Simultaneous Ultra-Fast Imaging and Neutron Emission from a Compact Dense Plasma Focus Fusion Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diagnostics
2.1.1. Electrical Diagnostics
2.1.2. Radiation Diagnostics
2.1.3. Imaging Diagnostics
3. Results
3.1. Example Shot
3.2. Snowplow Model Validation
3.3. Shadowgraph Imaging
3.4. Neutron Yield
3.4.1. Double Strike
3.4.2. Noble Gas Doping
4. Discussion
5. Patents
Acknowledgments
Conflicts of Interest
References
- Moreno, C.; Bruzzone, H.; Martínez, J.; Clausse, A. Conceptual Engineering of Plasma-Focus Thermonuclear Pulsors. IEEE Trans. Plasma Sci. 2000, 28, 1735–1741. [Google Scholar] [CrossRef]
- Lee, S.; Kudryashov, V.; Lee, P.; Zhang, G.; Serban, A.; Liu, M.; Feng, X.; Springham, S.; Wong, T.; Selvam, C. Sxr Lithography Using a High Performance Plasma Focus Source. In Proceedings of the ICPP & 25th EPS Conference on Controlled Fusion and Plasma Physics, Praha, Czech Republic, 29 June–3 July 1998; Volume 22, pp. 2591–2594. [Google Scholar]
- Hussein, E.M.A.; Waller, E.J. Review of one-side approaches to radiographic imaging for detection of explosives and narcotics. Radiat. Meas. 1998, 29, 581–591. [Google Scholar] [CrossRef]
- Gibbons, M.R.; Richards, W.J.; Shields, K. Optimization of neutron tomography for rapid hydrogen concentration inspection of metal castings. Nucl. Instrum. Methods Phys. Res. A 1999, 424, 53–57. [Google Scholar] [CrossRef]
- PhoenixLLC. Phoenix Neutron Generators. Available online: https://www.phoenixwi.com/product/high-yield-neutron-generator/ (accessed on 18 October 2017).
- Mather, J.W. Formation of a High-Density Deuterium Plasma Focus. Phys. Fluids 1965, 8, 366–377. [Google Scholar] [CrossRef]
- Soto, L.; Pavez, C.; Moreno, J.; Barbaglia, M.; Clausse, A. Nanofocus: An ultra-miniature dense pinch plasma focus device with submillimetric anode operating at 0.1 J. Plasma Sources Sci. Technol. 2008, 18, 15007. [Google Scholar] [CrossRef]
- Gribkov, V.; Banaszak, A.; Bienkowska, B.; Dubrowsky, A.; Ivona-Stanik, I.; Jakubowski, L.; Karpinski, L.; Miklanzewski, R.; Paduch, M.; Sadowski, M.; et al. Plasma dynamics in the PF-1000 device under full-scale energy storage: II. Fast electron and ion characteristics versus neutron emission parameters and gun optimization perspectives. J. Phys. D 2007, 40, 3592. [Google Scholar] [CrossRef]
- Lee, S.; Saw, S.H. Neutron Scaling Laws from Numerical Experiments. J. Fusion Energy 2008, 27, 292–295. [Google Scholar] [CrossRef]
- Herold, H.; Kaeppeler, H.J.; Schmidt, H.; Shakhatre, M.; Wong, C.S. Progress in Plasma Focus Operation up to 500 Kj Bank Energy. In Proceedings of the 12th Conference on Plasma Physics and Controlled Nuclear Fusion Research, Nice, France, 12–19 October 1988; Volume 2, p. 587. [Google Scholar]
- Herold, H.; Jerzykiewicz, A.; Sadowski, M.; Schmidt, H. Comparative Analysis of Large Plasma Focus Experiments Performed at Ipf, Stuttgart, and at Ipj, Swierk. Nucl. Fusion 1989, 29, 1255. [Google Scholar] [CrossRef]
- Moreno, J.; Silva, P.; Soto, L. Optical observations of the plasma motion in a fast plasma focus operating at 50 J. Plasma Sources Sci. Technol. 2002, 12, 39–45. [Google Scholar] [CrossRef]
- Silva, P.; Soto, L.; Kies, W.; Moreno, J. Pinch evidence in a fast and small plasma focus of only tens of joules. Plasma Sources Sci. Technol. 2004, 13, 329. [Google Scholar] [CrossRef]
- Soto, L.; Esaulov, A.; Moreno, J.; Silva, P.; Sylvester, G.; Zambra, M.; Nazarenko, A.; Clausse, A. Transient electrical discharges in small devices. Phys. Plasmas 2001, 8, 2572–2578. [Google Scholar] [CrossRef]
- Milanese, M.; Moroso, R.; Pouzo, J. D-D neutron yield in the 125 J dense plasma focus Nanofocus. Eur. Phys. J. D 2003, 27, 77–81. [Google Scholar] [CrossRef]
- Silva, P.; Soto, L.; Moreno, J.; Sylvester, G.; Zambra, M.; Altamirano, L.; Clausse, A.; Moreno, C.; Sylvester, G.; Zambra, M.; et al. A plasma focus driven by a capacitor bank of tens of joules. Rev. Sci. Instrum. 2002, 73, 2583–2587. [Google Scholar] [CrossRef]
- Rout, R.K.; Mishra, P.; Rawool, A.M.; Kulkarni, L.V.; Gupta, S.C. Battery powered tabletop pulsed neutron source based on a sealed miniature plasma focus device. J. Phys. D 2008, 41, 205211. [Google Scholar] [CrossRef]
- Verma, R.; Roshan, M.V.; Malik, F.; Lee, P.; Lee, S.; Springham, S.V.; Tan, T.L.; Krishnan, M.; Rawat, R.S. Compact sub-kilojoule range fast miniature plasma focus as portable neutron source. Plasma Sources Sci. Technol. 2008, 17, 45020. [Google Scholar] [CrossRef]
- Soto, L.; Silva, P.; Moreno, J.; Zambra, M.; Kies, W.; Mayer, R.E.; Clausse, A.; Altamirano, L.; Pavez, C.; Huerta, L. Demonstration of neutron production in a table-top pinch plasma focus device operating at only tens of joules. J. Phys. D 2008, 41, 205215. [Google Scholar] [CrossRef]
- Bures, B.L.; Krishnan, M.; James, C. A Plasma Focus Electronic Neutron Generator. IEEE Trans. Plasma Sci. 2012, 40, 1082–1088. [Google Scholar] [CrossRef]
- Shukla, R.; Sharma, S.K.; Banerjee, P.; Das, R.; Deb, P.; Prabahar, T.; Das, B.K.; Adhikary, B.; Shyam, A. Low voltage operation of plasma focus. Rev. Sci. Instrum. 2010, 81, 83501. [Google Scholar] [CrossRef] [PubMed]
- Bures, B.L.; James, C.; Krishnan, M.; Adler, R. Application of an impedance matching transformer to a plasma focus. Rev. Sci. Instrum. 2011, 82, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Yap, S.L.; Wong, C.S.; Choi, P.; Dumitrescu, C.; Moo, S.P. Observation of two phases of neutron emission in a low energy plasma focus. Jpn. J. Appl. Phys. 2005, 44, 8125–8132. [Google Scholar] [CrossRef]
- Verma, R.; Lee, P.; Springham, S.V.; Tan, T.L.; Rawat, R.S.; Krishnan, M. Order of magnitude enhancement in X-ray yield at low pressure deuterium-krypton admixture operation in miniature plasma focus device. Appl. Phys. Lett. 2008, 92, 11506. [Google Scholar] [CrossRef]
- Mohammadi, M.A.; Sobhanian, S.; Rawat, R.S. Neutron production with mixture of deuterium and krypton in Sahand Filippov type plasma focus facility. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2011, 375, 3002–3006. [Google Scholar] [CrossRef]
- Talebitaher, A.; Lee, S.; Kalaiselvi, S.M.P.; Verma, R.; Lee, P.; Springham, S.V.; Tan, T.L.; Rawat, R.S. Influence of Krypton Doping on DD Fusion Neutron Production: An Evaluation Methodology for Optimization Level of Plasma Focus Device. J. Fusion Energy 2016, 35, 370–377. [Google Scholar] [CrossRef]
- Aliaga-Rossel, R.; Choi, P. Experimental observations of the spatial anisotropy of the neutron emission in a medium energy plasma focus. IEEE Trans. Plasma Sci. 1998, 26, 1138–1145. [Google Scholar] [CrossRef]
- Bures, B.L.; Krishnan, M.; Eshaq, Y. Controlling the neutron yield from a small dense plasma focus using deuterium-inert gas mixtures. AIP Conf. Proc. 2009, 1088, 195–198. [Google Scholar]
- Clausse, A.; Soto, L.; Tarifeno-Saldivia, A. Influence of the anode length on the neutron emission of a 50 J plasma focus: Modeling and experiment. IEEE Trans. Plasma Sci. 2015, 43, 629–636. [Google Scholar] [CrossRef]
- Naranjo, B.; Gimzewski, J.K.; Putterman, S. Observation of nuclear fusion driven by a pyroelectric crystal. Nature 2005, 434, 1115–1117. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, P.K.; Muralidhar, K. Schlieren and Shadowgraph Methods in Heat and Mass Transfer; Springer: New York, NY, USA, 2012; Volume 2, p. 139. [Google Scholar]
- Haas, C.R.; Noll, R.; Ruhl, F.; Herziger, G. Schlieren Diagnostics of the Plasma Focus. Nucl. Fusion 1984, 24, 1216. [Google Scholar] [CrossRef]
- Decker, G.; Deutsch, R.; Kies, W.; Rybach, J. Plasma Layers of Fast Focus Discharges-Schlierenpictures Experimentally Taken. Plasma Phys. Control Fusion 1985, 27, 609. [Google Scholar] [CrossRef]
- Lee, S.; Serban, A. Dimensions and lifetime of the plasma focus pinch. IEEE Trans. Plasma Sci. 1996, 24, 1101–1105. [Google Scholar]
- Tarifeno-Saldivia, A.; Mayer, R.; Pavez, C.; Soto, L. Methodology for the use of proportional counters in pulsed fast neutron yield measurements. ArXiv 2011, arXiv:1110.2500. [Google Scholar]
- Soto, L.; Pavéz, C.; Moreno, J.; Altamirano, L.; Huerta, L.; Barbaglia, M.; Clausse, A.; Mayer, R.E. Evidence of nuclear fusion neutrons in an extremely small plasma focus device operating at 0.1 Joules. Phys. Plasmas 2017, 24, 82703. [Google Scholar] [CrossRef]
- Agostinelli, S. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Soto, L. New trends and future perspectives on plasma focus research. Plasma Phys. Control. Nucl. Fusion 2005, 47, A361–A381. [Google Scholar] [CrossRef]
- Tarifeno-Saldivia, A. Estudio Experimental de una Descarga Plasma Focus Rapida Operada en el Rango de Decenas de Joules Emitiendo Neutrones; Universidad de Concepción: Concepción, Chile, 2011. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majernik, N.; Pree, S.; Sakai, Y.; Naranjo, B.; Putterman, S.; Rosenzweig, J. Simultaneous Ultra-Fast Imaging and Neutron Emission from a Compact Dense Plasma Focus Fusion Device. Instruments 2018, 2, 6. https://doi.org/10.3390/instruments2020006
Majernik N, Pree S, Sakai Y, Naranjo B, Putterman S, Rosenzweig J. Simultaneous Ultra-Fast Imaging and Neutron Emission from a Compact Dense Plasma Focus Fusion Device. Instruments. 2018; 2(2):6. https://doi.org/10.3390/instruments2020006
Chicago/Turabian StyleMajernik, Nathan, Seth Pree, Yusuke Sakai, Brian Naranjo, Seth Putterman, and James Rosenzweig. 2018. "Simultaneous Ultra-Fast Imaging and Neutron Emission from a Compact Dense Plasma Focus Fusion Device" Instruments 2, no. 2: 6. https://doi.org/10.3390/instruments2020006
APA StyleMajernik, N., Pree, S., Sakai, Y., Naranjo, B., Putterman, S., & Rosenzweig, J. (2018). Simultaneous Ultra-Fast Imaging and Neutron Emission from a Compact Dense Plasma Focus Fusion Device. Instruments, 2(2), 6. https://doi.org/10.3390/instruments2020006