Next Article in Journal
High-Energy X-Ray Compton Scattering Imaging of 18650-Type Lithium-Ion Battery Cell
Previous Article in Journal
Operational Algorithms for Separable Qubit X States
Open AccessArticle

First-Principles Investigations of Single Metal Atoms (Sc, Ti, V, Cr, Mn, and Ni) Embedded in Hexagonal Boron Nitride Nanosheets for the Catalysis of CO Oxidation

by 1,2,3, Li-Ming Yang 1,2,3,* and 4
1
Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3
Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
4
School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455, USA
*
Author to whom correspondence should be addressed.
Condens. Matter 2019, 4(3), 65; https://doi.org/10.3390/condmat4030065
Received: 4 June 2019 / Revised: 3 July 2019 / Accepted: 6 July 2019 / Published: 10 July 2019
We evaluated isolated transition metal atoms (Sc, Ti, V, Cr, Mn, and Ni) embedded in hexagonal-BN as novel single atom catalysts for CO oxidation. We predicted that embedded Ni atoms should have superior performance for this task. Ti, V, and Mn bind CO2 too strongly and so the reaction will not proceed smoothly. We studied the detailed reaction processes for Sc, Cr, and Ni. The Langmuir–Hinshelwood (LH), Eley–Rideal (ER), and the new termolecular Eley–Rideal (TER) processes for CO oxidation were investigated. Sc was not effective. Cr primarily used the ER process, although the barrier was relatively large at 1.30 eV. Ni was the best of the group, with a 0.44 eV barrier for LH, and a 0.47 eV barrier for TER. Therefore, we predicted that the LH and TER processes could operate at relatively low temperatures between 300 and 500 K. View Full-Text
Keywords: hexagonal boron nitride; single atom catalyst; CO oxidation; catalysis hexagonal boron nitride; single atom catalyst; CO oxidation; catalysis
Show Figures

Graphical abstract

MDPI and ACS Style

Liu, Y.; Yang, L.-M.; Ganz, E. First-Principles Investigations of Single Metal Atoms (Sc, Ti, V, Cr, Mn, and Ni) Embedded in Hexagonal Boron Nitride Nanosheets for the Catalysis of CO Oxidation. Condens. Matter 2019, 4, 65.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop