Synchrotron Radiation Research and Analysis of the Particulate Matter in Deep Ice Cores: An Overview of the Technical Challenges
Abstract
:1. Introduction
2. Methods
2.1. Elemental Composition Analysis
2.2. Sample Preparation and Handling
2.3. Experimental
3. Results and Discussion
3.1. X-Ray Fluorescence and X-Ray Absorption Spectroscopy in Grazing Incidence Geometry
3.2. Normal Incidence Geometry
- (a)
- Reducing the low level, diffuse, out-of-focus contribution from the beamline optics (caused by mirror coatings roughness and vacuum windows) using beam stripping slits placed just before the ionization chamber monitoring the incoming beam intensity;
- (b)
- Reducing further contributions from small angle scattering by the ionization chamber windows (Kapton, thickness: 50 μm), by modifying the position of the ion chamber, increasing its distance to the entrance of the experimental chamber and adding a plastic collimator at the entrance of the chamber. The collimator, while still allowing for scanning the experimental chamber to map the sample position, ensured any diffuse beam to propagate through the sample position to the end aperture of the vacuum chamber (Figure 4);
- (c)
- Reducing diffuse scattering from the residual gas in the vacuum chamber, improving the pumping system (experiments were always run under turbo-molecular pumping, ensuring a measurement pressure lower than 1 mbar);
- (d)
- Filtering the fluorescence from the chamber walls by covering the internal walls with a 2 mm-thick polycarbonate lining and ensuring the beam exit path is free from metal sections close to the diffuse scattering from the sample support;
- (e)
- Finally, minimizing the collection field of view by adding a clean PTFE collimator placed in front of the 4-elements SDD detector.
3.3. X-Ray Absorption Spectroscopy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G. Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef]
- Maher, B.; Prospero, J.M.; Mackie, D.; Gaiero, D.; Hesse, P.P.; Balkanski, Y. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth Sci. Rev. 2010, 99, 61–97. [Google Scholar] [CrossRef]
- Delmonte, B.; Andersson, P.S.; Hansson, M.; Schoeberg, H.; Petit, J.; Basile-Doelsch, I.; Maggi, V. Aeolian dust in East Antarctica (EPICA-Dome C and Vostok): Provenance during glacial ages over the last 800 kyr. Geophys. Res. Lett. 2008, 35, L07703. [Google Scholar] [CrossRef]
- EPICA community members. Eight glacial cycles from an Antarctic ice core. Nature 2004, 429, 623–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sala, M.; Sala, M.; Delmonte, B.; Frezzotti, M.; Proposito, M.; Scarchilli, C.; Maggi, V.; Artioli, G.; Daoiaggi, M.; Marino, F.; et al. Evidence of calcium carbonates in coastal (Talos Dome and Ross Sea area) East Antarctica snow and firn: Environmental and climatic implications. Earth Planet. Sci. Lett. 2008, 271, 43–52. [Google Scholar] [CrossRef]
- Briat, M.; Royer, A.; Petit, J.R.; Lorius, C. Late glacial input of eolian continental dust in the Dome C ice core: Additional evidence from individual microparticle analysis. Ann. Glaciol. 1982, 3, 27–30. [Google Scholar] [CrossRef]
- Gaudichet, A.; Angelis, M.D.; Lefevre, R.; Petit, J.R.; Korotkevitch, Y.S.; Petrov, V.N. Mineralogy of insoluble particles in the Vostok Antarctic ice core over the last climatic cycle (150 kyr). Geophys. Res. Lett. 1988, 15, 1471–1474. [Google Scholar] [CrossRef]
- Dapiaggi, M.; Sala, M.; Artioli, G.; Fransen, M.J. Evaluation of the phase detection limit on filter-deposited dust particles from Antarctic ice cores. Zeit. Kristallog. Kristallogr. Suppl. 2007, 26, 73–78. [Google Scholar] [CrossRef]
- Lambert, F.; Delmonte, B.; Petit, J.R.; Bigler, M.; Kaufmann, P.R.; Hutterli, M.A.; Stocker, T.F.; Ruth, U.; Steffensen, J.P.; Maggi, V. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 2008, 452, 616–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegner, A.; Fischer, H.; Delmonte, B.; Petit, J.R.; Erhardt, T.; Ruth, U.; Svensson, A.; Vinther, B.; Miller, H. The role of seasonality of mineral dust concentration and size on glacial/interglacial dust changes in the EPICA Dronning Maud Land ice core. J. Geophys. Res. Atmos. 2015, 120, 9916–9931. [Google Scholar] [CrossRef] [Green Version]
- Marino, F.; Maggi, V.; Delmonte, B.; Ghermandi, G.; Petit, J. Elemental composition (Si, Fe, Ti) of atmospheric dust over the last 220 kyr from the EPICA ice core (Dome C, Antarctica). Ann. Glaciol. 2004, 39, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Baccolo, G.; Maffezzoli, N.; Clemenza, M.; Delmonte, B.; Prata, M.; Salvini, A.; Maggi, V.; Previtali, E. Low background neutron activation analysis: A powerful tool for atmopsheric mineral dust analyisis in ice cores. J. Radioanal. Nucl. Chem. 2015, 306, 589–597. [Google Scholar] [CrossRef]
- Vanhoof, C.; Bacon, J.R.; Ellis, A.T.; Vincze, L.; Wobrauschek, P. 2018 atomic spectrometry update—A review of advances in X-ray fluorescence spectrometry and its special applications. J. Anal. At. Spectrom. 2018, 33, 1413–1431. [Google Scholar] [CrossRef]
- Karydas, A.G.; Czyzycki, M.; Leani, J.J.; Migliori, A.; Osan, J.; Bogovac, M.; Wrobel, P.; Vakula, N.; Padilla-Alvarez, R.; Menk, R.H.; et al. An IAEA multi-technique X-ray spectrometry endstation at Elettra Sincrotrone Trieste: benchmarking results and interdisciplinary applications. J. Synchrotron Radiat. 2018, 25, 189–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EuroCold Lab. Available online: http://www.eurocold.unimib.it/ (accessed on 1 June 2019).
- Mackey, E.A.; Christopher, S.J.; Lindstrom, R.M.; Long, S.E.; Marlow, A.F.; Murphy, K.E.; Paul, R.L.; Popelka-Filcoff, R.S.; Rabb, S.A.; Sieber, J.R.; et al. Certification of Three NIST Renewal Soil Standard Reference Materials for Element Content: SRM 2709a San Joaquin Soil, SRM 2710a Montana Soil I, and SRM 2711a Montana Soil II; NIST Special Publication 260-172; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010; p. 39. [CrossRef]
- Cibin, G.; Marcelli, A.; Maggi, V.; Sala, M.; Marino, F.; Delmonte, B.; Albani, S.; Pignotti, S. First combined total reflection X-ray fluorescence and grazing incidence X-ray absorption spectroscopy characterization of aeolian dust archived in Antarctica and Alpine deep ice cores. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 1503–1510. [Google Scholar] [CrossRef]
- Macis, S.; Cibin, G.; Maggi, V.; Baccolo, G.; Hampai, D.; Delmonte, B.; D’Elia, A.; Marcelli, A. Microdrop Deposition Technique: Preparation and Characterization of Diluted Suspended Particulate Samples. Condens. Matter 2018, 3, 21. [Google Scholar] [CrossRef]
- Dent, A.J.; Cibin, G.; Ramos, S.; Parry, S.A.; Gianolio, D.; Smith, A.D.; Scott, S.M.; Varandas, L.; Patel, S.; Pearson, M.R.; et al. Performance of B18, the Core EXAFS Bending Magnet beamline at Diamond. J. Phys. Conf. Ser. 2013, 430, 012023. [Google Scholar] [CrossRef] [Green Version]
- Maggi, V.; Baccolo, G.; Cibin, G.; Delmonte, B.; Hampai, D.; Marcelli, A. XANES Iron Geochemistry in the Mineral Dust of the Talos Dome Ice Core (Antarctica) and the Southern Hemisphere Potential Source Areas. Condens. Matter 2018, 3, 45. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cibin, G.; Marcelli, A.; Maggi, V.; Baccolo, G.; Hampai, D.; Robbins, P.E.; Liedl, A.; Polese, C.; D’Elia, A.; Macis, S.; et al. Synchrotron Radiation Research and Analysis of the Particulate Matter in Deep Ice Cores: An Overview of the Technical Challenges. Condens. Matter 2019, 4, 61. https://doi.org/10.3390/condmat4030061
Cibin G, Marcelli A, Maggi V, Baccolo G, Hampai D, Robbins PE, Liedl A, Polese C, D’Elia A, Macis S, et al. Synchrotron Radiation Research and Analysis of the Particulate Matter in Deep Ice Cores: An Overview of the Technical Challenges. Condensed Matter. 2019; 4(3):61. https://doi.org/10.3390/condmat4030061
Chicago/Turabian StyleCibin, Giannantonio, Augusto Marcelli, Valter Maggi, Giovanni Baccolo, Dariush Hampai, Philip E. Robbins, Andrea Liedl, Claudia Polese, Alessandro D’Elia, Salvatore Macis, and et al. 2019. "Synchrotron Radiation Research and Analysis of the Particulate Matter in Deep Ice Cores: An Overview of the Technical Challenges" Condensed Matter 4, no. 3: 61. https://doi.org/10.3390/condmat4030061
APA StyleCibin, G., Marcelli, A., Maggi, V., Baccolo, G., Hampai, D., Robbins, P. E., Liedl, A., Polese, C., D’Elia, A., Macis, S., Grilli, A., & Raco, A. (2019). Synchrotron Radiation Research and Analysis of the Particulate Matter in Deep Ice Cores: An Overview of the Technical Challenges. Condensed Matter, 4(3), 61. https://doi.org/10.3390/condmat4030061