The Implementation of MuDirac in Geant4: A Preliminary Approach to the Improvement of the Simulation of the Muonic Atom Cascade Process
Abstract
:1. Introduction
2. Methods
2.1. GEANT4/Arby Characterization
2.2. Modification of the GEANT4 Class (Arby_Mux)
2.3. The MuDirac Database (Arby_MuDirac)
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Ferrari, A.; Sala, P.R.; Fasso, A.; Ranft, J. FLUKA: A Multi-Particle Transport Code; Program Version 2005; CERN: Geneva, Switzerland, 2005. [Google Scholar]
- Werner, C.J. MCNP User Manual; Code Versione 6.2; Los Alamos National Laboratory: Los Alamos, NM, USA, 2017. [Google Scholar]
- Pavan, M.; Callegaro, C.; Capelli, S.; Carrettoni, M.; Clemenza, M.; Gironi, L.; Gorla, P.; Maiano, C.; Nones, C.; Pedretti, M. Control of bulk and surface radioactivity in bolometric searches for double-beta decay. Eur. Phys. J. A 2008, 36, 159–166. [Google Scholar] [CrossRef]
- Alduino, C.; Alfonso, K.; Artusa, D.R.; Avignone, F.T.; Azzolini, O.; Banks, T.I.; Bari, G.; Beeman, J.W.; Bellini, F.; Benato, G.; et al. The projected background for the CUORE experiment. Eur. Phys. J. C 2017, 77, 543. [Google Scholar] [CrossRef]
- Abusleme, A.; Adam, T.; Ahmad, S.; Ahmed, R.; Aiello, S.; Akram, M.; An, F.; An, Q.; Andronico, G.; Anfimov, N.; et al. Radioactivity control strategy for the JUNO detector. J. High Energy Phys. 2021, 2021, 102. [Google Scholar] [CrossRef]
- The CUORE Collaboration. Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE. Nature 2022, 604, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Alduino, C.; Alfonso, K.; Artusa, D.R.; Avignone, F.T.; Azzolini, O.; Banks, T.I.; Bari, G.; Beeman, J.W.; Bellini, F.; Bersani, A.; et al. Measurement of the two-neutrino double-beta decay half-life of 130 Te with the CUORE-0 experiment. Eur. Phys. J. C 2017, 77, 13. [Google Scholar] [CrossRef]
- Giuntini, L.; Castelli, L.; Massi, M.; Fedi, M.; Czelusniak, C.; Gelli, N.; Liccioli, L.; Giambi, F.; Ruberto, C.; Mazzinghi, A.; et al. Detectors and Cultural Heritage: The INFN-CHNet Experience. Appl. Sci. 2021, 11, 3462. [Google Scholar] [CrossRef]
- Hillier, A.D.; Lord, J.S.; Ishida, K.; Rogers, C. Muons at ISIS. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20180064. [Google Scholar] [CrossRef]
- Biswas, S.; Gerchow, L.; Luetkens, H.; Prokscha, T.; Antognini, A.; Berger, N.; Cocolios, T.E.; Dressler, R.; Indelicato, P.; Jungmann, K.; et al. Characterization of a Continuous Muon Source for the Non-Destructive and Depth-Selective Elemental Composition Analysis by Muon Induced X- and Gamma-rays. Appl. Sci. 2022, 12, 2541. [Google Scholar] [CrossRef]
- Miyake, Y.; Shimomura, K.; Kawamura, N.; Strasser, P.; Makimura, S.; Koda, A.; Fujimori, H.; Nakahara, K.; Takeshita, S.; Kobayashi, Y.; et al. J-PARC muon facility, MUSE. J. Phys. Conf. Ser. 2010, 225, 012036. [Google Scholar] [CrossRef]
- Measday, D. The nuclear physics of muon capture. Phys. Rep. 2001, 354, 243–409. [Google Scholar] [CrossRef]
- Cataldo, M.; Clemenza, M.; Ishida, K.; Hillier, A.D. A Novel Non-Destructive Technique for Cultural Heritage: Depth Profiling and Elemental Analysis Underneath the Surface with Negative Muons. Appl. Sci. 2022, 12, 4237. [Google Scholar] [CrossRef]
- Clemenza, M.; Bonesini, M.; Carpinelli, M.; Cremonesi, O.; Fiorini, E.; Gorini, G.; Hillier, A.; Ishida, K.; Menegolli, A.; Mocchiutti, E.; et al. Muonic atom X-ray spectroscopy for non-destructive analysis of archeological samples. J. Radioanal. Nucl. Chem. 2019, 322, 1357–1363. [Google Scholar] [CrossRef]
- Hillier, A.D.; Hampshire, B.; Ishida, K. Depth-Dependent Bulk Elemental Analysis Using Negative Muons. In Handbook of Cultural Heritage Analysis; D’Amico, S., Venuti, V., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 23–43. [Google Scholar] [CrossRef]
- Kubo, M.K.; Moriyama, H.; Tsuruoka, Y.; Sakamoto, S.; Koseto, E.; Saito, T.; Nishiyama, K. Non-destructive elemental depth-profiling with muonic X-rays. J. Radioanal. Nucl. Chem. 2008, 278, 777–781. [Google Scholar] [CrossRef]
- Umegaki, I.; Kondo, Y.; Tampo, M.; Nishimura, S.; Takeshita, S.; Higuchi, Y.; Kondo, H.; Sasaki, T.; Shimomura, K.; Miyake, Y. Non-destructive operando measurements of muonic X-rays on Li-ion battery. J. Phys. Conf. Ser. 2023, 2462, 012018. [Google Scholar] [CrossRef]
- Terada, K.; Ninomiya, K.; Osawa, T.; Tachibana, S.; Miyake, Y.; Kubo, M.K.; Kawamura, N.; Higemoto, W.; Tsuchiyama, A.; Ebihara, M.; et al. A new X-ray fluorescence spectroscopy for extraterrestrial materials using a muon beam. Sci. Rep. 2014, 4, 5072. [Google Scholar] [CrossRef]
- Biswas, S.; Megatli-Niebel, I.; Raselli, L.; Simke, R.; Cocolios, T.E.; Deokar, N.; Elender, M.; Gerchow, L.; Hess, H.; Khasanov, R.; et al. The non-destructive investigation of a late antique knob bow fibula (Bügelknopffibel) from Kaiseraugst/CH using Muon Induced X-ray Emission (MIXE). Heritage Sci. 2023, 11, 43. [Google Scholar] [CrossRef]
- Shimada-Takaura, K.; Ninomiya, K.; Sato, A.; Ueda, N.; Tampo, M.; Takeshita, S.; Umegaki, I.; Miyake, Y.; Takahashi, K. A novel challenge of nondestructive analysis on OGATA Koan’s sealed medicine by muonic X-ray analysis. J. Nat. Med. 2021, 75, 532–539. [Google Scholar] [CrossRef]
- Ninomiya, K. Non-destructive, position-selective, and multi-elemental analysis method involving negative muons. J. Nucl. Radiochem. Sci. 2019, 19, 8–13. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods B 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Cataldo, M.; Hillier, A.D.; Porcinai, S.; Ishida, K.; Grazzi, F.; Clemenza, M. Negative muons for the characterization of thin layers in Cultural Heritage artefacts. J. Phys. Conf. Ser. 2023, 2462, 012003. [Google Scholar] [CrossRef]
- Helsen, J.; Vrebos, B. Monte Carlo simulations of XRF intensities in non-homogeneous matrices. Spectrochim. Acta Part B At. Spectrosc. 1984, 39, 751–759. [Google Scholar] [CrossRef]
- Giurlani, W.; Berretti, E.; Lavacchi, A.; Innocenti, M. Thickness determination of metal multilayers by ED-XRF multivariate analysis using Monte Carlo simulated standards. Anal. Chim. Acta 2020, 1130, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Sturniolo, S.; Hillier, A. Mudirac: A Dirac equation solver for elemental analysis with muonic X-rays. X-Ray Spectrom. 2020, 50, 180–196. [Google Scholar] [CrossRef]
- Ivanchenko, V. Geant4. Available online: https://geant4.kek.jp/lxr/source/processes/hadronic/stopping/src/G4EmCaptureCascade.cc (accessed on 18 July 2023).
- Engfer, R.; Schneuwly, H.; Vuilleumer, J.L.; Walter, H.K.; Zehnder, A. Charge-distribution parameters, isotope shifts, isomer shifts and magnetic hyperfine constants from muonic atoms. Data Nucl. Data Tables 1974, 14, 509–597. [Google Scholar] [CrossRef]
- Zinatulina, D.; Briançon, C.; Brudanin, V.; Egorov, V.; Perevoshchikov, L.; Shirchenko, M.; Yutlandov, I.; Petitjean, C. Electronic catalogue of muonic X-rays. EPJ Web Conf. 2018, 177, 03006. [Google Scholar] [CrossRef]
- Pizzolotto, C.; Adamczak, A.; Bakalov, D.; Baldazzi, G.; Baruzzo, M.; Benocci, R.; Bertoni, R.; Bonesini, M.; Bonvicini, V.; Cabrera, H.; et al. The FAMU experiment: Muonic hydrogen high precision spectroscopy studies. Eur. Phys. J. A 2020, 56, 185. [Google Scholar] [CrossRef]
- Guatelli, S.; Mantero, A.; Mascialino, B.; Nieminen, P.; Pia, M.G. Geant4 Atomic Relaxation. IEEE Trans. Nucl. Sci. 2007, 54, 585–593. [Google Scholar] [CrossRef]
- Bakr, S.; Cohen, D.D.; Siegele, R.; Archer, J.W.; Incerti, S.; Ivanchenko, V.; Mantero, A.; Rosenfeld, A.; Guatelli, S. Geant4 X-ray fluorescence with updated libraries. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2021, 507, 11–19. [Google Scholar] [CrossRef]
- Mudirac. Available online: https://github.com/muon-spectroscopy-computational-project/mudirac (accessed on 25 July 2023).
- Okumura, T.; Azuma, T.; Bennett, D.A.; Caradonna, P.; Chiu, I.; Doriese, W.B.; Durkin, M.S.; Fowler, J.W.; Gard, J.D.; Hashimoto, T.; et al. Deexcitation Dynamics of Muonic Atoms Revealed by High-Precision Spectroscopy of Electronic X-rays. Phys. Rev. Lett. 2021, 127, 053001. [Google Scholar] [CrossRef]
GEANT4/Arby vs. Literature | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Transition | Kα (2p3/2 − 1/2 − 1s1/2) | Kβ (3p3/2 − 1/2 − 1s1/2) | Lα (3d5/2 − 3/2 − 2p1/2) | Mα (4f7/2 − 5/2 − 3d5/2) | ||||||||
Element | Literature | Simulation | Δ | Literature | Simulation | Δ | Literature | Simulation | Δ | Literature | Simulation | Δ |
13Al | 346.9 | 335.2 | 11.7 | 413.0 | 400.9 | 12.1 | 66.1 | 66.3 | −0.2 | 21.8 | 23.6 | −1.8 |
14Si | 400.2 | 386.8 | 13.4 | 476.7 | 462.9 | 13.8 | 76.6 | 76.8 | −0.2 | 26.9 | 27.2 | −0.3 |
26Fe | 1253.7 | 1234.2 | −19.5 | 1257.2 | 1276.8 | −19.6 | 265.7 | 264.1 | 1.6 | 92.6 | 92.8 | −0.2 |
29Cu | 1506.6 | 1491.3 | 15.3 | 1512.8 | 1500.2 | 12.6 | 330.3 | 328.3 | 2.0 | 115.9 | 115.2 | 0.7 |
47Ag | 3140.6 | 3151.8 | −11.2 | 3177.7 | - | - | 869.2 | 862.4 | 6.8 | 304.8 | 302.2 | 2.6 |
79Au | 5594.9 | 5518.4 | 76.5 | 5764.9 | 5732.5 | 32.4 | 2341.2 | 2338.4 | 2.8 | 870.0 | 880.1 | −10.1 |
82Pb | 5780.1 | 5674.4 | 105.7 | 5966.3 | - | - | 2500.3 | 2499.5 | 0.8 | 938.4 | 936.8 | 1.6 |
Arby_Mux vs. Literature | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Transition | Kα (2p3/2 − 1/2 − 1s1/2) | Kβ (3p3/2 − 1/2 − 1s1/2) | Lα (3d5/2 − 3/2 − 2p1/2) | Mα (4f7/2 − 5/2 − 3d5/2) | ||||||||
Element | Literature | Simulation | Δ | Literature | Simulation | Δ | Literature | Simulation | Δ | Literature | Simulation | Δ |
13Al | 346.9 | 346.7 | 0.2 | 413.0 | 413.7 | −0.7 | 66.1 | 66.3 | −0.2 | 21.8 | 23.6 | −1.8 |
14Si | 400.2 | 401.4 | −1.3 | 476.7 | 476.7 | 0.0 | 76.9 | 76.9 | 0.0 | 26.9 | 27.3 | −0.4 |
26Fe | 1253.7 | - | - | 1257.2 | 1260.5 | −3.3 | 265.7 | 263.9 | 1.8 | 92.6 | 92.8 | −0.2 |
29Cu | 1506.6 | - | - | 1512.8 | 1517.5 | −4.7 | 330.3 | 328.3 | 2.0 | 115.9 | 115.2 | 0.7 |
47Ag | 3140.6 | - | - | 3177.7 | 3197.4 | −19.7 | 869.2 | 862.4 | 6.8 | 304.8 | 302.2 | 2.6 |
79Au | 5594.9 | - | - | 5764.9 | 5696.7 | 68.2 | 2341.2 | 2338.4 | 2.8 | 870.0 | 867.1 | 2.9 |
82Pb | 5780.1 | - | - | 5966.3 | 5892.3 | 74.0 | 2500.3 | 2499.5 | 0.8 | 938.4 | 936.8 | 1.6 |
Arby_MuDirac vs. Literature | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Transition | Kα (2p3/2 − 1/2 − 1s1/2) | Kβ (3p3/2 − 1/2 − 1s1/2) | Lα (3d5/2 − 3/2 − 2p1/2) | Mα (4f7/2 − 5/2 − 3d5/2) | ||||||||
Element | Literature | Simulation | Δ | Literature | Simulation | Δ | Literature | Simulation | Δ | Literature | Simulation | Δ |
13Al | 346.9 | 346.9 | 0.0 | 413.0 | 412.9 | 0.1 | 66.1 | 66.1 | 0.0 | 21.8 | 23.1 | −1.3 |
14Si | 400.2 | 400.9 | −0.8 | 476.7 | 477.2 | −0.5 | 76.9 | 76.4 | 0.5 | 26.9 | 26.8 | 0.1 |
26Fe | 1253.7 | 1252.6 | 1.1 | 1257.2 | 1256.8 | 0.4 | 265.7 | 265.8 | −0.1 | 92.6 | 92.4 | 0.2 |
29Cu | 1506.6 | 1507.8 | −1.2 | 1512.8 | 1514.1 | −1.3 | 330.3 | 330.9 | −0.6 | 115.9 | 115.6 | 0.3 |
47Ag | 3140.6 | 3139.8 | 0.8 | 3177.7 | 3176.9 | 0.8 | 869.2 | 868.9 | 0.3 | 304.8 | 303.1 | 1.7 |
79Au | 5594.9 | 5593.6 | 1.3 | 5764.9 | 5763.0 | 1.9 | 2341.2 | 2339.9 | 1.3 | 870.0 | 869.8 | 0.2 |
82Pb | 5780.1 | 5779.3 | 0.8 | 5966.3 | 5963.9 | 2.4 | 2500.3 | 2500.0 | 0.3 | 938.4 | 937.9 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cataldo, M.; Cremonesi, O.; Pozzi, S.; Mocchiutti, E.; Sarkar, R.; Hillier, A.D.; Clemenza, M. The Implementation of MuDirac in Geant4: A Preliminary Approach to the Improvement of the Simulation of the Muonic Atom Cascade Process. Condens. Matter 2023, 8, 101. https://doi.org/10.3390/condmat8040101
Cataldo M, Cremonesi O, Pozzi S, Mocchiutti E, Sarkar R, Hillier AD, Clemenza M. The Implementation of MuDirac in Geant4: A Preliminary Approach to the Improvement of the Simulation of the Muonic Atom Cascade Process. Condensed Matter. 2023; 8(4):101. https://doi.org/10.3390/condmat8040101
Chicago/Turabian StyleCataldo, Matteo, Oliviero Cremonesi, Stefano Pozzi, Emiliano Mocchiutti, Ritabrata Sarkar, Adrian D. Hillier, and Massimiliano Clemenza. 2023. "The Implementation of MuDirac in Geant4: A Preliminary Approach to the Improvement of the Simulation of the Muonic Atom Cascade Process" Condensed Matter 8, no. 4: 101. https://doi.org/10.3390/condmat8040101
APA StyleCataldo, M., Cremonesi, O., Pozzi, S., Mocchiutti, E., Sarkar, R., Hillier, A. D., & Clemenza, M. (2023). The Implementation of MuDirac in Geant4: A Preliminary Approach to the Improvement of the Simulation of the Muonic Atom Cascade Process. Condensed Matter, 8(4), 101. https://doi.org/10.3390/condmat8040101