Using Artificial Intelligence in the Reconstruction of Signals from the PADME Electromagnetic Calorimeter
Abstract
:1. Introduction
2. The Padme Experiment
2.1. Active Target
2.2. Charged Particle Detectors
2.3. Calorimeters
2.4. Readout System
3. Application of Neural Networks for Waveform Description
4. Signal Parameter Reconstruction
4.1. Time Reconstruction
4.2. Signal Recognition
4.3. Amplitude Reconstruction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alexander, J.; Battaglieri, M.; Echenard, B.; Essig, R.; Graham, M.; Izaguirre, E.; Jaros, J.; Krnjaic, G.; Mardon, J.; Morrissey, D.; et al. Dark Sectors 2016 Workshop: Community Report. arXiv 2016, arXiv:hep-ph/1608.08632. [Google Scholar]
- Raggi, M.; Kozhuharov, V. Proposal to Search for a Dark Photon in Positron on Target Collisions at DAΦNE Linac. Adv. High Energy Phys. 2014, 2014, 959802. [Google Scholar] [CrossRef]
- Valente, P.; Belli, M.; Bolli, B.; Buonomo, B.; Cantarella, S.; Ceccarelli, R.; Cecchinelli, A.; Cerafogli, O.; Clementi, R.; Di Giulio, C.; et al. Linear Accelerator Test Facility at LNF Conceptual Design Report. arXiv 2016, arXiv:physics.acc-ph/1603.05651. [Google Scholar]
- Agostinelli, S.; Allison, J.; Amako, K.A.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.J.N.I.; et al. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Raggi, M.; Kozhuharov, V.; Valente, P. The PADME experiment at LNF. EPJ Web Conf. 2015, 96, 01025. [Google Scholar] [CrossRef]
- Albicocco, P.; Assiro, R.; Bossi, F.; Branchini, P.; Buonomo, B.; Capirossi, V.; Capitolo, E.; Capoccia, C.; Caricato, A.P.; Ceravolo, S.; et al. Commissioning of the PADME experiment with a positron beam. arXiv 2022, arXiv:physics.ins-det/2205.03430. [Google Scholar] [CrossRef]
- Assiro, R.; Caricato, A.P.; Chiodini, G.; Corrado, M.; De Feudis, M.; Di Giulio, C.; Fiore, G.; Foggetta, L.; Leonardi, E.; Martino, M.; et al. Performance of the diamond active target prototype for the PADME experiment at the DAPHNE BTF. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, A898, 105–110. [Google Scholar] [CrossRef]
- Ferrarotto, F.; Foggetta, L.; Georgiev, G.; Gianotti, P.; Kozhuharov, V.; Leonardi, E.; Piperno, G.; Raggi, M.; Taruggi, C.; Tsankov, L.; et al. Performance of the Prototype of the Charged-Particle Veto System of the PADME Experiment. IEEE Trans. Nucl. Sci. 2018, 65, 2029–2035. [Google Scholar] [CrossRef]
- Albicocco, P.; Alexander, J.; Bossi, F.; Branchini, P.; Buonomo, B.; Capoccia, C.; Capitolo, E.; Chiodini, G.; Caricato, A.P.; de Sangro, R.; et al. Characterisation and performance of the PADME electromagnetic calorimeter. J. Instrum. 2020, 15, T10003. [Google Scholar] [CrossRef]
- Frankenthal, A.; Alexander, J.; Buonomo, B.; Capitolo, E.; Capoccia, C.; Cesarotti, C.; De Sangro, R.; Di Giulio, C.; Ferrarotto, F.; Foggetta, L.; et al. Characterization and performance of PADME’s Cherenkov-based small-angle calorimeter. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 919, 89–97. [Google Scholar] [CrossRef]
- Brun, R.; Rademakers, F. ROOT: An object oriented data analysis framework. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1997, 389, 81–86. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://tensorflow.org (accessed on 11 July 2022).
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 11 July 2022).
- O’Shea, K.; Nash, R. An Introduction to Convolutional Neural Networks. arXiv 2015, arXiv:cs.NE/1511.08458. [Google Scholar]
- Zhang, Y. A better autoencoder for image: Convolutional autoencoder. In Proceedings of the ICONIP17-DCEC, Guangzhou, China, 14–18 October 2017; Available online: http://users.cecs.anu.edu.au/~Tom.Gedeon/conf/ABCs2018/paper/ABCs2018_paper_58.pdf (accessed on 11 July 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrova, K.; on behalf of the PADME collaboration. Using Artificial Intelligence in the Reconstruction of Signals from the PADME Electromagnetic Calorimeter. Instruments 2022, 6, 46. https://doi.org/10.3390/instruments6040046
Dimitrova K, on behalf of the PADME collaboration. Using Artificial Intelligence in the Reconstruction of Signals from the PADME Electromagnetic Calorimeter. Instruments. 2022; 6(4):46. https://doi.org/10.3390/instruments6040046
Chicago/Turabian StyleDimitrova, Kalina, and on behalf of the PADME collaboration. 2022. "Using Artificial Intelligence in the Reconstruction of Signals from the PADME Electromagnetic Calorimeter" Instruments 6, no. 4: 46. https://doi.org/10.3390/instruments6040046
APA StyleDimitrova, K., & on behalf of the PADME collaboration. (2022). Using Artificial Intelligence in the Reconstruction of Signals from the PADME Electromagnetic Calorimeter. Instruments, 6(4), 46. https://doi.org/10.3390/instruments6040046