Stress and Strain Prediction of Zirconium Nitride under Oxygen Doping and Vacancy Introduction
Abstract
:1. Introduction
2. Results and Discussions
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, S.; Ma, J.; Xu, R.; Lin, X.; Cheng, X.; Hao, S.; Zhao, X.; Deng, C.; Liu, B. Synthesis and Characterization of Zirconium Nitride Nanopowders by Internal Gelation and Carbothermic Nitridation. Sci. Rep. 2019, 9, 19199. [Google Scholar] [CrossRef]
- Kobayashi, K. First-principles study of the electronic properties of transition metal nitride surfaces. Surf. Sci. 2001, 493, 665–670. [Google Scholar] [CrossRef]
- Idrees, M.; Mukhtar, A.; Ata-ur-Rehman; Abbas, S.M.; Zhang, Q.; Li, X. Transition metal nitride electrodes as future energy storage devices: A review. Mater. Today Commun. 2021, 27, 102363. [Google Scholar] [CrossRef]
- Cheng, Z.; Qi, W.; Pang, C.H.; Thomas, T.; Wu, T.; Liu, S.; Yang, M. Recent Advances in Transition Metal Nitride-Based Materials for Photocatalytic Applications. Adv. Funct. Mater. 2021, 31, 2100553. [Google Scholar] [CrossRef]
- Park, S.H.; Jo, T.H.; Lee, M.H.; Kawashima, K.; Mullins, C.B.; Lim, H.-K.; Youn, D.H. Highly active and stable nickel–molybdenum nitride (Ni2Mo3N) electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2021, 9, 4945–4951. [Google Scholar] [CrossRef]
- Kang, B.K.; Choi, Y.J.; Choi, H.W.; Kwon, S.B.; Kim, S.; Kim, Y.J.; Park, J.S.; Yang, W.S.; Yoon, D.H.; Ryu, W.-H. Rational design and in-situ formation of nickel–cobalt nitride multi-core/hollow N-doped carbon shell anode for Li-ion batteries. Chem. Eng. J. 2021, 420, 129630. [Google Scholar] [CrossRef]
- Osonkie, A.; Lee, V.; Chukwunenye, P.; Cundari, T.; Kelber, J. Plasma modification of vanadium oxynitride surfaces: Characterization by in situ XPS experiments and DFT calculations. J. Chem. Phys. 2020, 153, 144709. [Google Scholar] [CrossRef] [PubMed]
- Pham, K.D.; Nguyen, C.Q.; Nguyen, C.V.; Cuong, P.V.; Hieu, N.V. Two-dimensional van der Waals graphene/transition metal nitride heterostructures as promising high-performance nanodevices. New J. Chem. 2021, 45, 5509–5516. [Google Scholar] [CrossRef]
- Baturina, O.A.; Epshteyn, A.; Leff, A.C.; Purdy, A.P.; Brintlinger, T.; Simpkins, B.S.; Santiago, E.Y.; Govorov, A.O. Photoelectrochemical Methanol Oxidation Under Visible and UV Excitation of TiO2-Supported TiN and ZrN Plasmonic Nanoparticles. J. Electrochem. Soc. 2021, 168, 016503. [Google Scholar] [CrossRef]
- Patsalas, P.; Kalfagiannis, N.; Kassavetis, S.; Abadias, G.; Bellas, D.V.; Lekka, C.; Lidorikis, E. Conductive Nitrides: Growth Principles, Optical and Eectronic Properties, and Their Perspectives in Photonics and Plasmonics. Mater. Sci. Eng. R Rep. 2018, 123, 1. [Google Scholar] [CrossRef]
- Hao, Y.-J.; Ren, H.-S.; Zhu, B.; Zhu, J.; Qu, J.-Y.; Chen, L.-Q. Theoretical study of the structural phase transformation and elastic properties of the zirconium nitride under high pressure. Solid State Sci. 2013, 17, 1–5. [Google Scholar] [CrossRef]
- Patsalas, P. Zirconium Nitride: A Viable Candidate for Photonics and Plasmonics? Thin Solid Film. 2019, 688, 137438. [Google Scholar] [CrossRef]
- Courts, S.S.; Swinehart, P.R. Review of CernoxTM (Zirconium Oxy-Nitride) Thin-Film Resistance Temperature Sensors. AIP Conf. Proc. 2003, 684, 393–398. [Google Scholar]
- Wang, G.; Yang, D.; Li, D.; Shui, Q.; Yang, J.; Que, D. Mechanical strength of nitrogen-doped silicon single crystal investigated by three-point bending method. Phys. B Condens. Matter 2001, 308–310, 450–453. [Google Scholar] [CrossRef]
- Wang, P.; Yu, X.; Li, Z.; Yang, D. Improved fracture strength of multicrystalline silicon by germanium doping. J. Cryst. Growth 2011, 318, 230–233. [Google Scholar] [CrossRef]
- Chen, J.; Yang, D.; Ma, X.; Zeng, Z.; Tian, D.; Li, L.; Que, D.; Gong, L. Influence of germanium doping on the mechanical strength of Czochralski silicon wafers. J. Appl. Phys. 2008, 103, 123521. [Google Scholar] [CrossRef]
- Jung, J.; Bae, D.; Kim, S.; Kim, H.-D. Reduced Operation Current of Oxygen-Doped ZrN Based Resistive Switching Memory Devices Fabricated by the Radio Frequency Sputtering Method. Coatings 2021, 11, 197. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Y.; Xiao, W. Oxygen impurity effects on the mechanical properties of SiC studied by first principles calculations. Mater. Today Commun. 2019, 19, 360–365. [Google Scholar] [CrossRef]
- Jain, A.; Hautier, G.; Moore, C.J.; Ping Ong, S.; Fischer, C.C.; Mueller, T.; Persson, K.A.; Ceder, G. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 2011, 50, 2295–2310. [Google Scholar] [CrossRef]
- Armiento, R.; Kozinsky, B.; Fornari, M.; Ceder, G. Screening for high-performance piezoelectrics using high-throughput density functional theory. Phys. Rev. B 2011, 84, 014103. [Google Scholar] [CrossRef]
- Curtarolo, S.; Hart, G.L.W.; Nardelli, M.B.; Mingo, N.; Sanvito, S.; Levy, O. The High-throughput Highway to Computational Materials Design. Nat. Mater. 2013, 12, 191–201. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Density Functionals with Broad Applicability in Chemistry. Acc. Chem. Res. 2008, 41, 157–167. [Google Scholar] [CrossRef]
- Emery, A.A.; Saal, J.E.; Kirklin, S.; Hegde, V.I.; Wolverton, C. High-Throughput Computational Screening of Perovskites for Thermochemical Water Splitting Applications. Chem. Mater. 2016, 28, 5621–5634. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, H.; Li, Q.; Gao, B.; Wang, Y.; Li, H.; Chen, C.; Ma, Y. Superhard BC3 in Cubic Diamond Structure. Phys. Rev. Lett. 2015, 114, 015502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krenn, C.R.; Roundy, D.; Morris, J.W.; Cohen, M.L. The non-linear elastic behavior and ideal shear strength of Al and Cu. Mater. Sci. Eng. A 2001, 317, 44–48. [Google Scholar] [CrossRef]
- Huang, H.H.; Fan, X.; Hu, C.Q.; Singh, D.J.; Jiang, Q.; Zheng, W.T. Transformation of Electronic Properties and Structural Phase Transition from HfN to Hf3N4. J. Phys. Condens. Matter 2015, 27, 225501. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using A Plane-wave Basis Set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hao, J.; Liu, H.; Lu, S.; Tse, J.S. High-Energy Density and Superhard Nitrogen-Rich B-N Compounds. Phys. Rev. Lett. 2015, 115, 105502. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Lu, M.; Du, Y.; Gao, L.; Lu, C.; Liu, H. Hardness of FeB4: Density functional theory investigation. J. Chem. Phys. 2014, 140, 174505. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Wu, S.; Li, J. Stress and Strain Prediction of Zirconium Nitride under Oxygen Doping and Vacancy Introduction. Condens. Matter 2021, 6, 32. https://doi.org/10.3390/condmat6030032
Cai J, Wu S, Li J. Stress and Strain Prediction of Zirconium Nitride under Oxygen Doping and Vacancy Introduction. Condensed Matter. 2021; 6(3):32. https://doi.org/10.3390/condmat6030032
Chicago/Turabian StyleCai, Junfei, Sicheng Wu, and Jinjin Li. 2021. "Stress and Strain Prediction of Zirconium Nitride under Oxygen Doping and Vacancy Introduction" Condensed Matter 6, no. 3: 32. https://doi.org/10.3390/condmat6030032
APA StyleCai, J., Wu, S., & Li, J. (2021). Stress and Strain Prediction of Zirconium Nitride under Oxygen Doping and Vacancy Introduction. Condensed Matter, 6(3), 32. https://doi.org/10.3390/condmat6030032