Chilean National Sports Talent Detection System: Influence of Biological Age, Sex, and Geographic Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Methods
- Anthropometry included weight, height, and sitting height, according to ISAK protocol [22]. A digital scale (model SECA 813, Hamburg, Germany, accuracy 0.1 kg) was used to measure body weight. For the recording of height and sitting height, a stadiometer (model SECA 213; Hamburg, Germany, precision 1 mm) and an anthropometric box of 40 × 50 cm were used.
- Maturational state: PHV was estimated in years, according to the protocol proposed by Mirwald RL [23], using height (cm), sitting height (cm), body weight (kg), leg length (cm), and decimal age in years. The equations used were for girls = [−9.376 + 0.0001882 × Leg Length and Sitting Height interaction + 0.0022 × Age and Leg Length interaction + 0.005841 × Age and Sitting Height interaction—0.002658 × Age and Weight interaction + 0.07693 × Weight by Height ratio], while for boys = [−9.236 + 0.0002708 × Leg Length and Sitting Height interaction −0.001663 × Age and Leg Length interaction + 0.007216 × Age and Sitting Height interaction + 0.02292 × Weight by Height].
- Battery of physical assessments. A tape measure (model INGCO HFMT8250, accurate to 0.1 cm) was employed to record field distances. For speed and agility tests, a photocell kit (model Witty–Microgate, Bolzano, Italy, accuracy 0.001 s) was used.
- Thirty-meter running sprint (RS-30): speed was measured in 30 m (m·s−1) according to the protocol of Castro-Piñero. J [24]. A start and finish line was drawn in a demarcated area of 35 m long × 1.5 m wide, placing the photocells at the 0 point and at 30 m at an approximate chest height. To begin, the test subject was positioned with both feet behind the start line, asking the test subject to leave a stationary position at maximum speed to the finish line.
- Agility T-test (T-test). It was evaluated according to Negra. Y [25], where four cones were placed in the shape of a T, two cones at a separation of 9.14 m from a starting line, and two located at a perpendicular distance of 4.57 m to the right and left of the second cone. The photocell was placed at the first cone at a separation of 1.5 m and at an approximate distance from the chest of the test subject, and the time was recorded in seconds (s).
- Standing broad jump test (SBJ). The protocol described by Saint-Maurice was used [26]. The subject was asked to execute a horizontal jump seeking the maximum possible distance, and the closest mark to the starting line at the moment of landing was recorded, in which the heel of the supporting foot was used as a reference. Arm swinging was allowed before the execution. The distance is measured in cm.
- Medicine ball chest throw test (MBCT). The protocol proposed by Hackett. D was used [27]. The test is performed sitting on a chair with the back and feet fully supported on the backrest and floor, respectively. The test subject was asked to push a 3 kg medicine ball (Select® profcare medicine ball) from the center of the chest with both hands as far as possible; shoulders and back should remain in contact with the chair. The distance was measured from the point of contact of the ball with the ground to the nearest 5 cm.
- Team of evaluators: A specialized technical team of five members per region was implemented, all students from the third year of the physical education career and a regional technical coordinator, a physical education teacher with experience in field physical evaluations. The applied sports science unit and the sports projection unit, along with protocols and specific technical criteria for each test, trained each regional team member. Each member of the technical team participated in at least three days of evaluations of athletes belonging to CPAP before starting to apply the test battery.
2.3. Protocol
2.4. Statistical Analysis
3. Results
3.1. Specialized Technical Team
3.2. Differences by Sex and Age Range
3.3. Differences by Geographic Zone
3.4. Differences by Biological Age
3.5. Differences by Selection Criteria
4. Discussion
4.1. Differences by Sex and Geographical Area
4.2. Selected Schoolchildren and Maturity Status
4.3. Practical Applications
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Bosscher, V.; Shibli, S.; Van Bottenburg, M.; De Knop, P.; Truyens, J. Developing a Method for Comparing the Elite Sport Systems and Policies of Nations: A Mixed Research Methods Approach. J. Sport Manag. 2010, 24, 567–600. [Google Scholar] [CrossRef]
- Bergeron, M.F.; Mountjoy, M.; Armstrong, N.; Chia, M.; Côté, J.; Emery, C.A.; Faigenbaum, A.; Hall, G., Jr.; Kriemler, S.; Léglise, M.; et al. International Olympic Committee consensus statement on youth athletic development. Br. J. Sports Med. 2015, 49, 843–851. [Google Scholar] [CrossRef]
- Monasterio, X.; Cumming, S.; Larruskain, J.; Johnson, D.M.; Gil, S.M.; Bidaurrazaga-Letona, I.; Lekue, J.A.; Diaz-Beitia, G.; Santisteban, J.M.; Williams, S. The combined effects of growth and maturity status on injury risk in an elite football academy. Biol. Sport 2024, 41, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xiang, C.; Kamalden, T.F.T.; Dong, W.; Luo, H.; Ismail, N. Differences and relationships between talent detection, identification, development and selection in sport: A systematic review. Heliyon 2024, 10, e27543. [Google Scholar] [CrossRef] [PubMed]
- Spies, F.; Schauer, L.; Bindel, T.; Pfeiffer, M. Talent detection—Importance of the will and the ability when starting a sport activity. Ger. J. Exerc. Sport Res. 2022, 52, 647–656. [Google Scholar] [CrossRef]
- Vaeyens, R.; Güllich, A.; War, C.R.; Philippaerts, R. Talent identification and promotion programmes of Olympic athletes. J. Sports Sci. 2009, 27, 1367–1380. [Google Scholar] [CrossRef] [PubMed]
- Ford, P.; Croix, M.D.S.; Lloyd, R.; Meyers, R.; Moosavi, M.; Oliver, J.; Till, K.; Williams, C. The Long-Term Athlete Development model: Physiological evidence and application. J. Sports Sci. 2011, 29, 389–402. [Google Scholar] [CrossRef]
- Rees, T.; Hardy, L.; Güllich, A.; Abernethy, B.; Côté, J.; Woodman, T.; Montgomery, H.; Laing, S.; Warr, C. The Great British Medalists Project: A Review of Current Knowledge on the Development of the World’s Best Sporting Talent. Sports Med. 2016, 46, 1041–1058. [Google Scholar] [CrossRef]
- Barth, M.; Güllich, A.; Raschner, C.; Emrich, E. The path to international medals: A supervised machine learning approach to explore the impact of coach-led sport-specific and nonspecific practice. PLoS ONE 2020, 15, e0239378. [Google Scholar] [CrossRef] [PubMed]
- Janssens, B.; Bogaert, M.; Maton, M. Predicting the next Pogačar: A data analytical approach to detect young professional cycling talents. Ann. Oper. Res. 2023, 325, 557–588. [Google Scholar] [CrossRef] [PubMed]
- Van Bulck, D.; Vande Weghe, A.; Goossens, D. Result-based talent identification in road cycling: Discovering the next Eddy Merckx. Ann. Oper. Res. 2023, 325, 539–556. [Google Scholar] [CrossRef] [PubMed]
- Barth, M.; Güllich, A.; Macnamara, B.N.; Hambrick, D.Z. Quantifying the Extent to Which Junior Performance Predicts Senior Performance in Olympic Sports: A Systematic Review and Meta-analysis. Sports Med. 2023, 54, 95–104. [Google Scholar] [CrossRef]
- Bergkamp, T.L.G.; Niessen, A.S.M.; den Hartigh, R.J.R.; Frencken, W.G.P.; Meijer, R.R. Methodological Issues in Soccer Talent Identification Research. Sports Med. 2019, 49, 1317–1335. [Google Scholar] [CrossRef] [PubMed]
- Barraclough, S.; Till, K.; Kerr, A.; Emmonds, S. Methodological Approaches to Talent Identification in Team Sports: A Narrative Review. Sports 2022, 10, 81. [Google Scholar] [CrossRef]
- Malina, R.; Králík, M.; Kozieł, S.M.; Cumming, S.; Konarski, J.; Sousa-E-Silva, P.; Martinho, D.; Figueiredo, A.J.; Coelho-E-Silva, M. Ages at peak height velocity in male soccer players 11–16 years: Relationships with skeletal age and comparisons among longitudinal studies. Biol. Sport 2024, 41, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Garber, M.; Sajuria, M.; Lobelo, F. Geographical Variation in Health-Related Physical Fitness and Body Composition among Chilean 8th Graders: A Nationally Representative Cross-Sectional Study. PLoS ONE 2014, 9, e108053. [Google Scholar] [CrossRef]
- Yáñez-Sepúlveda, R.; Clemente-Suárez, V.J.; de Souza-Lima, J.; Ferrari, G.; Hurtado-Almonacid, J.; Zavala-Crichton, J.P.; Hinojosa-Torres, C.; Reyes-Amigo, T.; Páez-Herrera, J.; Cortés-Roco, G.; et al. Cardiorespiratory fitness and socioeconomic influences in Chilean schoolchildren: A cross-sectional study. J. Pediatr. 2024, 100, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Cárcamo-Oyarzun, J.; Herrmann, C.; Gerlach, E.; Salvo-Garrido, S.; Estevan, I. Motor competence, motivation and enjoyment in physical education to profile children in relation to physical activity behaviors. Phys. Educ. Sport Pedagog. 2023, 1–16. [Google Scholar] [CrossRef]
- Ministerio del Deporte, Gobierno de Chile. Política Nacional de Actividad Física y Deporte 2016–2025, 1st ed.; Gobierno de Chile: Santiago, Chile, 2016. [Google Scholar]
- van der Sluis, A.; Elferink-Gemser, M.T.; Coelho-e-Silva, M.J.; Nijboer, J.A.; Brink, M.S.; Visscher, C. Sport Injuries Aligned to Peak Height Velocity in Talented Pubertal Soccer Players. Int. J. Sports Med. 2014, 35, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Rosenblatt, D.; Benmarhnia, T.; Bedregal, P.; Lopez-Arana, S.; Rodriguez-Osiac, L.; Garmendia, M.L. The impact of health policies and the COVID-19 pandemic on exclusive breastfeeding in Chile during 2009–2020. Sci. Rep. 2023, 13, 10671. [Google Scholar] [CrossRef]
- Marfell-Jones, M.J.; Stewart, A.D.; de Ridder, J.H. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2012. [Google Scholar]
- Mirwald, R.L.; Baxter-Jones, A.D.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [PubMed]
- Castro-Piñero, J.; González-Montesinos, J.; Mora, J.; Keating, X.; Sjstrm, M.; Ruiz, J. Percentile Values for Running Sprint Field Tests in Children Ages 6–17 Years: Influence of Weight Status. Res. Q. Exerc. Sport 2010, 81, 143–151. [Google Scholar] [CrossRef]
- Negra, Y.; Chaabene, H.; Hammami, M.; Amara, S.; Sammoud, S.; Mkaouer, B.; Hachana, Y. Agility in young athletes: Is it a different ability from speed and power? J. Strength Cond. Res. 2017, 31, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Saint-Maurice, P.F.; Laurson, K.R.; Kaj, M.; Csányi, T. Establishing normative reference values for standing broad jump among Hungarian youth. Res. Q. Exerc. Sport 2015, 86, S37–S44. [Google Scholar] [CrossRef]
- Hackett, D.; Davies, T.; Ibel, D.; Cobley, S.; Sanders, R. Predictive ability of the medicine ball chest throw and vertical jump tests for determining muscular strength and power in adolescents. Meas. Phys. Educ. Exerc. Sci. 2017, 22, 79–87. [Google Scholar] [CrossRef]
- Roberts, A.H.; Greenwood, D.; Stanley, M.; Humberstone, C.; Iredale, F.; Raynor, A. Understanding the “gut instinct” of expert coaches during talent identification. J. Sports Sci. 2020, 39, 359–367. [Google Scholar] [CrossRef]
- Sieghartsleitner, R.; Zuber, C.; Zibung, M.; Conzelmann, A. Science or Coaches’ Eye?—Both! Beneficial Collaboration of Multidimensional Measurements and Coach Assessments for Efficient Talent Selection in Elite Youth Football. J. Sports Sci. Med. 2019, 18, 32–43. [Google Scholar] [PubMed]
- Fuhre, J.; Øygard, A.; Sæther, S.A. Coaches’ Criteria for Talent Identification of Youth Male Soccer Players. Sports 2022, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Field, A.; Miles, J.; Field, Z. Discovering Statistics Using R, 1st ed.; SAGE Publications: London, UK, 2012. [Google Scholar]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive statistics and normality tests for statistical data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [PubMed]
- Sullivan, G.M.; Feinn, R.S. Using Effect Size—Or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 12 December 2024).
- The Jamovi Project. Jamovi. (Version 2.5) [Computer Software]. 2024. Available online: https://www.jamovi.org (accessed on 12 December 2024).
- Ulijaszek, S.; Kerr, D. Anthropometric measurement error and the assessment of nutritional status. Br. J. Nutr. 2000, 83, 95. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Estadísticas, Departamento de Estadísticas Demográficas y Sociales Subdepartamento de Demografía y Departamento Estudios Unidad de Estudios Servicio Nacional de Migraciones. Informe de Resultados de la Estimación de Personas Extranjeras Residentes en Chile. Available online: www.ine.gob.cl (accessed on 16 December 2024).
- Nazer Ahumada, R.; Llorca-Jaña, M. Immigration and Entrepreneurship in Chile during the Nineteenth and Twentieth Centuries. Immigr. Minor. 2022, 40, 337–377. [Google Scholar] [CrossRef]
- Brown, K.; Patel, D.; Darmawan, D. Participation in sports in relation to adolescent growth and development. Transl. Pediatr. 2017, 6, 150–159. [Google Scholar] [CrossRef]
- Sweeney, L.; Taylor, J.; MacNamara, A. Push and Pull Factors: Contextualizing Biological Maturation and Relative Age in Talent Development Systems. Children 2023, 10, 130. [Google Scholar] [CrossRef] [PubMed]
- Beunen, G.; Malina, R. Growth and Biologic Maturation: Relevance to Athletic Performance. In The Young Athlete: Volume XIII of The Encyclopaedia of Sports Medicine: An IOC Medical Commission Publication; Hebestreit, H., Bar-Or, O., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2008; ISBN 978-1-4051-5647-9. [Google Scholar]
- Armstrong, N. Developing of the Elite Young Athlete. J. Phys. Act. Sports Exerc. 2013, 1, 1–8. [Google Scholar]
- Zivicnjak, M.; Narancić, N.; Szirovicza, L.; Franke, D.; Hrenović, J.; Bisof, V.; Tomas, Z.; Skarić-Jurić, T. Gender-Specific Growth Patterns of Transversal Body Dimensions in Croatian Children and Youth (2 to 18 Years of Age). Coll. Antropol. 2008, 32, 419–431. [Google Scholar] [PubMed]
- Chaves, R.; Baxter-Jones, A.; Gomes, T.; Souza, M.; Pereira, S.; Maia, J. Effects of Individual and School-Level Characteristics on a Child’s Gross Motor Coordination Development. Int. J. Environ. Res. Public Health 2015, 12, 8883–8896. [Google Scholar] [CrossRef]
- Von Seggern, M.J.; Rogers, A.E.; Schenkelberg, M.A.; Kellstedt, D.K.; Welk, G.J.; High, R.; Dzewaltowski, D.A. Sociodemographic influences on youth sport participation and physical activity among children living within concentrated Hispanic/Latino rural communities. Front. Public Health 2024, 12, 1345635. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Bustamante, A.; Santos, C.; Hedeker, D.; Tani, G.; Garganta, R.; Vasconcelos, O.; Baxter-Jones, A.; Katzmarzyk, P.T.; Maia, J. Biological and environmental influences on motor coordination in Peruvian children and adolescents. Sci. Rep. 2021, 11, 15444. [Google Scholar] [CrossRef] [PubMed]
- Gallotta, M.C.; Zimatore, G.; Falcioni, L.; Migliaccio, S.; Lanza, M.; Schena, F.; Biino, V.; Giuriato, M.; Bellafiore, M.; Palma, A.; et al. Influence of Geographical Area and Living Setting on Children’s Weight Status, Motor Coordination, and Physical Activity. Front. Pediatr. 2022, 9, 794284. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Sepúlveda Ramírez-Vélez, R.; Correa-Bautista, J.; Izquierdo, M.; García-Hermoso, A. Physical fitness and anthropometric normative values among Colombian-Indian schoolchildren. BMC Public Health 2016, 16, 962. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.; Carver, K.; Atkinson, F.; Daniell, N.; Lewis, L.; Fitzgerald, J.; Lang, J.; Ortega, F. European normative values for physical fitness in children and adolescents aged 9–17 years: Results from 2,779,165 Eurofit performances representing 30 countries. Br. J. Sports Med. 2018, 52, 1445–1456. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Soler, E.; Rúa-Alonso, M.; Rial-Vázquez, J.; Lete-Lasa, J.R.; Clavel, I.; Giráldez-García, M.A.; Rico-Díaz, J.; Corral, M.R.-D.; Carballeira-Fernández, E.; Dopico-Calvo, X. Percentiles and Principal Component Analysis of Physical Fitness from a Big Sample of Children and Adolescents Aged 6–18 Years: The DAFIS Project. Front. Psychol. 2021, 12, 627834. [Google Scholar] [CrossRef] [PubMed]
- Huebner, M.; Perperoglou, A. Performance Development from Youth to Senior and Age of Peak Performance in Olympic Weightlifting. Front. Physiol. 2019, 10, 1121. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, S.H.; Çetiner, A.; Güneş, F.; Esformes, J.I.; Karakaş, S. Maturation and Bio-Banding in Youth Soccer Players: Insights from Turkish Male Academy across U-10 to U-15 Age. Int. J. Strength Cond. 2024, 4, 1–18. [Google Scholar] [CrossRef]
- McKay, A.K.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. De-fining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
Variable | Total | Girls | Boys |
---|---|---|---|
Age (decimal age, years old) | 12.08 ±1.52 [3060] | 11.96 ±1.50 [1243] | 12.16 ± 1.53 [1817] |
Weight (kg) | 49.3 ± 12.8 [3060] | 48.8 ± 11.7 [1243] | 49.6 ± 13.5 [1817] |
Height (cm) | 152.03 ±10.88 [3060] | 150.85 ±8.95 [1243] | 152.83 ± 11.96 [1817] |
BMI (kg/m2) | 21.08 ±3.88 [3060] | 21.26 ±3.83 [1243] | 20.96 ± 3.92 [1817] |
Maturity status (years at PHV) | −0.84 ± 1.46 [2273] | 0.0 ± 1.20 [950] | −1.5 ± 1.32 [1323] |
Velocity (m·s−1) | 5.29 ± 0.60 [2645] | 5.11 ± 0.49 [1050] | 5.40 ± 0.63 [1595] |
SBJ (cm) | 148.81± 28.35 [2935] | 139.53 ± 24.40 [1199] | 155.22 ± 29.11 [1736] |
MBCT (cm) | 259.10 ± 74.67 [2937] | 235.37 ± 55.48 [1192] | 275.31 ± 81.46 [1745] |
T-test (s) | 13.35 ± 1.64 [2576] | 13.91 ± 1.51 [1018] | 12.98 ± 1.62 [1558] |
Age Range, n (Girls/Boys) | Girls | Boys | Effect Size [C.I] | ANOVA Sex × Age Range (F, p-Value [η2]) |
---|---|---|---|---|
Height (cm) | ||||
A (135/159) | 138.70 ± 6.63 | 137.64 ± 7.36 | n.s | F = 35.07, p < 0.001 [0.05] |
B (230/306) | 145.31 ± 6.52 | 142.31 ± 7.47 | 0.41 [0.24 to 0.58] † | |
C (266/332) | 150.05 ± 6.65 | 148.19 ± 8.23 | 0.25 [0.09 to 0.42] ұ | |
D (241/355) | 154.06 ± 6.79 | 153.83 ± 7.91 | n.s | |
E (253/426) | 156.46 ± 6.56 | 161.67 ± 8.14 | 0.71 [0.56 to 0.87] † | |
F (118/239) | 158.71 ± 6.67 | 165.64 ± 6.72 | 0.95 [0.73 to 1.17] † | |
RS-30 (m·s−1) | ||||
A (105/126) | 4.74 ± 0.37 | 4.88 ± 0.42 | 0.29 [0.03 to 0.55] ₠ | F = 6.77, p < 0.001 [0.01] |
B (189/256) | 4.88 ± 0.38 | 4.99 ± 0.47 | 0.21 [0.02 to 0.40] ₠ | |
C (237/291) | 5.06 ± 0.47 | 5.23 ± 0.50 | 0.34 [0.16 to 0.51] † | |
D (195/319) | 5.21 ± 0.43 | 5.42 ± 0.57 | 0.42 [0.24 to 0.60] † | |
E (224/381) | 5.31 ± 0.47 | 5.68 ± 0.62 | 0.74 [0.57 to 0.90] † | |
F (100/222) | 5.46 ± 0.48 | 5.90 ± 0.57 | 0.89 [0.65 to 1.12] † | |
T-test (s) | ||||
A (100/124) | 15.02 ± 1.43 | 14.59 ± 1.51 | 0.31 [0.05 to 0.57] ₠ | F = 4.80, p < 0.001 [0.01] |
B (194/255) | 14.47 ± 1.48 | 14.01 ± 1.52 | 0.33 [0.14 to 0.52] ұ | |
C (224/287) | 13.96 ± 1.35 | 13.27 ± 1.42 | 0.49 [0.31 to 0.66] † | |
D (204/316) | 13.66 ± 1.39 | 12.79 ± 1.37 | 0.62 [0.44 to 0.80] † | |
E (207/365) | 13.47 ± 1.51 | 12.27 ± 1.37 | 0.86 [0.69 to 1.03] † | |
F (89/211) | 12.95 ± 1.11 | 11.90 ± 1.23 | 0.74 [0.50 to 0.99] † | |
SBJ (cm) | ||||
A (130/150) | 126.17 ± 23.04 | 134.18 ± 20.43 | 0.32 [0.08 to 0.55] ұ | F = 8.79, p < 0.001 [0.01] |
B (224/295) | 132.03 ± 22.35 | 140.07 ± 25.54 | 0.32 [0.15 to 0.49] † | |
C (258/319) | 140.04 ± 22.36 | 148.88 ± 25.74 | 0.35 [0.19 to 0.52] † | |
D (235/343) | 142.71 ± 24.64 | 156.76 ± 27.44 | 0.56 [0.39 to 0.73] † | |
E (242/403) | 144.73 ± 23.72 | 166.98 ± 26.94 | 0.89 [0.73 to 1.05] † | |
F (110/226) | 151.20 ± 24.87 | 174.58 ± 27.38 | 0.93 [0.71 to 1.16] † | |
MBCT (cm) | ||||
A (131/153) | 177.56 ± 33.66 | 197.47 ± 48.73 | 0.37 [0.14 to 0.60] ұ | F = 34.46, p < 0.001 [0.06] |
B (227/303) | 206.47 ± 46.37 | 215.01 ± 50.82 | n.s | |
C (255/327) | 224.13 ± 45.36 | 241.15 ± 60.42 | 0.32 [0.15 to 0.48] † | |
D (230/342) | 253.25 ± 47.86 | 270.95 ± 57.70 | 0.33 [0.16 to 0.50] † | |
E (232/395) | 268.16 ± 45.75 | 333.98 ± 63.85 | 1.22 [1.06 to 1.38] † | |
F (117/225) | 280.56 ± 49.21 | 362.72 ± 66.98 | 1.52 [1.30 to 1.75] † |
Effect Size and Confidence Interval [C.I] | |||||||
---|---|---|---|---|---|---|---|
Dependent Variable | Northern Zone | Central Zone | Southern Zone | North Zone vs. Center Zone | North Zone vs. South Zone | Center Zone vs. South Zone | ANOVA (F, p-Value [η2]) |
GIRLS | |||||||
Height (cm) | 151.55 ± 9.07 | 150.88 ± 8.48 | 149.42 ± 9.47 | n.s | 0.24 [0.09 to 0.39] ұ | n.s | F = 4.68, p < 0.01 [0.01] |
RS-30 (m·s−1) | 5.05 ± 0.48 | 5.22 ± 0.48 | 5.03 ± 0.49 | 0.35 [0.21 to 0.48] † | n.s | 0.38 [0.22 to 0.54] † | F = 16.06, p < 0.001 [0.03] |
MBCT (cm) | 240.09 ± 57.91 | 241.32 ± 50.04 | 213.44 ± 56.51 | n.s | 0.49 [0.33 to 0.65] † | 0.51 [0.36 to 0.67] † | F = 23.69, p < 0.001 [0.04] |
SBJ (cm) | 137.89 ± 23.93 | 145.43 ± 23.4 | 130.76 ± 24.23 | 0.32 [0.19 to 0.44] † | 0.30 [0.14 to 0.46] † | 0.62 [0.46 to 0.77] † | F = 32.88, p < 0.001 [0.05] |
T-test (s) | 14.02 ± 1.57 | 13.69 ± 1.46 | 14.11 ± 1.46 | 0.22 [0.08 to 0.36] ұ | n.s | 0.28 [0.12 to 0.45] ұ | F = 7.27, p < 0.001 [0.01] |
BOYS | |||||||
Height (cm) | 154.93 ± 12.05 | 152.41 ± 11.59 | 149.87 ± 11.99 | 0.19 [0.09 to 0.29] † | 0.43 [0.29 to 0.57] † | 0.24 [0.10 to 0.37] † | F = 20.18, p < 0.001 [0.02] |
RS-30 (m·s−1) | 5.38 ± 0.65 | 5.49 ± 0.62 | 5.27 ± 0.61 | 0.19 [0.09 to 0.30] † | 0.17 [0.03 to 0.31] ₠ | 0.37 [0.23 to 0.50] † | F = 15.02, p < 0.001 [0.02] |
MBCT (cm) | 285.96 ± 86.18 | 278.04 ± 76.28 | 251.2 ± 79.56 | n.s | 0.43 [0.29 to 0.57] † | 0.36 [0.23 to 0.50] † | F = 19.49, p < 0.001 [0.02] |
SBJ (cm) | 155.85 ± 30.1 | 159.31 ± 27.67 | 144.64 ± 27.72 | 0.14 [0.04 to 0.24] ұ | 0.40 [0.26 to 0.54] † | 0.54 [0.41 to 0.68] † | F = 31.22, p < 0.001 [0.03] |
T-test (s) | 13.13 ± 1.78 | 12.65 ± 1.43 | 13.40 ± 1.55 | 0.31 [0.20 to 0.42] † | 0.17 [0.03 to 0.31] ₠ | 0.48 [0.34 to 0.62] † | F = 28.21, p < 0.001 [0.01] |
Effect Size and Confidence Interval [C.I] | |||||||
---|---|---|---|---|---|---|---|
Dependent Variable | Pre-PHV [n] | Circa-PHV [n] | Post-PHV [n] | Pre-PHV vs. Circa-PHV | Circa-PHV vs. Post-PHV | Post-PHV vs. Pre-PHV | ANOVA (F, p-Value [η2]) |
GIRLS | |||||||
Height (cm) | 146.9 ± 7.31 [16] | 154 ± 8.11 [102] | 156.9 ± 8.26 [26] | 0.88 [0.34 to 1.41] ұ | n.s | 1.23 [0.61 to 1.86] † | 7.73, p < 0.001 [0.10] |
RS-30 (m·s−1) | 5.23 ± 0.54 [14] | 5.57 ± 0.38 [99] | 5.79 ± 0.5 [26] | 0.84 [0.26 to 1.42] ұ | 0.54 [0.11 to 0.98] ₠ | 1.38 [0.71 to 2.06] † | 8.4, p < 0.001 [0.11] |
SBJ (cm) | 156.2 ± 20.9 [14] | 167.9 ± 18.1 [102] | 172.5 ± 18.99 [24] | 0.63 [0.07 to 1.2] ₠ | n.s | 0.88 [0.21 to 1.54] ₠ | 3.5, p < 0.05 [0.05] |
T-test (s) | 12.79 ± 1.47 [16] | 12.45 ± 1.03 [101] | 11.93 ± 1.2 [25] | n.s | 0.49 [0.05 to 0.93] ₠ | 0.81 [0.17 to 1.44] ₠ | 3.61, p < 0.05 [0.05] |
MBCT (cm) | 262.5 ± 63.88 [16] | 273.5 ± 51.64 [102] | 302 ± 49.5 [26] | n.s | 0.54 [0.11 to 0.98] ₠ | 0.75 [0.12 to 1.38] ₠ | 3.75, p < 0.05 [0.05] |
BOYS | |||||||
Height (cm) | 153.49 ± 8.64 [74] | 160.6 ± 10.36 [108] | 160 ± 12.01 [18] | 0.72 [0.42 to 1.01] † | n.s | 0.66 [0.14 to 1.18] ₠ | 11.75, p < 0.001 [0.11] |
RS-30 (m·s−1) | 5.85 ± 0.5 [64] | 6.08 ± 0.44 [104] | 5.92 ± 0.53 [16] | 0.48 [0.17 to 0.80] ұ | n.s | n.s | 4.82, p < 0.01 [0.05] |
SBJ (cm) | 183 ± 22.02 [73] | 190.6 ± 20.17 [106] | 190.2 ± 22.2 [18] | n.s | n.s | n.s | 2.95, p > 0.05 [0.03] |
T-test (s) | 11.79 ± 1.04 [72] | 11.34 ± 1.03 [108] | 11.40 ± 0.99 [18] | 0.44 [0.14 to 0.74] ₠ | n.s | n.s | 4.23, p < 0.05 [0.04] |
MBCT (cm) | 306.8 ± 62.85 [74] | 344.4 ± 77.49 [107] | 356.3 ± 92.15 [18] | 0.51 [0.21 to 0.81] ұ | n.s | 0.67 [0.15 to 1.19] ₠ | 6.79, p < 0.01 [0.06] |
Variable (n1, n2) | Selected by Physical Test | Selected by Technical Criteria |
---|---|---|
GIRLS | ||
Decimal age (years old) (12, 15) | 12.34 [11.46–13.31] | 12.05 [11.05–13.36] n.s |
Maturity status (years at PHV) (12, 13) | 0.0 [0.0–0.34] | 0.0 [0.0–0.0] n.s |
Height (cm) (12, 15) | 154.5 [151.76–159.38] | 152 [143–157.5] n.s |
SBJ (cm) (12, 15) | 171.5 [160.25–190.50] | 149 [125.5–155] ұ |
RS-30 (m·s−1) (12, 15) | 5.75 [5.45–5.97] | 5.30 [5.15–5.43] ₠ |
T-test (s) (12, 14) | 12.52 [11.89–12.80] | 14.44 [13.02–15.14] ₠ |
MBCT (cm) (12, 15) | 306 [259.75–329.75] | 222 [196.50–259] ұ |
BOYS | ||
Decimal age (years old) (19, 21) | 12.71 [11.69–13.84] | 12.8 [10.99–13.70] n.s |
Maturity status (years at PHV) (17, 18) | 0.0 [−0.32–0.0] | 0.0 [−0.38–0.0] n.s |
Height (cm) (19, 21) | 160 [148.50–164.75] | 160 [148–166] n.s |
SBJ (cm) (18, 20) | 191 [165–209.5] | 165.5 [135–187.5] ₠ |
RS-30 (m·s−1) (19, 21) | 6.07 [5.56–6.41] | 5.64 [4.88–6.57] n.s |
T-test (s) (19, 21) | 11.81 [10.75–12.93] | 12.94 [11.78–14.06] ₠ |
MBCT (cm) (19, 21) | 330 [254–375.5] | 320 [239–380] n.s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guevara-Araya, A.; Curripan-Henríquez, S.; Aguilera-Julio, J.; Antinao-Soto, A.; Araneda, O.F. Chilean National Sports Talent Detection System: Influence of Biological Age, Sex, and Geographic Area. J. Funct. Morphol. Kinesiol. 2025, 10, 6. https://doi.org/10.3390/jfmk10010006
Guevara-Araya A, Curripan-Henríquez S, Aguilera-Julio J, Antinao-Soto A, Araneda OF. Chilean National Sports Talent Detection System: Influence of Biological Age, Sex, and Geographic Area. Journal of Functional Morphology and Kinesiology. 2025; 10(1):6. https://doi.org/10.3390/jfmk10010006
Chicago/Turabian StyleGuevara-Araya, Ariel, Samuel Curripan-Henríquez, Juan Aguilera-Julio, Ana Antinao-Soto, and Oscar F. Araneda. 2025. "Chilean National Sports Talent Detection System: Influence of Biological Age, Sex, and Geographic Area" Journal of Functional Morphology and Kinesiology 10, no. 1: 6. https://doi.org/10.3390/jfmk10010006
APA StyleGuevara-Araya, A., Curripan-Henríquez, S., Aguilera-Julio, J., Antinao-Soto, A., & Araneda, O. F. (2025). Chilean National Sports Talent Detection System: Influence of Biological Age, Sex, and Geographic Area. Journal of Functional Morphology and Kinesiology, 10(1), 6. https://doi.org/10.3390/jfmk10010006