Q Dependence of Magnetic Resonance Mode on FeTe0.5Se0.5 Studied by Inelastic Neutron Scattering
Abstract
:1. Introduction
2. Experimental Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296–3297. [Google Scholar] [CrossRef] [PubMed]
- Chubukov, A.V.; Efremov, D.V.; Eremin, I. Magnetism, superconductivity, and pairing symmetry in iron-based superconductors. Phys. Rev. B 2008, 78, 134512. [Google Scholar] [CrossRef] [Green Version]
- Boeri, L.; Dolgov, O.V.; Golubov, A.A. Is LaO1-xFxFeAs an electron-phonon superconductor? Phys. Rev. Lett. 2008, 101, 026403. [Google Scholar] [CrossRef] [PubMed]
- Mazin, I.I.; Singh, D.J.; Johannes, M.D.; Du, M.H. Unconventional Superconductivity with a Sign Reversal in the Order Parameter of LaFeAsO1-xFx. Phys. Rev. Lett. 2008, 101, 057003. [Google Scholar] [CrossRef] [PubMed]
- Kuroki, K.; Usui, H.; Onari, S.; Arita, R.; Aoki, H. Unconventional Pairing Originating from the Disconnected Fermi Surfaces of Superconducting LaFeAsO1-xFx. Phys. Rev. B 2008, 79, 224511. [Google Scholar] [CrossRef]
- Kontani, H.; Onari, S. Orbital-Fluctuation-Mediated Superconductivity in Iron Pnictides: Analysis of the Five-Orbital Hubbard-Holstein Model. Phys. Rev. Lett. 2010, 104, 157001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanagi, Y.; Yamakawa, Y.; Ono, Y. Two types of s-wave pairing due to magnetic and orbital fluctuations in the two-dimensional 16-band d-p model for iron-based superconductors. Phys. Rev. B 2010, 81, 054518. [Google Scholar] [CrossRef]
- Onari, S.; Kontani, H.; Sato, M. Structure of neutron-scattering peaks in both s++-wave and s±-wave states of an iron pnictide superconductor. Phys. Rev. B 2010, 81, 060504(R). [Google Scholar] [CrossRef]
- Innocenti, D.; Valletta, A.; Bianconi, A. Shape resonance at a Lifshitz transition for high temperature superconductivity in multiband superconductors. J. Supercond. Novel Magn. 2011, 24, 1137–1143. [Google Scholar] [CrossRef]
- Bianconi, A. Shape resonances in multi-condensate granular superconductors formed by networks of nanoscale-striped puddles. J. Phys. Conf. Ser. 2013, 449, 012002. [Google Scholar] [CrossRef] [Green Version]
- Hanaguri, T.; Niitaka, S.; Kuroki, K.; Takagi, H. Unconventional s-wave superconductivity in Fe(Se,Te). Science 2010, 328, 474–476. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Kobayashi, Y.; Lee, S.C.; Takahashi, H.; Satomi, E.; Miura, Y. Studies on Effects of Impurity Doping and NMR Measurements of La 1111 and/or Nd 1111 Fe-Pnictide Superconductors. J. Phys. Soc. Jpn. 2010, 79, 014710. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Park, J.T.; Feng, Y.; Shen, Y.; Hao, Y.; Pan, B.; Lynn, J.W.; Ivanov, A.; Chi, S.; Matsuda, M.; et al. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors. Phys. Rev. Lett. 2016, 116, 197004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christianson, A.D.; Goremychkin, E.A.; Osborn, R.; Rosenkranz, S.; Lumsden, M.D.; Malliakas, C.D.; Todorov, I.S.; Claus, H.; Chung, D.Y.; Kanatzidis, M.G.; et al. Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering. Nature 2008, 456, 930–932. [Google Scholar] [CrossRef] [PubMed]
- Lumsden, M.D.; Christianson, A.D.; Parshall, D.; Stone, M.B.; Nagler, S.E.; MacDougall, G.J.; Mook, H.A.; Lokshin, K.; Egami, T.; Abernathy, D.L.; et al. Two-dimensional resonant magnetic excitation in BaFe1.84Co0.16As2. Phys. Rev. Lett. 2009, 102, 107005. [Google Scholar] [CrossRef] [PubMed]
- Chi, S.; Schneidewind, A.; Zhao, J.; Harriger, L.W.; Li, L.; Luo, Y.; Cao, G.; Xu, Z.; Loewenhaupt, M.; Hu, J.; et al. Inelastic Neutron-Scattering Measurements of a Three-Dimensional Spin Resonance in the FeAs-Based BaFe1.9Ni0.1As2 Superconductor. Phys. Rev. Lett. 2009, 102, 107006. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, Y.; Chang, S.; Lynn, J.W.; Li, L.; Luo, Y.; Cao, G.; Xu, Z.; Dai, P. Spin gap and magnetic resonance in superconducting BaFe1.9Ni0.1As2. Phys. Rev. B 2009, 79, 174527. [Google Scholar] [CrossRef]
- Shamoto, S.; Ishikado, M.; Christianson, A.D.; Lumsden, M.D.; Wakimoto, S.; Kodama, K.; Iyo, A.; Arai, M. Inelastic neutron scattering study of the resonance mode in the optimally doped pnictide superconductor LaFeAsO0.92F0.08. Phys. Rev. B 2010, 82, 172508. [Google Scholar] [CrossRef]
- Onari, S.; Kontani, H. Neutron inelastic scattering peak by dissipationless mechanism in the s++-wave state in iron-based superconductors. Phys. Rev. B 2011, 84, 144518. [Google Scholar] [CrossRef]
- Korshunov, M.M.; Eremin, I. Theory of magnetic excitations in iron-based layered superconductors. Phys. Rev. B 2008, 78, 140509(R). [Google Scholar] [CrossRef]
- Okazaki, K.; Ito, Y.; Ota, Y.; Kotani, Y.; Shimojima, T.; Kiss, T.; Watanabe, S.; Chen, C.-T.; Niitaka, S.; Hanaguri, T.; et al. Evidence for a cos(4ϕ) Modulation of the Superconducting Energy Gap of Optimally Doped FeTe0:6Se0:4 Single Crystals Using Laser Angle-Resolved Photoemission Spectroscopy. Phys. Rev. Lett. 2012, 109, 237011. [Google Scholar] [CrossRef] [PubMed]
- Hanaguri, T.; Iwaya, K.; Kohsaka, Y.; Machida, T.; Watashige, T.; Kasahara, S.; Shibauchi, T.; Matsuda, Y. Two distinct superconducting pairing states divided by the nematic end point in FeSe1−xSx. Sci. Adv. 2018, 4, eaar6419. [Google Scholar] [CrossRef] [PubMed]
- Nagai, Y.; Kuroki, K. Determination of the pairing state in iron-based superconductors through neutron scattering. Phys. Rev. B 2011, 83, 220516(R). [Google Scholar] [CrossRef]
- Nagai, Y.; Kuroki, K. Q-scan analysis of the neutron scattering in iron-based superconductors. Phys. Rev. B 2012, 85, 134521. [Google Scholar] [CrossRef]
- Lumsden, M.D.; Christianson, A.D.; Goremychkin, E.A.; Nagler, S.E.; Mook, H.A.; Stone, M.B.; Abernathy, D.L.; Guidi, T.; MacDougall, G.J.; de la Cruz, C.; et al. Evolution of spin excitations into the superconducting state in FeTe1−xSex. Nat. Phys. 2010, 6, 182–186. [Google Scholar] [CrossRef]
- Lumsden, M.D.; Christianson, A.D. Magnetism in Fe-based superconductors. J. Phys. Condens. Matter 2010, 22, 203203. [Google Scholar] [CrossRef]
- Friemel, G.; Park, J.T.; Maier, T.A.; Tsurkan, V.; Li, Y.; Deisenhofer, J.; Krug von Nidda, H.-A.; Loidl, A.; Ivanov, A.; Keimer, B.; et al. Reciprocal-space structure and dispersion of the magnetic resonant mode in the superconducting phase of RbxFe2−ySe2 single crystals. Phys. Rev. B 2012, 85, 140511(R). [Google Scholar] [CrossRef]
- Zhang, C.; Wang, M.; Luo, H.; Wang, M.; Liu, M.; Zhao, J.; Abernathy, D.L.; Maier, T.A.; Marty, K.; Lumsdenm, M.D.; et al. Neutron Scattering Studies of spin excitations in hole-doped Ba0.67K0.33Fe2As2 superconductor. Sci. Rep. 2011, 1, 115. [Google Scholar] [CrossRef]
- Inosov, D.S.; Park, J.T.; Bourges, P.; Sun, D.L.; Sidis, Y.; Schneidewind, A.; Hradil, K.D.; Lin, C.T.; Keimer, B.; Hinkov, V. Normal-state spin dynamics and temperature-dependent spin-resonance energy in optimally doped BaFe1.85Co0.15As2. Nat. Phys. 2010, 6, 178. [Google Scholar] [CrossRef]
- Qiu, Y.; Bao, W.; Zhao, Y.; Broholm, C.; Stanev, V.; Tesanovic, Z.; Gasparovic, Y.C.; Chang, S.; Hu, J.; Qian, B.; et al. Spin Gap and Resonance at the NestingWave Vector in Superconducting FeSe0.4Te0.6. Phys. Rev. Lett. 2009, 103, 067008. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H.-F.; Song, Y.; Su, Y.; Tan, G.; Netherton, T.; Redding, C.; Carr, S.V.; Sobolev, O.; Schneidewind, A.; et al. Distinguishing s± and s++ electron pairing symmetries by neutron spin resonance in superconducting NaFe0.935Co0.045As. Phys. Rev. B 2013, 88, 064504. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Richard, P.; Nakayama, K.; Chen, G.-F.; Dong, S.; He, J.-B.; Wang, D.-M.; Xia, T.-L.; Umezawa, K.; Kawahara, T.; et al. Unconventional superconducting gap in NaFe0.95Co0.05As observed by angle-resolved photoemission spectroscopy. Phys. Rev. B 2011, 84, 064519. [Google Scholar] [CrossRef]
- Thirupathaiah, S.; Evtushinsky, D.V.; Maletz, J.; Zabolotnyy, V.B.; Kordyuk, A.A.; Kim, T.K.; Wurmehl, S.; Roslova, M.; Morozov, I.; Büchner, B.; et al. Weak-coupling superconductivity in electron-doped NaFe0.95Co0.05As revealed by ARPES. Phys. Rev. B 2012, 86, 214508. [Google Scholar] [CrossRef]
- Miao, H.; Richard, P.; Tanaka, Y.; Nakayama, K.; Qian, T.; Umezawa, K.; Sato, T.; Xu, Y.-M.; Shi, Y.B.; Xu, N.; et al. Isotropic superconducting gaps with enhanced pairing on electron Fermi surfaces in FeTe0.55Se0.45. Phys. Rev. B 2012, 85, 094506. [Google Scholar] [CrossRef]
- Hu, J.; Liu, T.J.; Qian, B.; Rotaru, A.; Spinu, L.; Mao, Z.Q. Calorimetric evidence of strong-coupling multiband superconductivity in Fe(Te0.57Se0.43) single crystal. Phys. Rev. B 2011, 83, 134521. [Google Scholar] [CrossRef]
- Bianconi, A. Quantum materials: Shape resonances in superstripes. Nat. Phys. 2013, 9, 536. [Google Scholar] [CrossRef]
- Caivano, R.; Fratini, M.; Poccia, N.; Ricci, A.; Puri, A.; Ren, Z.A.; Dong, X.-L.; Yang, J.; Lu, W.; Zhao, Z.-X.; et al. Feshbach resonance and mesoscopic phase separation neara quantum critical point in multiband FeAs-based superconductors. Supercond. Sci. Technol. 2008, 22, 014004. [Google Scholar] [CrossRef]
- Zhang, P.; Yaji, K.; Hashimoto, T.; Ota, Y.; Kondo, T.; Okazaki, K.; Wang, Z.; Wen, J.; Gu, G.D.; Ding, H.; et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 2018, 360, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Kajimoto, R.; Nakamura, M.; Inamura, Y.; Mizuno, F.; Nakajima, K.; Ohira-Kawamura, S.; Yokoo, T.; Nakatani, T.; Maruyama, R.; Soyama, K.; et al. The Fermi Chopper Spectrometer 4SEASONS at J-PARC. J. Phys. Soc. Jpn. 2011, 80, SB025. [Google Scholar] [CrossRef]
- Nakamura, M.; Kajimoto, R.; Inamura, Y.; Mizuno, F.; Fujita, M.; Yokoo, T.; Arai, M. First Demonstration of Novel Method for Inelastic Neutron Scattering Measurement Utilizing Multiple Incident Energies. J. Phys. Soc. Jpn. 2009, 78, 093002. [Google Scholar] [CrossRef]
- Inamura, Y.; Nakatani, T.; Suzuki, J.; Otomo, T. Development Status of Software “Utsusemi” for Chopper Spectrometers at MLF, J-PARC. J. Phys. Soc. Jpn. 2013, 82, SA031. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishikado, M.; Kodama, K.; Kajimoto, R.; Nakamura, M.; Inamura, Y.; Ikeuchi, K.; Ji, S.; Arai, M.; Shamoto, S.-i. Q Dependence of Magnetic Resonance Mode on FeTe0.5Se0.5 Studied by Inelastic Neutron Scattering. Condens. Matter 2019, 4, 69. https://doi.org/10.3390/condmat4030069
Ishikado M, Kodama K, Kajimoto R, Nakamura M, Inamura Y, Ikeuchi K, Ji S, Arai M, Shamoto S-i. Q Dependence of Magnetic Resonance Mode on FeTe0.5Se0.5 Studied by Inelastic Neutron Scattering. Condensed Matter. 2019; 4(3):69. https://doi.org/10.3390/condmat4030069
Chicago/Turabian StyleIshikado, Motoyuki, Katsuaki Kodama, Ryoichi Kajimoto, Mitsutaka Nakamura, Yasuhiro Inamura, Kazuhiko Ikeuchi, Sungdae Ji, Masatoshi Arai, and Shin-ichi Shamoto. 2019. "Q Dependence of Magnetic Resonance Mode on FeTe0.5Se0.5 Studied by Inelastic Neutron Scattering" Condensed Matter 4, no. 3: 69. https://doi.org/10.3390/condmat4030069
APA StyleIshikado, M., Kodama, K., Kajimoto, R., Nakamura, M., Inamura, Y., Ikeuchi, K., Ji, S., Arai, M., & Shamoto, S. -i. (2019). Q Dependence of Magnetic Resonance Mode on FeTe0.5Se0.5 Studied by Inelastic Neutron Scattering. Condensed Matter, 4(3), 69. https://doi.org/10.3390/condmat4030069