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Abstract: Zirconium nitride (ZrN) is an important material for the mechanical industries due to its
excellent properties such as excellent wear resistance, high hardness, etc. In practical applications, it
is necessary to study how to regulate the mechanical properties of materials to meet the needs of
different applications. To better understand the influence of vacancies and oxygen on the mechanical
property of ZrN, we studied the tensile strength of the ZrN with oxygen atom doping and zirconium
vacancy introduction by ab initio density functional theory. The mechanical property changes
of modified ZrN in three crystallographic directions (<001>, <110>, and <111>) were calculated.
The results show that the tensile strength of ZrN can be increased by oxygen doping at a certain
concentration, while that of ZrN can be decreased by the introduction of zirconium vacancy.

Keywords: zirconium nitride; mechanical property; density function theory

1. Introduction

Transition metal nitrides indicates a class of compounds in which the nitrogen atoms
are integrated into the lattice gap of the parent transition metal [1]. As a material widely
used in mechanical manufacturing, transition metal nitrides have attracted the attention of
many researchers due to their excellent properties, including excellent thermal conductivity,
corrosion resistance, and mechanical properties. In addition, their excellent electrical
properties [2] make them of great value in supercapacitors, lithium-ion batteries, catalysis,
sensors, etc. [3–5]. In recent years, related researches on pure transition metal nitrides
have gradually reached a bottleneck, prompting researchers to search for a method to
improve the performance of transition metal nitrides [6]. Many different methods have been
proposed as methods to modify transition metal nitrides including plasma modification [7],
heterostructure building [8], oxidation [9], etc.

Zirconium nitride (ZrN) is one kind of 4-D transition metal nitride, and is a NaCl
type metal crystal with a space group of Pm 3m. The crystal structure of ZrN is cubic
symmetry in which each ion has six adjacent ions (i.e., each ion is located in the center
of one octahedral gap) [10–12]. ZrN possesses numerous outstanding performances in
the field of manufacturing, including excellent wear resistance, high hardness, and higher
chemical stability at room temperature [1,11–13]. The excellent performance of ZrN makes
it an attractive material for machine tools, which need excellent mechanical properties. Ma-
terials with different mechanical properties (i.e., tensile strength, shear strength, elasticity,
and plasticity) will have completely different applications in industrial production, which
demonstrates the importance to study the method to regulate the mechanical property
of corresponding materials. In the past few decades, people have conducted numerous
researches to modify the parent material for more excellent mechanical property. Among
them, the doping process was widely reported: Wang G et al. reported the mechanical
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strength of silicon single crystal with the doping of nitrogen, which indicated the doped ni-
trogen atoms can increase the flexure strength of the single crystal silicon [14]; Wang P et al.
reported an investigation about the multicrystalline silicon by germanium doping, which
shows a higher fracture strength than the parent material [15]; Chen J.H et al. reported
the enhancement effect of germanium doping on the mechanical property of Czochralski
silicon wafers [16]. These previous studies have fully demonstrated that the doping of
atoms is feasible and important for improving the mechanical properties of materials. As
a kind of popular modified method, oxygen doping and vacancy introduction can signif-
icantly change the properties of materials, which has been confirmed in many previous
studies [17,18]. However, studies about how the oxygen and zirconium vacancy influence
the strength properties of ZrN were lacking.

Density functional theory (DFT) is a computational modelling method based on the
quantum mechanical theory. In the past few decades, the DFT has been applied as an im-
portant material research method in physics, chemistry, and materials science. Compared
with experiments, using DFT method to study material properties can avoid excessive time
and financial costs, and provide guidance for material design in laboratory [19–21]. The
wide application of DFT has greatly promoted the research progress of material proper-
ties. Numerous researches have implemented DFT calculations to obtain the mechanical
properties of different materials, thus greatly improving the efficiency of the design of
related materials [22,23]. For example, Zhang M et al. calculated the stress–strain relations
of d-BC3 (i.e., highly symmetric BC3 phase in the cubic diamond structure) with DFT and
demonstrated its super hard nature and excellent ductility [24]; Krenn C.R. et al. performed
a series of pseudopotential DFT and obtained the ideal shear strength of aluminum and
copper [25]; Zhang R.F et al. calculated the stress–strain relationship under tensile and
shear load of the silicon nitrides by ab initio calculation based on DFT, which successfully
demonstrated that the Si3N4 was mechanically stronger than the SiN.

In this study, we modified the ZrN with the introduction of oxygen atoms and zirco-
nium vacancies. The ideal stress–strain relationship of the zirconium nitride under oxygen
doping and vacancy introduction was obtained through a series of DFT calculations. In
doped ZrN, oxygen atoms have been introduced as interstitial and substitutional defects,
and their formation energies was calculated. Then, we modified the structure of Zr32N32
with oxygen doping and vacancy introduction. In order to investigate the changes in
mechanical properties, we studied them from three different crystallographic directions:
<001>, <110>, and <111>. The related content is discussed in next part.

2. Results and Discussions

Before the doping of oxygen atoms into the crystal structure of ZrN, it is necessary to
study how the oxygen atoms will exist in the crystal structure. Therefore, the formation
energy of doping oxygen atoms was calculated. As is shown in Figure 1a,b, the primitive
cell of ZrN was expanded with multiple 2 × 2 × 2 to avoid the phase transition caused
by the excessively high content of oxygen atoms or VZr and the structure of Zr32N32−nOn
(i.e., or Zr32−nN32) was obtained. There are two possible manners of doping: substitutional
doping and interstitial doping. Therefore, the structure of Zr32N32 was firstly doped with
1, 2, and 3 oxygen atoms, respectively, in an interstitial manner, and the corresponding
structures after doping were denoted as Zr32N32On (n = 1, 2, and 3). The corresponding
structures after the doping was shown in Figure S2. In this process, the formation energy
of single oxygen atom (∆E1) can be obtained according to the following formula [26]:

∆E1 =
(

EZr32 N32On − EZr32 N32 −
n
2

EO2

)
/n (1)

where EZr32 N32On and EO2 represent the energy of Zr32N32On and oxygen molecule (N2),
respectively. As the blue line in Figure 1c shows, the formation energy of one oxygen atom
is −0.24 eV, −0.17 eV and −0.15 eV, respectively.
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Then, we performed the oxygen doping on Zr32N32 in a substitutional manner, and
the structure of Zr32N32−nOn was obtained (n = 1, 2, and 3). The corresponding crystal
structures can be seen in Figure 1b. The formation energy of one substitutional oxygen
atom was calculated according the following formula:

∆E2 =
(

EZr32 N32−nOn +
n
2

EN2 − EZr32 N32 −
n
2

EO2

)
/n (2)

where EZr32 N32−nOn and EN2 represent the total energy of Zr32N32−nOn and nitrogen molecule
(N2), respectively. As shown in Figure 1c, ∆E2 in different doping ratios of substitutional
oxygen were −2.94 eV, −2.78 eV, and −2.77 eV, respectively. The formation energy of
substitutional oxygen atom was much lower than that of the interstitial oxygen atom
(>2 eV ). The lower formation energy of the substitutional oxygen atom means that it has
higher stability than interstitial oxygen. In this process, we demonstrated that the oxygen
atom existed in the zirconium nitride crystal structure in a substitution-doped manner. In
this part of the calculation, the total energy of EZr32 N32On and EZr32 N32−nOn can be seen in
Table S1 in the Supplementary Materials. The values of EN2 and EO2 were obtained from
the experimental data [27].

We first calculated the stress–strain relationship in the crystal direction of <001>,
<010>, and <100>, which are shown in Figure 2. Figure 2a shows the initial structure of
Zr32N32, while Figure 2b,c shows the front view and the top view of the structure after
tensile strain (i.e., in the crystallographic direction of <001>). Apparently, the structure
of Zr32N32 became longer after the simulation of tensile stain, but the arrangement of the
atoms is still ordered. Then, different ratios of tensile distances in the lattice of Zr32N32
were applied. As is shown in Figure 2d–f, the same processes are performed on three
mutually perpendicular crystallographic direction (<001>, <010>, and <100>), and the
corresponding relationships between stress and strain are obtained. The maximum value
in the stress–strain relationship reflects the tensile strength of the lattice in one of the
crystal directions. In Figure 2d–f, the stress of Zr32N32 reaches its maximum value at a
ratio strain of 0.11, indicating a corresponding ideal tensile strength of 28.2 GPa. As the
strain continued to increase, there was no sudden drop in stress, indicating that the Zr32N32
did not fracture during the tensile process. In addition, it is clear that the stress–strain
relationships of ZrN in the three crystallographic directions are almost identical, which is
the result of the symmetry of ZrN.
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The mechanical properties of the relevant structures in the crystallographic direction
of <001> are analyzed. The structure of Zr32N31O (i.e., Zr32N32 with doping one oxygen
atom) and Zr31N32 (i.e., Zr32N32 with one Zr atom being removed) are shown in Figure 3a,c,
respectively. After a similar DFT calculation, the stress–strain relationship (i.e., in the <001>
crystallographic direction) of Zr32N31O are shown in Figure 3b and Figure S1a,b. Compared
to Zr32N32, the ideal tensile stress of Zr32N31O was increased to 29.4 GPa. The stress–strain
relationships of Zr31N32 in the <001> were shown in Figure 3d and Figure S1c,d. The ideal
tensile stress of Zr31N32 was increased to 29.0GPa compared to that of Zr32N32. In addition,
the mechanical properties of Zr32N31O and Zr31N32 are very similar in the three crystal
directions, which further indicated that the symmetry of the crystals was well maintained.
Therefore, only the mechanical properties in the <001> crystal direction will be analyzed in
the following part of this paper.
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The tensile simulation tests were then performed in the <110> crystallographic di-
rection and <111> crystallographic direction of the related structures. The stress–strain
relationships of Zr32N32, Zr32N31O, and Zr31N32 in the <110> crystallographic direction
were shown in Figure 4a,c,e. In the <110> crystallographic direction, the tensile strengths of
Zr32N32, Zr32N31O, and Zr31N32 were 28.6 GPa, 40.2 GPa, and 31.3 GPa, respectively. The
variation of the above values indicates that the doping of oxygen atoms and the introduc-
tion of zirconium vacancies both increase the ideal tensile strength of ZrN. In addition, both
Zr32N31O and Zr31N32 fracture in the process of tensile simulations (i.e., a steep drop of
stress), indicating a reduced plasticity (corresponding material becomes more brittle). The
stress–strain relationships of Zr32N32, Zr32N31O, and Zr31N32 in the <111> crystallographic
direction are shown in Figure 4b,d,f. In the <111> crystallographic direction, the doping
of oxygen atoms and the introduction of zirconium vacancies also reduced the plasticity.
However, the values of tensile strength of Zr32N31O (40.2 GPa) and Zr31N32 (28.3 GPa) were
both reduced compared to Zr32N32 (42.8 GPa).The effect of oxygen atom doping and the
introduction of vacancies on the mechanical properties of the ZrN structure varies with the
crystallographic direction. In fact, the mechanical properties of polycrystalline ZrN should
be isotropic. Therefore, the mechanical property variations of the three crystallographic
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directions should be considered comprehensively. The crystal grains of modified ZrN are
randomly arranged in various directions to form a polycrystalline ZrN and grain bound-
aries between two grains are also connected in an arbitrary orientation, indicating that
polycrystalline materials are isotropic. Therefore, the crystallographic direction with the
greatest change will dominate the overall change of mechanical properties. After doping
Zr32N32 with oxygen atoms, the change in tensile strength in the <110> crystallographic
direction (i.e., increased by 14.5 GPa) is much larger than that in the other two directions.
After introducing on zirconium vacancy into Zr32N32, the change in tensile strength in the
<111> crystallographic direction (i.e., decreased by 14.5 GPa) is much larger than that in the
other two directions. These results illustrated that the doping of oxygen can increase the
tensile strength and the introduction of zirconium vacancy decrease the tensile strength.
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3. Computational Details

To obtain the mechanical properties of the ZrN under the doping of oxygen and
introduction of zirconium vacancy, the Vienna ab initio simulation package (VASP) code
was used for the related calculation [28]. The cutoff energy was set at 600 eV. The k-point
mesh of 5 × 5 × 5 was used for the optimization and a k-point mesh of 2 × 2 × 2 was used
for the calculation of the ideal tensile strength. In our calculation, the convergence criteria
of the energy and force were 1 × 10−6 eV/atom and 1 × 10−5eV/A, respectively. We used
the Monkhorst–Pack grid route to sample the Brillouin zone. The Perdew–Burke–Ernzerhof
(PBE) exchange-correlation function within the generalized gradient approximation (GGA)
was chosen for the description of interactions between ions and electrons. The stress–strain
relationship was obtained through the procedure provided by Liu et al. [24,29,30], which is
available on the official website of the ideal-strength-vasp.

4. Conclusions

In summary, a series of DFT calculations on mechanical properties and energies
were implemented to obtain stress–strain relationships for ZrN under oxygen doping
and zirconium vacancy introduction. In this paper, the most probable manner of oxygen
atom doping is first investigated. By comparing the formation energies, it is demonstrated
that the substitutional oxygen atoms are more stable than the interstitial oxygen atoms.
Thereafter, we modified the structure of Zr32N32 with two methods, including the doping
of oxygen atoms and the introduction of zirconium vacancies. In order to investigate the
changes in mechanical properties, we studied them from three different crystallographic
directions: <001>, <110>, and <111>.

After doping Zr32N32 with oxygen atom, the ideal tensile strength in the <001> di-
rection increases by 1.4 GPa; the ideal tensile strength in the <110> direction increased
by 11.6 GPa; and the ideal tensile strength in the <111> direction decreased by 2.6 GPa.
In addition, the fracture of Zr32N31O in the <110> and <111> directions proves that its
plasticity is lower than that of Zr32N32. Therefore, the doping of oxygen atoms can increase
the tensile strength and decrease the plasticity of ZrN.

After the introduction of vacancies into the Zr32N32 lattice, the tensile strength changed
less in the <001> and <110> crystal directions (less than 3 GPa). In the <111> crystal
direction, the tensile strength decreased by 14.5 GPa. The above changes indicate that the
introduction of zirconium vacancies decreases the tensile strength of ZrN. In addition, the
introduction of vacancies also leads to the fracture of the related structures, indicating that
the plasticity of ZrN becomes lower.

In this work, the mechanical property of ZrN under doping of oxygen and introduction
of zirconium vacancies was analyzed by theoretical calculations. Therefore, experimental
synthesis of corresponding materials and verification of related properties by tensile test
will be necessary, which will be considered in our future research. In addition, the effect of
higher concentration of oxygen atoms and vacancy defects on the performance of ZrN will
also be the focus of future work.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/condmat6030032/s1, Figure S1. Stress-strain relationship of Zr32N31O; Figure S2. The
location of the oxygen atoms during the calculation of formation energy; Table S1. The total energies
in the calculation of the formation energy. The procedure used to obtain the stress–strain relationship
in this study (i.e., provided by Dr. Liu et al.) is available at: https://sourceforge.net/projects/ideal-
strength-vasp/files/.
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