A Kinematic Study on the Use of Overhead Squat Exercise with Elastic Resistance on the Shoulder Kinetic Chain Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
Sample Size Estimation
2.2. Instrumentation and Data Collection
2.3. Task Procedures
2.4. Statistical Analysis
2.4.1. Variables
2.4.2. Statistical Test
3. Results
3.1. Effect of Types of Elastic Bands (TheraBand®)
3.2. Effect of Elastic Resistance
3.2.1. Scapular Internal/External Rotation
3.2.2. Scapular Upward/Downward Rotation
3.2.3. Scapular Anterior/Posterior Tilt Rotation
3.2.4. Trunk Flexion/Extension
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ludewig, P.M.; Phadke, V.; Braman, J.P.; Hassett, D.R.; Cieminski, C.J.; LaPrade, R.F. Motion of the shoulder complex during multiplanar humeral elevation. J. Bone Jt. Surg. Am. 2009, 91, 378–389. [Google Scholar] [CrossRef] [PubMed]
- Castelein, B.; Cagnie, B.; Cools, A. Scapular muscle dysfunction associated with subacromial pain syndrome. J. Hand Ther. 2017, 30, 136–146. [Google Scholar] [CrossRef]
- Cools, A.M.; Maenhout, A.G.; Vanderstukken, F.; Decleve, P.; Johansson, F.R.; Borms, D. The challenge of the sporting shoulder: From injury prevention through sport-specific rehabilitation toward return to play. Ann. Phys. Rehabil. Med. 2020, 64, 101384. [Google Scholar] [CrossRef] [PubMed]
- Richardson, E.; Lewis, J.S.; Gibson, J.; Morgan, C.; Halaki, M.; Ginn, K.; Yeowell, G. Role of the kinetic chain in shoulder rehabilitation: Does incorporating the trunk and lower limb into shoulder exercise regimes influence shoulder muscle recruitment patterns? Systematic review of electromyography studies. BMJ Open Sport. Exerc. Med. 2020, 6, e000683. [Google Scholar] [CrossRef]
- Zaremski, J.L.; Wasser, J.G.; Vincent, H.K. Mechanisms and Treatments for Shoulder Injuries in Overhead Throwing Athletes. Curr. Sports Med. Rep. 2017, 16, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Sciascia, A.; Thigpen, C.; Namdari, S.; Baldwin, K. Kinetic chain abnormalities in the athletic shoulder. Sports Med. Arthrosc. Rev. 2012, 20, 16–21. [Google Scholar] [CrossRef]
- Ludewig, P.M.; Reynolds, J.F. The association of scapular kinematics and glenohumeral joint pathologies. J. Orthop. Sports Phys. Ther. 2009, 39, 90–104. [Google Scholar] [CrossRef]
- Kibler, W.B.; Ludewig, P.M.; McClure, P.W.; Michener, L.A.; Bak, K.; Sciascia, A.D. Clinical implications of scapular dyskinesis in shoulder injury: The 2013 consensus statement from the ‘Scapular Summit’. Br. J. Sports Med. 2013, 47, 877–885. [Google Scholar] [CrossRef]
- Chu, S.K.; Jayabalan, P.; Kibler, W.B.; Press, J. The Kinetic Chain Revisited: New Concepts on Throwing Mechanics and Injury. PM&R 2016, 8, S69–S77. [Google Scholar] [CrossRef]
- Oliver, G.D.; Washington, J.K.; Barfield, J.W.; Gascon, S.S.; Gilmer, G. Quantitative Analysis of Proximal and Distal Kinetic Chain Musculature During Dynamic Exercises. J. Strength Cond. Res. 2018, 32, 1545–1553. [Google Scholar] [CrossRef]
- Bautista, D.; Durke, D.; Cotter, J.A.; Escobar, K.A.; Schick, E.E. A Comparison of Muscle Activation Among the Front Squat, Overhead Squat, Back Extension and Plank. Int. J. Exerc. Sci. 2020, 13, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Kibler, W.B.; Stone, A.V.; Zacharias, A.; Grantham, W.J.; Sciascia, A.D. Management of scapular dyskinesis in overhead athletes. Oper. Tech. Sports Med. 2021, 29, 150797. [Google Scholar] [CrossRef]
- Brumitt, J.; Dale, R.B. Integrating shoulder and core exercises when rehabilitating athletes performing overhead activities. N. Am. J. Sports Phys. Ther. 2009, 4, 132–138. [Google Scholar] [PubMed]
- Haik, M.N.; Alburquerque-Sendin, F.; Moreira, R.F.; Pires, E.D.; Camargo, P.R. Effectiveness of physical therapy treatment of clearly defined subacromial pain: A systematic review of randomised controlled trials. Br. J. Sports Med. 2016, 50, 1124–1134. [Google Scholar] [CrossRef]
- Seguin, R.C.; Cudlip, A.C.; Holmes, M.W.R. The Efficacy of Upper-Extremity Elastic Resistance Training on Shoulder Strength and Performance: A Systematic Review. Sports 2022, 10, 24. [Google Scholar] [CrossRef]
- de Oliveira, P.A.; Blasczyk, J.C.; Souza Junior, G.; Lagoa, K.F.; Soares, M.; de Oliveira, R.J.; Filho, P.; Carregaro, R.L.; Martins, W.R. Effects of Elastic Resistance Exercise on Muscle Strength and Functional Performance in Healthy Adults: A Systematic Review and Meta-Analysis. J. Phys. Act. Health 2017, 14, 317–327. [Google Scholar] [CrossRef]
- Haberle, R.; Schellenberg, F.; List, R.; Pluss, M.; Taylor, W.R.; Lorenzetti, S. Comparison of the kinematics and kinetics of shoulder exercises performed with constant and elastic resistance. BMC Sports Sci. Med. Rehabil. 2018, 10, 22. [Google Scholar] [CrossRef]
- Aboodarda, S.J.; Page, P.A.; Behm, D.G. Muscle activation comparisons between elastic and isoinertial resistance: A meta-analysis. Clin. Biomech. 2016, 39, 52–61. [Google Scholar] [CrossRef]
- Iversen, V.M.; Mork, P.J.; Vasseljen, O.; Bergquist, R.; Fimland, M.S. Multiple-joint exercises using elastic resistance bands vs. conventional resistance-training equipment: A cross-over study. Eur. J. Sport Sci. 2017, 17, 973–982. [Google Scholar] [CrossRef]
- Borms, D.; Maenhout, A.; Berckmans, K.; Spanhove, V.; Vanderstukken, F.; Cools, A. Scapulothoracic muscle activity during kinetic chain variations of a prone elevation exercise. Braz. J. Phys. Ther. 2022, 26, 100420. [Google Scholar] [CrossRef]
- Borms, D.; Maenhout, A.; Cools, A.M. Incorporation of the Kinetic Chain Into Shoulder-Elevation Exercises: Does It Affect Scapular Muscle Activity? J. Athl. Train. 2020, 55, 343–349. [Google Scholar] [CrossRef] [PubMed]
- De Mey, K.; Danneels, L.; Cagnie, B.; Van den Bosch, L.; Flier, J.; Cools, A.M. Kinetic chain influences on upper and lower trapezius muscle activation during eight variations of a scapular retraction exercise in overhead athletes. J. Sci. Med. Sport 2013, 16, 65–70. [Google Scholar] [CrossRef]
- Wasserberger, K.W.; Downs, J.L.; Barfield, J.W.; Williams, T.K.; Oliver, G.D. Lumbopelvic-Hip Complex and Scapular Stabilizing Muscle Activations During Full-Body Exercises With and Without Resistance Bands. J. Strength Cond. Res. 2020, 34, 2840–2848. [Google Scholar] [CrossRef] [PubMed]
- Haraldsson, B.T.; Andersen, C.H.; Erhardsen, K.T.; Zebis, M.K.; Micheletti, J.K.; Pastre, C.M.; Andersen, L.L. Submaximal Elastic Resistance Band Tests to Estimate Upper and Lower Extremity Maximal Muscle Strength. Int. J. Environ. Res. Public. Health 2021, 18, 2749. [Google Scholar] [CrossRef] [PubMed]
- Miyakoshi, K.; Umehara, J.; Komamura, T.; Ueda, Y.; Tamezawa, T.; Kitamura, G.; Ichihashi, N. Effect of different trunk postures on scapular muscle activities and kinematics during shoulder external rotation. J. Shoulder Elb. Surg. 2019, 28, 2438–2446. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamaji, T.; Wada, N.; Shirakura, K.; Watanabe, H. Trunk kinematics and muscle activities during arm elevation. J. Orthop. Sci. 2015, 20, 624–632. [Google Scholar] [CrossRef]
- Yamauchi, T.; Hasegawa, S.; Matsumura, A.; Nakamura, M.; Ibuki, S.; Ichihashi, N. The effect of trunk rotation during shoulder exercises on the activity of the scapular muscle and scapular kinematics. J. Shoulder Elb. Surg. 2015, 24, 955–964. [Google Scholar] [CrossRef]
- Hoch, M.C.; Farwell, K.E.; Gaven, S.L.; Weinhandl, J.T. Weight-Bearing Dorsiflexion Range of Motion and Landing Biomechanics in Individuals With Chronic Ankle Instability. J. Athl. Train. 2015, 50, 833–839. [Google Scholar] [CrossRef]
- Hoch, M.C.; McKeon, P.O. Joint mobilization improves spatiotemporal postural control and range of motion in those with chronic ankle instability. J. Orthop. Res. 2011, 29, 326–332. [Google Scholar] [CrossRef]
- Park, K.M.; Cynn, H.S.; Choung, S.D. Musculoskeletal predictors of movement quality for the forward step-down test in asymptomatic women. J. Orthop. Sports Phys. Ther. 2013, 43, 504–510. [Google Scholar] [CrossRef]
- Hotta, G.H.; Queiroz, P.O.P.; de Lemos, T.W.; Rossi, D.M.; Scatolin, R.O.; de Oliveira, A.S. Immediate effect of scapula-focused exercises performed with kinematic biofeedback on scapular kinematics in individuals with subacromial pain syndrome. Clin. Biomech. 2018, 58, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Bench, R.W.; Thompson, S.E.; Cudlip, A.C.; Holmes, M.W. Examining Muscle Activity Differences During Single and Dual Vector Elastic Resistance Exercises. Int. J. Sports Phys. Ther. 2021, 16, 322–334. [Google Scholar] [CrossRef]
- Polhemus Inc. FASTRAK® User Manual, 2002 Edition, Rev. C ed.; Polhemus Inc.: Colchester, VT, USA, 2002; pp. 1–152. [Google Scholar]
- Wu, G.; van der Helm, F.C.; Veeger, H.E.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X.; et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion-Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Veeger, H.E. The position of the rotation center of the glenohumeral joint. J. Biomech. 2000, 33, 1711–1715. [Google Scholar] [CrossRef] [PubMed]
- Coyne, L.M.; Newell, M.; Hoozemans, M.J.M.; Morrison, A.; Brown, S.J. Marker location and knee joint constraint affect the reporting of overhead squat kinematics in elite youth football players. Sports Biomech. 2021, 23, 740–757. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive statistics and normality tests for statistical data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef]
- Malhotra, N.K. Pesquisa de Marketing—6ed.: Uma Orientação Aplicada; Bookman Editora: Porto Alegre, Brazil, 2012. [Google Scholar]
- Norouzian, R.; Plonsky, L. Eta- and partial eta-squared in L2 research: A cautionary review and guide to more appropriate usage. Second Lang. Res. 2018, 34, 257–271. [Google Scholar] [CrossRef]
- Andersen, L.L.; Andersen, C.H.; Mortensen, O.S.; Poulsen, O.M.; Bjornlund, I.B.; Zebis, M.K. Muscle activation and perceived loading during rehabilitation exercises: Comparison of dumbbells and elastic resistance. Phys. Ther. 2010, 90, 538–549. [Google Scholar] [CrossRef]
- Machado, A.F.; Souto, L.R.; Silva, J.S.; Andersen, L.L. Determination of shoulder abduction strength using a submaximal elastic band test. J. Perform. Health Res. 2017, 1, 31–39. [Google Scholar]
- Camci, E.; Duzgun, I.; Hayran, M.; Baltaci, G.; Karaduman, A. Scapular kinematics during shoulder elevation performed with and without elastic resistance in men without shoulder pathologies. J. Orthop. Sports Phys. Ther. 2013, 43, 735–743. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Braman, J.P.; Laprade, R.F.; Ludewig, P.M. Comparison of 3-dimensional shoulder complex kinematics in individuals with and without shoulder pain, part 1: Sternoclavicular, acromioclavicular, and scapulothoracic joints. J. Orthop. Sports Phys. Ther. 2014, 44, 636–638. [Google Scholar] [CrossRef] [PubMed]
- McClure, P.W.; Michener, L.A.; Sennett, B.J.; Karduna, A.R. Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo. J. Shoulder Elb. Surg. 2001, 10, 269–277. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Braman, J.P.; Ludewig, P.M. The Impact of Decreased Scapulothoracic Upward Rotation on Subacromial Proximities. J. Orthop. Sports Phys. Ther. 2019, 49, 180–191. [Google Scholar] [CrossRef]
- Carvalhais, V.O.; de Melo Ocarino, J.; Araujo, V.L.; Souza, T.R.; Silva, P.L.; Fonseca, S.T. Myofascial force transmission between the latissimus dorsi and gluteus maximus muscles: An in vivo experiment. J. Biomech. 2013, 46, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, R.R.; Abdel-Aziem, A.A.; Mohammed, H.Y.; Diab, R.H. Chronic low back pain changes the latissmus dorsi and gluteus maximus muscles activation pattern and upward scapular rotation: A cross-sectional study. J. Back Musculoskelet. Rehabil. 2022, 35, 119–127. [Google Scholar] [CrossRef]
- Turgut, E.; Pedersen, O.; Duzgun, I.; Baltaci, G. Three-dimensional scapular kinematics during open and closed kinetic chain movements in asymptomatic and symptomatic subjects. J. Biomech. 2016, 49, 2770–2777. [Google Scholar] [CrossRef] [PubMed]
- Forman, D.A.; Forman, G.N.; Button, D.C.; Holmes, M.W.R. THERABAND(R) CLX gold reduces knee-width index and range of motion during overhead, barbell squatting. Sports Biomech. 2021, 20, 198–212. [Google Scholar] [CrossRef]
- Graber, K.A.; Halverstadt, A.L.; Gill, S.V.; Kulkarni, V.S.; Lewis, C.L. The effect of trunk and shank position on the hip-to-knee moment ratio in a bilateral squat. Phys. Ther. Sport 2023, 61, 102–107. [Google Scholar] [CrossRef]
- Sasaki, S.; Tsuda, E.; Yamamoto, Y.; Maeda, S.; Kimura, Y.; Fujita, Y.; Ishibashi, Y. Core-Muscle Training and Neuromuscular Control of the Lower Limb and Trunk. J. Athl. Train. 2019, 54, 959–969. [Google Scholar] [CrossRef]
- Bell, D.R.; Vesci, B.J.; DiStefano, L.J.; Guskiewicz, K.M.; Hirth, C.J.; Padua, D.A. Muscle activity and flexibility in individuals with medial knee displacement during the overhead squat. Athl. Train. Sports Health Care 2012, 4, 117–125. [Google Scholar] [CrossRef]
- Straub, R.K.; Barrack, A.J.; Cannon, J.; Powers, C.M. Trunk Inclination During Squatting is a Better Predictor of the Knee-Extensor Moment Than Shank Inclination. J. Sport Rehabil. 2021, 30, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Laudner, K.G.; Williams, J.G. The relationship between latissimus dorsi stiffness and altered scapular kinematics among asymptomatic collegiate swimmers. Phys. Ther. Sport 2013, 14, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Neto, W.K.; Soares, E.G.; Vieira, T.L.; Aguiar, R.; Chola, T.A.; Sampaio, V.L.; Gama, E.F. Gluteus Maximus Activation during Common Strength and Hypertrophy Exercises: A Systematic Review. J. Sports Sci. Med. 2020, 19, 195–203. [Google Scholar] [PubMed]
Arm Elevation | Phase | Resistance | Comparison | Difference (SD) | 95% CI | p-Value |
---|---|---|---|---|---|---|
30° | LOAD | R01 vs. R00 | Internal position in R01 | 8.41 (8.19) | 15.06 to 58.27 | 0.001 |
30° | LOAD | R02 vs. R00 | Internal position in R02 | 6.72 (10.15) | 2.51 to 56.09 | 0.029 |
45° | LOAD | R01 vs. R00 | Internal position in R01 | 3.03 (4.37) | 1.67 to 24.72 | 0.022 |
30° | UNLOAD | R02 vs. R01 | Internal position in R02 | 5.65 (6.13) | 8.45 to 40.83 | 0.002 |
45° | UNLOAD | R02 vs. R01 | Internal position in R02 | 3.38 (4.25) | 3.52 to 25.94 | 0.008 |
60° | UNLOAD | R02 vs. R01 | Internal position in R02 | 2.56 (3.96) | 0.70 to 21.61 | 0.034 |
Arm Elevation | Phase | Resistance | Comparison | Difference (SD) | 95% CI | p-Value |
---|---|---|---|---|---|---|
45° | LOAD | R00 vs. R01 | Upward position in R00 | 1.91 (1.56) | 4.20 to 12.42 | 0.000 |
60° | LOAD | R00 vs. R01 | Upward position in R00 | 1.07 (1.68) | 0.24 to 9.11 | 0.037 |
30° | UNLOAD | R01 vs. R00 | Upward position in R01 | 2.28 (3.16) | 1.58 to 18.29 | 0.017 |
45° | UNLOAD | R01 vs. R00 | Upward position in R01 | 3.01 (3.40) | 4.15 to 22.11 | 0.003 |
45° | UNLOAD | R01 vs. R02 | Upward position in R01 | 2.15 (2.83) | 1.90 to 16.83 | 0.012 |
60° | UNLOAD | R01 vs. R00 | Upward position in R01 | 2.67 (3.23) | 3.13 to 20.17 | 0.006 |
Arm Elevation | Phase | Resistance | Comparison | Difference (SD) | 95% CI | p-Value |
---|---|---|---|---|---|---|
30° | LOAD | R01 vs. R00 | Posterior Tilt in R01 | 1.84 (2.81) | 0.61 to 15.42 | 0.031 |
30° | LOAD | R01 vs. R02 | Posterior Tilt in R01 | 2.45 (2.92) | 2.94 to 18.38 | 0.006 |
45° | LOAD | R00 vs. R02 | Posterior Tilt in R00 | 1.88 (2.99) | 0.29 to 16.07 | 0.041 |
45° | LOAD | R01 vs. R02 | Posterior Tilt in R01 | 2.67 (3.41) | 2.64 to 20.66 | 0.009 |
45° | UNLOAD | R00 vs. R01 | Posterior Tilt in R00 | 2.81 (2.84) | 4.73 to 19.73 | 0.001 |
45° | UNLOAD | R02 vs. R01 | Posterior Tilt in R02 | 2.17 (2.77) | 2.15 to 16.77 | 0.009 |
60° | UNLOAD | R00 vs. R01 | Posterior Tilt in R00 | 2.98 (3.23) | 4.46 to 21.48 | 0.002 |
60° | UNLOAD | R02 vs. R01 | Posterior Tilt in R02 | 2.80 (2.85) | 4.66 to 19.72 | 0.001 |
75° | UNLOAD | R00 vs. R01 | Posterior Tilt in R00 | 2.30 (3.67) | 0.33 to 19.69 | 0.041 |
75° | UNLOAD | R02 vs. R01 | Posterior Tilt in R02 | 2.83 (2.81) | 4.93 to 19.78 | 0.001 |
90° | UNLOAD | R02 vs. R01 | Posterior Tilt in R02 | 2.81 (2.73) | 5.03 to 19.43 | 0.001 |
105° | UNLOAD | R02 vs. R01 | Posterior Tilt in R02 | 2.42 (2.77) | 3.23 to 17.85 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salles, F.L.P.; Pascoal, A.G. A Kinematic Study on the Use of Overhead Squat Exercise with Elastic Resistance on the Shoulder Kinetic Chain Approach. J. Funct. Morphol. Kinesiol. 2025, 10, 97. https://doi.org/10.3390/jfmk10010097
Salles FLP, Pascoal AG. A Kinematic Study on the Use of Overhead Squat Exercise with Elastic Resistance on the Shoulder Kinetic Chain Approach. Journal of Functional Morphology and Kinesiology. 2025; 10(1):97. https://doi.org/10.3390/jfmk10010097
Chicago/Turabian StyleSalles, Fagner Luiz Pacheco, and Augusto Gil Pascoal. 2025. "A Kinematic Study on the Use of Overhead Squat Exercise with Elastic Resistance on the Shoulder Kinetic Chain Approach" Journal of Functional Morphology and Kinesiology 10, no. 1: 97. https://doi.org/10.3390/jfmk10010097
APA StyleSalles, F. L. P., & Pascoal, A. G. (2025). A Kinematic Study on the Use of Overhead Squat Exercise with Elastic Resistance on the Shoulder Kinetic Chain Approach. Journal of Functional Morphology and Kinesiology, 10(1), 97. https://doi.org/10.3390/jfmk10010097