Remarks on the Quantum Effects of Screw Dislocation Topology and Missing Magnetic Flux
Abstract
:1. Introduction
2. Topological Effects in an Inhomogeneous Magnetic Field
3. Topological Effects in a Cylindrical Wire
4. Magnetization at Zero Temperature
4.1. Landau Levels
4.2. Cylindrical Wire
5. Persistent Currents
5.1. Landau Levels
5.2. Cylindrical Wire
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solimany, L.; Kramer, B. Electron in a magnetic quantum dot. Solid State Commun. 1995, 96, 471. [Google Scholar] [CrossRef]
- Lee, S.J.; Souma, S.; Ihm, G.; Chang, K.J. Magnetic quantum dots and magnetic edge states. Phys. Rep. 2004, 394, 1. [Google Scholar] [CrossRef]
- Sim, H.S.; Ahn, K.H.; Chang, K.J.; Ihm, G.; Kim, N.; Lee, S.J. Magnetic edge states in a magnetic quantum dot. Phys. Rev. Lett. 1998, 80, 1501. [Google Scholar] [CrossRef]
- Aharonov, Y.; Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 1959, 115, 485. [Google Scholar] [CrossRef]
- Peshkin, M.; Tonomura, A. The Aharonov-Bohm Effect. In Lecture Notes in Physics; Springer: Berlin, Germany, 1989; Volume 340. [Google Scholar]
- Loss, D.; Goldbart, P.; Balatsky, A.V. Berry’s phase and persistent charge and spin currents in textured mesoscopic rings. Phys. Rev. Lett. 1990, 65, 1655. [Google Scholar] [CrossRef]
- Bogachek, E.N.; Krive, I.V.; Kulik, I.O.; Rozhavsky, A.S. The Aharonov-Casher and BERRY’S Phase Effects in Solids. Mod. Phys. Lett. B 1991, 5, 1607. [Google Scholar] [CrossRef]
- Yacoby, A.; Heiblum, M.; Mahalu, D.; Shtrikman, H. Coherence and phase sensitive measurements in a quantum dot. Phys. Rev. Lett. 1995, 74, 4047. [Google Scholar] [CrossRef]
- Schuster, R.; Buks, E.; Heiblum, M.; Mahalu, D.; Umansky, V.; Shtrikman, H. Phase measurement in a quantum dot via a double-slit interference experiment. Nature 1997, 385, 417–420. [Google Scholar] [CrossRef]
- Ji, Y.; Heiblum, M.; Sprinzak, D.; Mahalu, D.; Shtrikman, H. Phase evolution in a Kondo-correlated system. Science 2000, 290, 779–783. [Google Scholar] [CrossRef]
- Ji, Y.; Heiblum, M.; Shtrikman, H. Transmission phase of a quantum dot with Kondo correlation near the unitary limit. Phys. Rev. Lett. 2002, 88, 076601. [Google Scholar] [CrossRef]
- van der Wiel, W.G.; Franceschi, S.D.; Fujisawa, T.; Elzerman, J.M.; Tarucha, S.; Kouwenhoven, L.P. The Kondo effect in the unitary limit. Science 2000, 289, 2105–2108. [Google Scholar] [CrossRef] [PubMed]
- Katanaev, M.O.; Volovich, I.V. Theory of defects in solids and three-dimensional gravity. Ann. Phys. 1992, 216, 1. [Google Scholar] [CrossRef]
- Furtado, C.; Moraes, F. On the binding of electrons and holes to disclinations. Phys. Lett. A 1994, 188, 394–396. [Google Scholar] [CrossRef]
- Furtado, C.; da Cunha, B.G.; Moraes, F.; de Mello, E.B.; Bezzerra, V.B. Landau levels in the presence of disclinations. Phys. Lett. A 1994, 195, 90–94. [Google Scholar] [CrossRef]
- Valanis, K.; Panoskaltsis, V. Material metric, connectivity and dislocations in continua. Acta Mech. 2005, 175, 77–103. [Google Scholar] [CrossRef]
- Puntigam, R.A.; Soleng, H.H. Volterra distortions, spinning strings, and cosmic defects. Class. Quantum Grav. 1997, 14, 1129. [Google Scholar] [CrossRef]
- Marques, G.A.; Bezerra, V.B.; Furtado, C.; Moraes, F. Quantum effects due to a magnetic flux associated to a topological defect. Int. J. Mod. Phys. A 2005, 20, 6051–6064. [Google Scholar] [CrossRef]
- Furtado, C.; Bezerra, V.B.; Moraes, F. Berry’s quantum phase in media with dislocations. Europhys. Lett. 2000, 52, 1. [Google Scholar] [CrossRef]
- de Lima Ribeiro, C.A.; Furtado, C.; Moraes, F. Solid-state analog for the He-McKellar-Wilkens quantum phase. Europhys. Lett. 2003, 62, 306. [Google Scholar] [CrossRef]
- Furtado, C.; de Lima Ribeiro, C.A.; Azevedo, S. Aharonov-Bohm effect in the presence of a density of defects. Phys. Lett. A 2002, 296, 171–175. [Google Scholar] [CrossRef]
- Furtado, C.; Bezerra, V.B.; Moraes, F. Quantum scattering by a magnetic flux screw dislocation. Phys. Lett. A 2001, 289, 160–166. [Google Scholar] [CrossRef]
- Bezerra, V.B.; dos Santos, I.B. Topological effects due to a cosmic string. Eur. J. Phys. 1992, 13, 122. [Google Scholar] [CrossRef]
- Furtado, C.; De M. Carvalho, A.M.; de Lima Ribeiro, C.A. Aharonov-bohm effect and disclinations in an elastic medium. Mod. Phys. Lett. A 2006, 21, 1393–1403. [Google Scholar] [CrossRef]
- da Silva, W.C.F.; Bakke, K. Quantum aspects of a quantum particle in a cylindrical wire in the presence of a screw dislocation. Eur. Phys. J. Plus 2019, 134, 131. [Google Scholar] [CrossRef]
- Bakke, K.; Furtado, C.; Sergeenkov, S. Holonomic quantum computation associated with a defect structure of conical graphene. Europhys. Lett. 2009, 87, 30002. [Google Scholar] [CrossRef]
- Bakke, K.; Furtado, C. One-qubit quantum gates associated with topological defects in solids. Quantum Inf. Process 2013, 12, 119–128. [Google Scholar] [CrossRef]
- Bakke, K.; Furtado, C. Quantum holonomies for an electric dipole moment. Phys. Lett. A 2011, 375, 3956–3959. [Google Scholar] [CrossRef]
- Bakke, K.; Furtado, C. On the missing magnetic flux and topological effects of a screw dislocation on a charged particle in an inhomogeneous magnetic field. Ann. Phys. 2021, 433, 168598. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics, the Nonrelativistic Theory, 3rd ed.; Pergamon: Kidlington, UK, 1977. [Google Scholar]
- Tan, W.-C.; Inkson, J.C. Magnetization, persistent currents, and their relation in quantum rings and dots. Phys. Rev. B 1999, 60, 5626. [Google Scholar] [CrossRef]
- Ikot, A.N.; Edet, C.O.; Amadi, P.O.; Okorie, U.S.; Rampho, G.J.; Abdullah, H.Y. Thermodynamic properties of Aharanov-Bohm (AB) and magnetic fields with screened Kratzer potential. Eur. Phys. J. D 2020, 74, 159. [Google Scholar] [CrossRef]
- Dantas, L.; Furtado, C.; Netto, A.S. Quantum ring in a rotating frame in the presence of a topological defect. Phys. Lett. A 2015, 379, 11–15. [Google Scholar] [CrossRef]
- Byers, N.; Yang, C.N. Theoretical considerations concerning quantized magnetic flux in superconducting cylinders. Phys. Rev. Lett. 1961, 7, 46. [Google Scholar] [CrossRef]
- Furtado, C.; Rosas, A.; Azevedo, S. Landau quantization and curvature effects in a two-dimensional quantum dot. Europhys. Lett. 2007, 79, 57001. [Google Scholar] [CrossRef]
- Netto, A.L.S.; Chesman, C.; Furtado, C. Influence of topology in a quantum ring. Phys. Lett. A 2008, 372, 3894–3897. [Google Scholar] [CrossRef]
- Muniz, C.R.; Bezerra, V.B.; Cunha, M.S. Landau quantization in the spinning cosmic string spacetime. Ann. Phys. 2014, 350, 105–111. [Google Scholar] [CrossRef]
- de A Marques, G.; Furtado, C.; Bezerra, V.B.; Moraes, F. Landau levels in the presence of topological defects. J. Phys. A Math. Gen. 2001, 34, 5945. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegum, I.A. Handbook of Mathematical Functions; Dover Publications Inc.: New York, NY, USA, 1965. [Google Scholar]
- Ridley, B.K. Hybrid Phonons in Nanostructures; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Razeghi, M. Fundamentals of Solid State Engineering; Kluwer Academic Publishers: New York, NY, USA, 2002. [Google Scholar]
- Tan, W.; Inkson, J.C.; Srivastava, G.P. A microscopic study of Landau level states in quantum wires. Semicond. Sci. Technol. 1994, 9, 1305. [Google Scholar] [CrossRef]
- Griffiths, D.J. Introduction to Quantum Mechanics, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2004. [Google Scholar]
- Ding, G.-H.; Dong, B. Persistent current in a mesoscopic ring coupled with a quantum dot. Phys. Rev. B 2003, 67, 195327. [Google Scholar] [CrossRef]
- Büttiker, M.; Imry, Y.; Landauer, R. Josephson behavior in small normal one-dimensional rings. Phys. Lett. A 1983, 96, 365–367. [Google Scholar] [CrossRef]
- Avishai, Y.; Hatsugai, Y.; Kohmoto, M. Persistent currents and edge states in a magnetic field. Phys. Rev. B 1993, 47, 9501. [Google Scholar] [CrossRef]
- Cheung, H.F.; Gefen, Y.; Riedel, E.K.; Shih, W.H. Persistent currents in small one-dimensional metal rings. Phys. Rev. B 1988, 37, 6050. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, V.; Webb, R.A.; Brady, M.J.; Ketchen, M.B.; Galager, W.J.; Kleinsasser, A. Magnetic response of a single, isolated gold loop. Phys. Rev. Lett. 1991, 67, 3578. [Google Scholar] [CrossRef] [PubMed]
- Mailly, D.; Chapelier, C.; Benoit, A. Experimental observation of persistent currents in GaAs-AlGaAs single loop. Phys. Rev. Lett. 1993, 70, 2020. [Google Scholar] [CrossRef] [PubMed]
- Bluhm, H.; Koshnick, N.C.; Bert, J.A.; Huber, M.E.; Moler, K.A. Persistent currents in normal metal rings. Phys. Rev. Lett. 2009, 102, 136802. [Google Scholar] [CrossRef] [PubMed]
- Bleszynski-Jayich, A.C.; Shanks, W.E.; Peaudecerf, B.; Ginossar, E.; Von Oppen, F.; Glazman, L.; Harris, J.G.E. Persistent currents in normal metal rings. Science 2009, 326, 272. [Google Scholar] [CrossRef] [PubMed]
- Kulik, I.O. Flux quantization in a normal metal. JETP Lett. 1970, 11, 407. [Google Scholar]
- Cheung, H.F.; Riedel, E.K.; Gefen, Y. Persistent currents in mesoscopic rings and cylinders. Phys. Rev. Lett. 1989, 62, 587. [Google Scholar] [CrossRef]
- Avishai, Y.; Kohmoto, M. Quantization of persistent currents in quantum dot at strong magnetic fields. Phys. A 1993, 200, 504–511. [Google Scholar] [CrossRef]
- Yerin, Y.; Gusynin, V.P.; Sharapov, S.G.; Varlamov, A.A. Genesis and fading away of persistent currents in a Corbino disk geometry. Phys. Rev. B 2021, 104, 075415. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakke, K. Remarks on the Quantum Effects of Screw Dislocation Topology and Missing Magnetic Flux. Condens. Matter 2024, 9, 33. https://doi.org/10.3390/condmat9030033
Bakke K. Remarks on the Quantum Effects of Screw Dislocation Topology and Missing Magnetic Flux. Condensed Matter. 2024; 9(3):33. https://doi.org/10.3390/condmat9030033
Chicago/Turabian StyleBakke, Knut. 2024. "Remarks on the Quantum Effects of Screw Dislocation Topology and Missing Magnetic Flux" Condensed Matter 9, no. 3: 33. https://doi.org/10.3390/condmat9030033
APA StyleBakke, K. (2024). Remarks on the Quantum Effects of Screw Dislocation Topology and Missing Magnetic Flux. Condensed Matter, 9(3), 33. https://doi.org/10.3390/condmat9030033