Topologically Protected Wormholes in Type-III Weyl Semimetal Co3In2X2 (X = S, Se)
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Realization of a Type-III Weyl Phase
3.2. Wormhole Experimental Signatures
3.2.1. ARPES
3.2.2. Wormhole Anomaly in Magnetoresistance
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
WSM | Weyl Semimetal |
DSM | Dirac semimetal |
DFT | Density Functional Theory |
WH | Wormhole |
DOS | Density of states |
References
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045. [Google Scholar] [CrossRef]
- Qi, X.L.; Zhang, S.C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Xu, S.Y.; Bian, G. Topological insulators, topological superconductors and Weyl fermion semimetals: Discoveries, perspectives and outlooks. Phys. Scr. 2015, 2015, 014001. [Google Scholar] [CrossRef]
- Fu, L.; Kane, C.L.; Mele, E.J. Topological Insulators in Three Dimensions. Phys. Rev. Lett. 2007, 98, 106803. [Google Scholar] [CrossRef] [PubMed]
- Bansil, A.; Lin, H.; Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 2016, 88, 021004. [Google Scholar] [CrossRef]
- Hsieh, T.H.; Lin, H.; Liu, J.; Duan, W.; Bansil, A.; Fu, L. Topological crystalline insulators in the SnTe material class. Nat. Commun. 2012, 3, 982. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Weng, H.; Dai, X.; Fang, Z. Topological nodal line semimetals. Chin. Phys. B 2016, 25, 117106. [Google Scholar] [CrossRef]
- Fu, L. Topological Crystalline Insulators. Phys. Rev. Lett. 2011, 106, 106802. [Google Scholar] [CrossRef]
- Yan, M.; Huang, H.; Zhang, K.; Wang, E.; Yao, W.; Deng, K.; Wan, G.; Zhang, H.; Arita, M.; Yang, H.; et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, S.; Duan, W. Type-II Dirac fermions in thePtSe2class of transition metal dichalcogenides. Phys. Rev. B 2016, 94. [Google Scholar] [CrossRef]
- Noh, H.J.; Jeong, J.; Cho, E.J.; Kim, K.; Min, B.; Park, B.G. Experimental Realization of Type-II Dirac Fermions in a PdTe2 Superconductor. Phys. Rev. Lett. 2017, 119. [Google Scholar] [CrossRef]
- Jacobson, T.A.; Volovik, G.E. Effective spacetime and Hawking radiation from a moving domain wall in a thin film of 3He-A. J. Exp. Theor. Phys. Lett. 1998, 68, 874–880. [Google Scholar] [CrossRef][Green Version]
- Jacobson, T.; Koike, T. Black hole and baby universe in a thin film of 3He-A. In Artificial Black Holes; World Scientific: Singapore, 2002; pp. 87–108. [Google Scholar] [CrossRef]
- Jacobson, T.A.; Volovik, G.E. Event horizons and ergoregions in 3He. Phys. Rev. D 1998, 58. [Google Scholar] [CrossRef]
- Volovik, G.E. Simulation of a Panlevé-Gullstrand black hole in a thin 3He-A film. J. Exp. Theor. Phys. Lett. 1999, 69, 705–713. [Google Scholar] [CrossRef]
- Weyl, H. Elektron und Gravitation. Zeitschrift für Physik 1929, 56, 330–352. [Google Scholar] [CrossRef]
- Xu, S.Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.; Sankar, R.; Chang, G.; Yuan, Z.; Lee, C.C.; et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 2015, 349, 613–617. [Google Scholar] [CrossRef]
- Lv, B.Q.; Weng, H.M.; Fu, B.B.; Wang, X.P.; Miao, H.; Ma, J.; Richard, P.; Huang, X.C.; Zhao, L.X.; Chen, G.F.; et al. Experimental Discovery of Weyl Semimetal TaAs. Phys. Rev. X 2015, 5, 031013. [Google Scholar] [CrossRef]
- Huang, S.M.; Xu, S.Y.; Belopolski, I.; Lee, C.C.; Chang, G.; Wang, B.; Alidoust, N.; Bian, G.; Neupane, M.; Zhang, C.; et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 2015, 6, 7373. [Google Scholar] [CrossRef] [PubMed]
- Weng, H.; Fang, C.; Fang, Z.; Bernevig, B.A.; Dai, X. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides. Phys. Rev. X 2015, 5, 011029. [Google Scholar] [CrossRef]
- Xu, S.Y.; Alidoust, N.; Chang, G.; Lu, H.; Singh, B.; Belopolski, I.; Sanchez, D.S.; Zhang, X.; Bian, G.; Zheng, H.; et al. Discovery of Lorentz-violating type II Weyl fermions in LaAlGe. Sci. Adv. 2017, 3, e1603266. [Google Scholar] [CrossRef]
- Li, X.P.; Deng, K.; Fu, B.; Li, Y.; Ma, D.; Han, J.; Zhou, J.; Zhou, S.; Yao, Y. Type-III Weyl Semimetals and its Materialization. arXiv 2019, arXiv:1909.12178v1. [Google Scholar]
- Gooth, J.; Bradlyn, B.; Honnali, S.; Schindler, C.; Kumar, N.; Noky, J.; Qi, Y.; Shekhar, C.; Sun, Y.; Wang, Z.; et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature 2019, 575, 315–319. [Google Scholar] [CrossRef]
- Dai, D.C.; Stojkovic, D. Observing a wormhole. Phys. Rev. D 2019, 100. [Google Scholar] [CrossRef]
- Simonetti, J.H.; Kavic, M.J.; Minic, D.; Stojkovic, D.; Dai, D.C. A sensitive search for wormholes. arXiv 2020, arXiv:2007.12184v1. [Google Scholar]
- Volovik, G.E. Black hole and hawking radiation by type-II Weyl fermions. JETP Lett. 2016, 104, 645–648. [Google Scholar] [CrossRef]
- Volovik, G.E.; Zhang, K. Lifshitz Transitions, Type-II Dirac and Weyl Fermions, Event Horizon and All That. J. Low Temp. Phys. 2017, 189, 276–299. [Google Scholar] [CrossRef]
- Nikitin, I. Quantum Gravity Wormholes and Topological Teleporter. arXiv 2019, arXiv:1909.08984v1. [Google Scholar]
- Huang, H.; Jin, K.H.; Liu, F. Black-hole horizon in the Dirac semimetal Zn2In2S5. Phys. Rev. B 2018, 98. [Google Scholar] [CrossRef]
- Milićević, M.; Montambaux, G.; Ozawa, T.; Jamadi, O.; Real, B.; Sagnes, I.; Lemaître, A.; Gratiet, L.L.; Harouri, A.; Bloch, J.; et al. Type-III and Tilted Dirac Cones Emerging from Flat Bands in Photonic Orbital Graphene. Phys. Rev. X 2019, 9. [Google Scholar] [CrossRef]
- Jin, L.; Wu, H.C.; Wei, B.B.; Song, Z. Hybrid exceptional point created from type-III Dirac point. Phys. Rev. B 2020, 101. [Google Scholar] [CrossRef]
- Hashimoto, K.; Matsuo, Y. Escape from black holes in materials: Type II Weyl semimetals and generic edge states. arXiv 2019, arXiv:1911.04675v2. [Google Scholar]
- Kedem, Y.; Bergholtz, E.J.; Wilczek, F. Black and White Holes at Material Junctions. arXiv 2020, arXiv:2001.02625v2. [Google Scholar]
- Liu, H.; Sun, J.T.; Song, C.; Huang, H.; Liu, F.; Meng, S. Fermionic Analogue of High Temperature Hawking Radiation in Black Phosphorus. Chin. Phys. Lett. 2020, 37, 067101. [Google Scholar] [CrossRef]
- Nissinen, J. Emergent Spacetime and Gravitational Nieh-Yan Anomaly in Chiral Weyl Superfluids and Superconductors. Phys. Rev. Lett. 2020, 124. [Google Scholar] [CrossRef] [PubMed]
- Nissinen, J.; Volovik, G.E. Type-III and IV interacting Weyl points. JETP Lett. 2017, 105, 447–452. [Google Scholar] [CrossRef]
- Laurila, S.; Nissinen, J. Torsional Landau levels and geometric anomalies in condensed matter Weyl systems. arXiv 2020, arXiv:2007.10682v2. [Google Scholar]
- Volovik, G.; Zubkov, M. Emergent Weyl spinors in multi-fermion systems. Nucl. Phys. B 2014, 881, 514–538. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Corso, A.D. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 2014, 95, 337–350. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Sims, C. CIF2WAN: A Tool to Generate Input Files for Electronic Structure Calculations with Wannier90. arXiv 2020, arXiv:2006.12647v1. [Google Scholar]
- Hinuma, Y.; Pizzi, G.; Kumagai, Y.; Oba, F.; Tanaka, I. Band structure diagram paths based on crystallography. Comput. Mater. Sci. 2017, 128, 140–184. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. Spglib: A software library for crystal symmetry search. arXiv 2018, arXiv:1808.01590v1. [Google Scholar]
- Fisk, Z.; Remeika, J.P. Chapter 81 Growth of single crystals from molten metal fluxes. Handb. Phys. Chem. Rare Earths 1989. [Google Scholar] [CrossRef]
- Canfield, P.C.; Fisk, Z. Growth of single crystals from metallic fluxes. Philos. Mag. B 1992, 65, 1117–1123. [Google Scholar] [CrossRef]
- Ali, M.N.; Schoop, L.M.; Garg, C.; Lippmann, J.M.; Lara, E.; Lotsch, B.; Parkin, S.S.P. Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS. Sci. Adv. 2016, 2, e1601742. [Google Scholar] [CrossRef]
- Singha, R.; Pariari, A.K.; Satpati, B.; Mandal, P. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS. Proc. Natl. Acad. Sci. USA 2017, 114, 2468–2473. [Google Scholar] [CrossRef]
- Chiu, Y.C.; Chen, K.W.; Schönemann, R.; Quito, V.L.; Sur, S.; Zhou, Q.; Graf, D.; Kampert, E.; Förster, T.; Yang, K.; et al. Origin of the butterfly magnetoresistance in a Dirac nodal-line system. Phys. Rev. B 2019, 100. [Google Scholar] [CrossRef]
- Tanaka, M.; Fujishiro, Y.; Mogi, M.; Kaneko, Y.; Yokosawa, T.; Kanazawa, N.; Minami, S.; Koretsune, T.; Arita, R.; Tarucha, S.; et al. Topological Kagome Magnet Co3Sn2S2 Thin Flakes with High Electron Mobility and Large Anomalous Hall Effect. Nano Lett. 2020, 20, 7476–7481. [Google Scholar] [CrossRef]
- Guin, S.N.; Vir, P.; Zhang, Y.; Kumar, N.; Watzman, S.J.; Fu, C.; Liu, E.; Manna, K.; Schnelle, W.; Gooth, J.; et al. Zero-Field Nernst Effect in a Ferromagnetic Kagome-Lattice Weyl-Semimetal Co3Sn2S2. Adv. Mater. 2019, 31, 1806622. [Google Scholar] [CrossRef] [PubMed]
- Morali, N.; Batabyal, R.; Nag, P.K.; Liu, E.; Xu, Q.; Sun, Y.; Yan, B.; Felser, C.; Avraham, N.; Beidenkopf, H. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 2019, 365, 1286–1291. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gu, G.; Liu, E.; Cheng, P.; Feng, B.; Li, Y.; Chen, L.; Wu, K. Epitaxial Growth and Transport Properties of Magnetic Weyl Semimetal Co3Sn2S2 Thin Films. ACS Appl. Electron. Mater. 2020, 2, 126–133. [Google Scholar] [CrossRef]
- Shen, J.; Zeng, Q.; Zhang, S.; Tong, W.; Ling, L.; Xi, C.; Wang, Z.; Liu, E.; Wang, W.; Wu, G.; et al. On the anisotropies of magnetization and electronic transport of magnetic Weyl semimetal Co3Sn2S2. Appl. Phys. Lett. 2019, 115, 212403. [Google Scholar] [CrossRef]
- Fragkos, S.; Tsipas, P.; Xenogiannopoulou, E.; Panayiotatos, Y.; Dimoulas, A. Type-III Dirac fermions in HfxZr1-xTe2 topological semimetal candidate. J. Appl. Phys. 2021, 129, 075104. [Google Scholar] [CrossRef]
- Maldacena, J.; Susskind, L. Cool horizons for entangled black holes. Fortschritte der Physik 2013, 61, 781–811. [Google Scholar] [CrossRef]
- Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev. 1935, 48, 73–77. [Google Scholar] [CrossRef]
Samples of compounds Co3In2S2 and Co3In2Se2 are available upon reasonable request. |
Co3In2Se2 | |||
---|---|---|---|
Element | a (Crystal) | b (Crystal) | c (Crystal) |
Se | 0.720007166 | 0.720007166 | 0.720007166 |
Se | 0.279992834 | 0.279992834 | 0.279992834 |
Co | 0.000000000 | 0.000000000 | 0.500000000 |
Co | 0.500000000 | 0.000000000 | 0.000000000 |
Co | 0.000000000 | 0.500000000 | 0.000000000 |
In | 0.500000000 | 0.500000000 | 0.500000000 |
In | 0.000000000 | 0.000000000 | 0.000000000 |
a (Å) | b (Å) | c (Å) | |
4.652649960 | 0.000029301 | 2.919783491 | |
1.614799853 | 4.363436112 | 2.919783491 | |
0.000042087 | 0.000029302 | 5.492930386 |
Co3In2S2 | |||
---|---|---|---|
Element | a (Crystal) | b (Crystal) | c (Crystal) |
Se | 0.721000000 | 0.721000000 | 0.721000000 |
Se | 0.279000000 | 0.279000000 | 0.279000000 |
Co | 0.000000000 | 0.000000000 | 0.500000000 |
Co | 0.500000000 | 0.000000000 | 0.000000000 |
Co | 0.000000000 | 0.500000000 | 0.000000000 |
In | 0.500000000 | 0.500000000 | 0.500000000 |
In | 0.000000000 | 0.000000000 | 0.000000000 |
a (Å) | b (Å) | c (Å) | |
4.652816000 | 0.000000000 | 2.919838000 | |
1.614830000 | 4.363602000 | 2.91983732200 | |
0.000000000 | 0.000000000 | 5.493100000 |
Type-I | Type-II | Type-III | |
---|---|---|---|
Dispersion | Weyl Cones | Overtilted Weyl cones | Critically tilted Weyl cones |
Fermi surface (,) | Fermi arc | Fermi arc | Weyl line |
DOS () | singularity | e and h pocket | Weyl line |
Fermi arc | yes | yes | yes |
Wormhole analogue | Open WH | Pinched WH | Traversable WH |
Typical Materials | TaAs, NbAs | WTe2 | Co3In2Se2, Co2In2S2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sims, C. Topologically Protected Wormholes in Type-III Weyl Semimetal Co3In2X2 (X = S, Se). Condens. Matter 2021, 6, 18. https://doi.org/10.3390/condmat6020018
Sims C. Topologically Protected Wormholes in Type-III Weyl Semimetal Co3In2X2 (X = S, Se). Condensed Matter. 2021; 6(2):18. https://doi.org/10.3390/condmat6020018
Chicago/Turabian StyleSims, Christopher. 2021. "Topologically Protected Wormholes in Type-III Weyl Semimetal Co3In2X2 (X = S, Se)" Condensed Matter 6, no. 2: 18. https://doi.org/10.3390/condmat6020018
APA StyleSims, C. (2021). Topologically Protected Wormholes in Type-III Weyl Semimetal Co3In2X2 (X = S, Se). Condensed Matter, 6(2), 18. https://doi.org/10.3390/condmat6020018