Multipulse Optical-Rectification-Based THz Source for Accelerator Applications
Abstract
:1. Introduction
2. THz Source
2.1. Tilted Pulse Fronts
2.2. Optical Setup
2.3. THz Generation Results
3. THz Pulse Characterization—Electro-Optic Sampling
4. Bandwidth-Narrowing Pulse Trains
4.1. -BBO Crystals
4.2. Two-Cycle THz Pulse
4.3. Eight-Cycle THz Pulse
Electro-Optic Sampling—Pulse Train Adjustments
4.4. Pump Analysis—Autocorrelation
Eight-Cycle Pulse Results
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IR | Infrared |
UV | Ultraviolet |
LN | Mg:LiNbO |
ZnTe | Zinc Telluride |
EOS | Electro-Optic Sampling |
References
- Kilpatrick, W. Criterion for vacuum sparking designed to include both rf and dc. Rev. Sci. Instrum. 1957, 28, 824–826. [Google Scholar] [CrossRef]
- Wang, J.; Loew, G. Rf breakdown studies in copper electron linac structures. In Proceedings of the 1989 IEEE Particle Accelerator Conference, Accelerator Science and Technology, Chicago, IL, USA, 20–23 March 1989; pp. 1137–1139. [Google Scholar]
- Thompson, M.; Badakov, H.; Cook, A.; Rosenzweig, J.; Tikhoplav, R.; Travish, G.; Blumenfeld, I.; Hogan, M.; Ischebeck, R.; Kirby, N.; et al. Breakdown limits on gigavolt-per-meter electron-beam-driven wakefields in dielectric structures. Phys. Rev. Lett. 2008, 100, 214801. [Google Scholar] [CrossRef]
- Dal Forno, M.; Dolgashev, V.; Bowden, G.; Clarke, C.; Hogan, M.; McCormick, D.; Novokhatski, A.; Spataro, B.; Weathersby, S.; Tantawi, S.G. Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures. Phys. Rev. Accel. Beams 2016, 19, 051302. [Google Scholar] [CrossRef]
- Wu, X.; Shi, J.; Chen, H.; Shao, J.; Abe, T.; Higo, T.; Matsumoto, S.; Wuensch, W. High-gradient breakdown studies of an X-band Compact Linear Collider prototype structure. Phys. Rev. Accel. Beams 2017, 20, 052001. [Google Scholar] [CrossRef]
- Zhang, B.; Ma, Z.; Ma, J.; Wu, X.; Ouyang, C.; Kong, D.; Hong, T.; Wang, X.; Yang, P.; Chen, L.; et al. 1.4-mJ high energy terahertz radiation from lithium niobates. Laser Photonics Rev. 2021, 15, 2000295. [Google Scholar] [CrossRef]
- Hebling, J.; Stepanov, A.; Almási, G.; Bartal, B.; Kuhl, J. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts. Appl. Phys. B 2004, 78, 593–599. [Google Scholar] [CrossRef]
- Dhillon, S.; Vitiello, M.; Linfield, E.; Davies, A.; Hoffmann, M.C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.; et al. The 2017 terahertz science and technology roadmap. J. Phys. Appl. Phys. 2017, 50, 043001. [Google Scholar] [CrossRef]
- Vicario, C.; Ovchinnikov, A.; Ashitkov, S.; Agranat, M.; Fortov, V.; Hauri, C. Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr: Mg2SiO4 laser. Opt. Lett. 2014, 39, 6632–6635. [Google Scholar] [CrossRef]
- Pálfalvi, L.; Fülöp, J.; Almási, G.; Hebling, J. Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification. Appl. Phys. Lett. 2008, 92, 171107. [Google Scholar] [CrossRef]
- Vicario, C.; Monoszlai, B.; Hauri, C.P. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal. Phys. Rev. Lett. 2014, 112, 213901. [Google Scholar] [CrossRef]
- Wu, X.j.; Ma, J.l.; Zhang, B.l.; Chai, S.s.; Fang, Z.j.; Xia, C.Y.; Kong, D.y.; Wang, J.g.; Liu, H.; Zhu, C.Q.; et al. Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti: Sapphire laser pulses. Opt. Express 2018, 26, 7107–7116. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.R.; Fallahi, A.; Wu, X.; Cankaya, H.; Calendron, A.L.; Ravi, K.; Zhang, D.; Nanni, E.A.; Hong, K.H.; Kärtner, F.X. Terahertz-driven, all-optical electron gun. Optica 2016, 3, 1209–1212. [Google Scholar] [CrossRef]
- Nanni, E.A.; Huang, W.R.; Hong, K.H.; Ravi, K.; Fallahi, A.; Moriena, G.; Dwayne Miller, R.; Kärtner, F.X. Terahertz-driven linear electron acceleration. Nat. Commun. 2015, 6, 8486. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Fallahi, A.; Hemmer, M.; Wu, X.; Fakhari, M.; Hua, Y.; Cankaya, H.; Calendron, A.L.; Zapata, L.E.; Matlis, N.H.; et al. Segmented terahertz electron accelerator and manipulator (STEAM). Nat. Photonics 2018, 12, 336–342. [Google Scholar] [CrossRef]
- Curry, E.; Fabbri, S.; Maxson, J.; Musumeci, P.; Gover, A. Meter-scale terahertz-driven acceleration of a relativistic beam. Phys. Rev. Lett. 2018, 120, 094801. [Google Scholar] [CrossRef]
- Ravi, K.; Huang, W.R.; Carbajo, S.; Nanni, E.A.; Schimpf, D.N.; Ippen, E.P.; Kärtner, F.X. Theory of terahertz generation by optical rectification using tilted-pulse-fronts. Opt. Express 2015, 23, 5253–5276. [Google Scholar] [CrossRef]
- Kroh, T.; Rohwer, T.; Zhang, D.; Demirbas, U.; Cankaya, H.; Hemmer, M.; Hua, Y.; Zapata, L.E.; Pergament, M.; Kärtner, F.X.; et al. Parameter sensitivities in tilted-pulse-front based terahertz setups and their implications for high-energy terahertz source design and optimization. Opt. Express 2022, 30, 24186–24206. [Google Scholar] [CrossRef]
- KOSTENBAUDER, A. Ray pulse matrices for dispersive optical systems. In Proceedings of the Conference on Lasers and Electro-Optics, Baltimore, MD, USA, 21–25 May 1990. [Google Scholar]
- Gayer, O.; Sacks, Z.; Galun, E.; Arie, A. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO 3. Appl. Phys. B 2008, 91, 343–348. [Google Scholar] [CrossRef]
- Buzády, A.; Gálos, R.; Makkai, G.; Wu, X.; Tóth, G.; Kovács, L.; Almási, G.; Hebling, J.; Pálfalvi, L. Temperature-dependent terahertz time-domain spectroscopy study of Mg-doped stoichiometric lithium niobate. Opt. Mater. Express 2020, 10, 998–1006. [Google Scholar] [CrossRef]
- Kreier, D.; Baum, P. Avoiding temporal distortions in tilted pulses. Opt. Lett. 2012, 37, 2373–2375. [Google Scholar] [CrossRef]
- Van Tilborg, J.; Schroeder, C.; Filip, C.; Tóth, C.; Geddes, C.; Fubiani, G.; Huber, R.; Kaindl, R.; Esarey, E.; Leemans, W. Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. Phys. Rev. Lett. 2006, 96, 014801. [Google Scholar] [CrossRef] [PubMed]
- Brunken, M.; Genz, H.; Göttlicher, P.; Hessler, C.; Hüning, M.; Loos, H.; Richter, A.; Schlarb, H.; Schmüser, P.; Simrock, S.; et al. Electro-optic sampling at the TESLA test accelerator: Experimental setup and first results. Tesla Rep. 2003, 11, 2003. [Google Scholar]
- Chen, Q.; Tani, M.; Jiang, Z.; Zhang, X.C. Electro-optic transceivers for terahertz-wave applications. JOSA B 2001, 18, 823–831. [Google Scholar] [CrossRef]
- Van Tilborg, J. Coherent Terahertz Radiation from Laser-Wakefield-Accelerated Electron Beams. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2006. [Google Scholar]
- Liu, X.; Melnik, M.; Zhukova, M.; Oparin, E.; Rodrigues, J.J.; Tcypkin, A.; Kozlov, S. Formation of gigahertz pulse train by chirped terahertz pulses interference. Sci. Rep. 2020, 10, 9463. [Google Scholar] [CrossRef]
- Tian, Q.; Xu, H.; Wang, Y.; Liang, Y.; Tan, Y.; Ning, X.; Yan, L.; Du, Y.; Li, R.; Hua, J.; et al. Efficient generation of a high-field terahertz pulse train in bulk lithium niobate crystals by optical rectification. Opt. Express 2021, 29, 9624–9634. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Ouzounov, D.; Li, H.; Bazarov, I.; Dunham, B.; Sinclair, C.; Wise, F.W. Efficient temporal shaping of ultrashort pulses with birefringent crystals. Appl. Opt. 2007, 46, 8488–8492. [Google Scholar] [CrossRef] [PubMed]
- CASTECH Inc. Available online: https://www.castech.com/product/%CE%B1-BBO—Alpha-Barium-Borate-90.html (accessed on 27 September 2023).
- Wu, X.; Carbajo, S.; Ravi, K.; Ahr, F.; Cirmi, G.; Zhou, Y.; Mücke, O.D.; Kärtner, F.X. Terahertz generation in lithium niobate driven by Ti: Sapphire laser pulses and its limitations. Opt. Lett. 2014, 39, 5403–5406. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenz, M.; Musumeci, P. Multipulse Optical-Rectification-Based THz Source for Accelerator Applications. Instruments 2023, 7, 39. https://doi.org/10.3390/instruments7040039
Lenz M, Musumeci P. Multipulse Optical-Rectification-Based THz Source for Accelerator Applications. Instruments. 2023; 7(4):39. https://doi.org/10.3390/instruments7040039
Chicago/Turabian StyleLenz, Maximilian, and Pietro Musumeci. 2023. "Multipulse Optical-Rectification-Based THz Source for Accelerator Applications" Instruments 7, no. 4: 39. https://doi.org/10.3390/instruments7040039
APA StyleLenz, M., & Musumeci, P. (2023). Multipulse Optical-Rectification-Based THz Source for Accelerator Applications. Instruments, 7(4), 39. https://doi.org/10.3390/instruments7040039