High-Beta Optics and Running Prospects
Abstract
:1. Introduction and Short History
- 2011
- developing the de-squeeze from the injection to 90 m using 17 intermediate steps. Measuring and correcting the major tune change (of nearly 0.5 per interaction region) by global compensation using the whole ring [7]—done at the 2011 physics energy of a 3.5 TeV/beam.
- 2012
- 2015
- run with 671 bunches and 100 ns bunch spacing, using a crossing angle, full machine protection verification, delivering per experiment, limiting pile-up to , with Roman Pots at .
- 2016
- measurement in the CI region at , with vertical Roman Pots at , a maximum of protons per beam, normalized emittances as low as , delivering per experiment.
- 2017
- production year concentrating mostly on low operation. First tests at to get to the CI region at injection energy get postponed towards the end of the year by vacuum issues in LHC (air trapped in LHC cell “16L2”).
- 2018
- run to collect significantly more luminosity than in 2015, carried out in summer 2018 using an optics with lower in IP5, and plans to measure the parameter at low energy () and intensity of per beam if sufficiently low background conditions can be obtained, later in the year.
2. High- Optics for Low Energy
- IBS/Touschek, proportional to brightness, scaling roughly as , in addition at top energy to some extent compensated by synchrotron radiation damping [17]
- beam–beam interaction, proportional to brightness, for constant normalized emittance to first order independent of energy, but possibly enhanced at low energy in combination with the other halo drivers
- vibration and noise, depending on the sources which may be constant with energy or scaling with
- the optimization of the collimation hierarchy for the specific needs of high- at low energy guided by simulations, to reduce backgrounds at Roman Pots [18]
- migitation of halo generation by an optimization of machine parameters (RF-voltage, bunch length, brightness versus luminosity, chromaticity, octupole settings)
3. at Top Energy
- allowing for a smaller in the horizontal plane, increasing the luminosity by 40% (), but also beam–beam effects by .
- increasing the brilliance (number of protons per bunch divided by the emittance) and beam–beam tune shifts which were not pushed to the limits in 2015 () to keep a low pile-up, and profiting from lower emittances available from the injectors in 2018
- doubling the number of bunches, by reducing the bunch spacing from 100 ns to 50 ns combined with an increased crossing angle compared to used in 2015 to limit parasitic beam–beam effects
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Battiston, R.; Bechini, A.; Bosi, F.; Bozzo, M.; Braccini, P.L.; Buskens, J.; Carbonara, F.; Carrara, R.; Castaldi, R.; Cazzola, U.; et al. The ’Roman Pot’ Spectrometer and the Vertex Detector of Experiment Ua4 at the CERN SPS Collider. Nucl. Instrum. Methods 1985, A238, 35. [Google Scholar] [CrossRef]
- Augier, C.; Bernard, D.; Bourotte, J.; Bozzo, M.; Bueno, A.; Cases, R.; Djama, F.; Faugeras, P.; Faugier, A.; González, F.; et al. The UA4/2 experiment at the CERN Sp(bar)pS Collider. Nucl. Instrum. Methods 1997, A389, 409–414. [Google Scholar] [CrossRef]
- Groom, D.E.; Garren, A.A.; Johnson, D.E. A Very Large Beta* Interaction Region for the SSC. Available online: http://accelconf.web.cern.ch/AccelConf/p87/PDF/PAC1987_0097.pdf (accessed on 18 March 2019).
- Verdier, A. TOTEM Optics for LHC V6.5. Available online: http://doc.cern.ch//archive/electronic/cern/others/LHC/Note/project-note-369.pdf (accessed on 13 May 2005).
- Pancheri, G.; Srivastava, Y.N. Introduction to the physics of the total cross-section at LHC. Eur. Phys. J. 2017, C77, 150. [Google Scholar] [CrossRef]
- Nicolescu, B.; Cudell, J.R.; Ezhela, V.V.; Gauron, P.; Kang, K.; Kuyanov, Y.V.; Lugovsky, S.B.; Tkachenko, N.P. Analytic parametrizations of the nonperturbative Pomeron and QCD inspired models. arXiv, 2001; arXiv:hep-ph/0110170.265–274. [Google Scholar]
- Cavalier, S.; Burkhardt, H.; Fitterer, M.; Müller, G.; Redaelli, S.; Tomas, R.; Vanbavinckhove, G.; Wenninger, J. 90 m Optics Commissioning. Available online: http://accelconf.web.cern.ch/AccelConf/IPAC2011/papers/tupz001.pdf (accessed on 18 March 2019).
- Burkhardt, H.; Persson, T.; Tomás, R.; Wenninge, J. Commissioning and Operation at beta* = 1000 m in the LHC. Available online: http://accelconf.web.cern.ch/AccelConf/IPAC2013/papers/tupwo050.pdf (accessed on 18 March 2019).
- Burkhardt, H.; Jakobsen, S.; Redaelli, S.; Salvachua, B.; Valentino, G. Collimation down to 2 Sigma in Special Physics Runs in the LHC. Available online: http://accelconf.web.cern.ch/AccelConf/IPAC2013/papers/tupfi037.pdf (accessed on 18 March 2019).
- Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; et al. Measurement of Elastic pp Scattering at = 8 TeV in the Coulomb-Nuclear Interference Region—Determination of the ρ-Parameter and the Total Cross-Section. Eur. Phys. J. 2016, C76, 661. [Google Scholar] [CrossRef]
- Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; et al. Measurement of the total cross section from elastic scattering in pp collisions at = 8 TeV with the ATLAS detector. Phys. Lett. 2016, B761, 158–178. [Google Scholar] [CrossRef]
- Montabonnet, V.; Burkhardt, H.; Guillaume, J.-C. Electrical Circuit Change for High Beta Optics in IR1 and IR5 of the LHC. Available online: https://edms.cern.ch/document/1377232/ (accessed on 18 March 2019).
- Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Baldenegro Barrera, C.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; et al. First Determination of the ρ Parameter at = 13 TeV—Probing the Existence of a Colourless Three-Gluon Bound State. Available online: https://cds.cern.ch/record/2298154 (accessed on 18 March 2019).
- Burkhardt, H. LHC Perspective, Review and Outlook. Available online: https://indico.cern.ch/event/575250/contributions/2327345/attachments/1363670/2064849/LPCc_Forward_2016_10_31.pdf (accessed on 18 March 2019).
- Tomas, R.; Aiba, M.; Franchi, A.; Iriso, U. Review of linear optics measurement and correction for charged particle accelerators. Phys. Rev. Accel. Beams 2017, 20, 054801. [Google Scholar] [CrossRef]
- Kaspar, J. Observations in Tests of High-Beta at Injection Energy. Available online: https://indico.cern.ch/event/705748/contributions/3014274/attachments/1656539/2651995/jan_kaspar_900GeV.pdf (accessed on 18 March 2019).
- Piwinski, A.; Bjorken, J.D.; Mtingwa, S.K. Wilson Prize article: Reflections on our experiences with developing the theory of intrabeam scattering. Phys. Rev. Accel. Beams 2018, 21, 114801. [Google Scholar] [CrossRef]
- Garcia Morales, H.; Bruce, R.; Burkhardt, H.; Deile, M.; Jakobsen, S.; Mereghetti, A.; Redaell, S. Special Collimation System Configuration for the LHC High-Beta Runs. Available online: http://accelconf.web.cern.ch/AccelConf/ipac2018/papers/mopml012.pdf (accessed on 18 March 2019).
- Wegscheider, A.; Maclean, E.H.; Pellegrini, D.; Tomas Garcia, R.; Fol, E.; Garcia-Tabares Valdivieso, A.; Coello De Portugal-Martinez Vazquez, J.M.; Fartoukh, S.; Persson, T.H.B.; Dilly, J.W.; et al. Optics Measurement and Corrections with Half Integer Tune. Available online: https://cds.cern.ch/record/2632258 (accessed on 18 March 2019).
- Pieloni, T.; Tambasco, C.; Barranco, J.; Rivkin, L.; Amorim, D.; Antipov, S.A.; Buffat, X.; Salvant, B.; Zimmerman, F. The High Energy LHC Beam-Beam Effects Studies. Available online: http://accelconf.web.cern.ch/AccelConf/ipac2018/papers/mopmf069.pdf (accessed on 18 March 2019).
p | |||
---|---|---|---|
TeV | TeV | μrad | m |
0.45 | 0.9 | 70 | 170 |
1 | 2 | 32 | 380 |
2 | 4 | 16 | 770 |
4 | 8 | 7.9 | 1540 |
6.5 | 13 | 4.9 | 2500 |
7 | 14 | 4.5 | 2690 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burkhardt, H. High-Beta Optics and Running Prospects. Instruments 2019, 3, 22. https://doi.org/10.3390/instruments3010022
Burkhardt H. High-Beta Optics and Running Prospects. Instruments. 2019; 3(1):22. https://doi.org/10.3390/instruments3010022
Chicago/Turabian StyleBurkhardt, Helmut. 2019. "High-Beta Optics and Running Prospects" Instruments 3, no. 1: 22. https://doi.org/10.3390/instruments3010022
APA StyleBurkhardt, H. (2019). High-Beta Optics and Running Prospects. Instruments, 3(1), 22. https://doi.org/10.3390/instruments3010022