Simulated Firefighter Occupational Tasks. J. Funct. Morphol. Kinesiol. 2025, 10, 129. https://doi.org/10.3390/jfmk10020129
Agostinelli PJ, Bordonie NC, Linder BA, Robbins AM, Jones PL, Reagan LF, Mobley CB, Miller MW, Murrah WM, Sefton JM. The Effect of Fitness on Performance, Exertion, and Cognition During Simulated Firefighter Occupational Tasks. Journal of Functional Morphology and Kinesiology. 2025; 10(2):129. https://doi.org/10.3390/jfmk10020129
Chicago/Turabian StyleAgostinelli, Philip J., Nicholas C. Bordonie, Braxton A. Linder, Ann M. Robbins, Parker L. Jones, Lee F. Reagan, C. Brooks Mobley, Matthew W. Miller, William M. Murrah, and JoEllen M. Sefton. 2025. "The Effect of Fitness on Performance, Exertion, and Cognition During Simulated Firefighter Occupational Tasks" Journal of Functional Morphology and Kinesiology 10, no. 2: 129. https://doi.org/10.3390/jfmk10020129
APA StyleAgostinelli, P. J., Bordonie, N. C., Linder, B. A., Robbins, A. M., Jones, P. L., Reagan, L. F., Mobley, C. B., Miller, M. W., Murrah, W. M., & Sefton, J. M. (2025). The Effect of Fitness on Performance, Exertion, and Cognition During Simulated Firefighter Occupational Tasks. Journal of Functional Morphology and Kinesiology, 10(2), 129. https://doi.org/10.3390/jfmk10020129