On the Nanoscale Structure of KxFe2−yCh2 (Ch = S, Se): A Neutron Pair Distribution Function View
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Qualitative Data Comparison
3.2. Model Dependent PDF Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hsu, F.-C.; Luo, J.-Y.; Yeh, K.-W.; Chen, T.-K.; Huang, T.-W.; Wu, P.M.; Lee, Y.-C.; Huang, Y.-L.; Chu, Y.-Y.; Yan, D.-C.; et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. USA 2008, 105, 14262–14264. [Google Scholar] [CrossRef] [PubMed]
- Malavasi, L.; Margadonna, S. Structure–properties correlations in Fe chalcogenide superconductors. Chem. Soc. Rev. 2012, 41, 3897–3911. [Google Scholar] [CrossRef] [PubMed]
- Margadonna, S.; Takabayashi, Y.; Ohishi, Y.; Mizuguchi, Y.; Takano, Y.; Kagayama, T.; Nakagawa, T.; Takata, M.; Prassides, K. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (TC = 37 K). Phys. Rev. B 2009, 80, 064506. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, Y.; Xia, M.; Ye, Z.; Chen, F.; Xie, X.; Peng, R.; Xu, D.; Fan, Q.; Xu, H.; et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 2013, 12, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.-F.; Liu, Z.-L.; Liu, C.; Gao, C.-L.; Qian, D.; Xue, Q.-K.; Liu, Y.; Jia, J.-F. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 2015, 14, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.H.; Pham, H.M.; Qian, B.; Liu, T.J.; Vehstedt, E.K.; Liu, Y.; Spinu, L.; Mao, Z.Q. Superconductivity close to magnetic instability in Fe(Se1−xTex)0.82. Phys. Rev. B 2008, 78. [Google Scholar] [CrossRef]
- Yeh, K.-W.; Huang, T.-W.; Huang, Y.; Chen, T.-K.; Hsu, F.-C.; Wu, P.M.; Lee, Y.-C.; Chu, Y.-Y.; Chen, C.-L.; Luo, J.-Y.; et al. Tellurium substitution effect on superconductivity of the α-phase iron selenide. EPL Europhys. Lett. 2008, 84, 37002. [Google Scholar] [CrossRef]
- Katayama, N.; Ji, S.; Louca, D.; Lee, S.; Fujita, M.; Sato, T.J.; Wen, J.; Xu, Z.; Gu, G.; Xu, G.; et al. Investigation of the Spin-Glass Regime between the Antiferromagnetic and Superconducting Phases in Fe1+ySexTe1-x. J. Phys. Soc. Jpn. 2010, 79, 113702. [Google Scholar] [CrossRef]
- Guo, J.; Jin, S.; Wang, G.; Wang, S.; Zhu, K.; Zhou, T.; He, M.; Chen, X. Superconductivity in the iron selenide KxFe2Se2 (0 ≤ x ≤ 1.0). Phys. Rev. B 2010, 82. [Google Scholar] [CrossRef]
- Ye, F.; Chi, S.; Bao, W.; Wang, X.F.; Ying, J.J.; Chen, X.H.; Wang, H.D.; Dong, C.H.; Fang, M. Common Crystalline and Magnetic Structure of Superconducting A2Fe4Se5 (A = K, Rb, Cs, Tl) Single Crystals Measured Using Neutron Diffraction. Phys. Rev. Lett. 2011, 107, 137003. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, D.P.; Chung, D.Y.; Claus, H.; Francisco, M.C.; Avci, S.; Llobet, A.; Kanatzidis, M.G. Phase relations in KxFe2−ySe2 and the structure of superconducting KxFe2Se2 via high-resolution synchrotron diffraction. Phys. Rev. B 2012, 86. [Google Scholar] [CrossRef]
- Vivanco, H.K.; Rodriguez, E.E. The intercalation chemistry of layered iron chalcogenide superconductors. J. Solid State Chem. 2016, 242, 3–21. [Google Scholar] [CrossRef]
- Carr, S.V.; Louca, D.; Siewenie, J.; Huang, Q.; Wang, A.; Chen, X.; Dai, P. Structure and composition of the superconducting phase in alkali iron selenide KyFe1.6+xSe2. Phys. Rev. B 2014, 89, 134509. [Google Scholar] [CrossRef]
- Tanaka, M.; Yanagisawa, Y.; Denholme, S.J.; Fujioka, M.; Funahashi, S.; Matsushita, Y.; Ishizawa, N.; Yamaguchi, T.; Takeya, H.; Takano, Y. Origin of the Higher-Tc Phase in the KxFe2−ySe2 System. J. Phys. Soc. Jpn. 2016, 85, 044710. [Google Scholar] [CrossRef]
- Lei, H.; Abeykoon, M.; Bozin, E.S.; Wang, K.; Warren, J.B.; Petrovic, C. Phase Diagram of KxFe2−ySe2−zSz and the Suppression of its Superconducting State by an Fe2-Se/S Tetrahedron Distortion. Phys. Rev. Lett. 2011, 107. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Abeykoon, M.; Bozin, E.S.; Petrovic, C. Spin-glass behavior of semiconducting KxFe2−yS2. Phys. Rev. B 2011, 83. [Google Scholar] [CrossRef]
- Billinge, S.J.L.; Egami, T. Underneath the Bragg Peaks: Structural Analysis of Complex Materials; Pergamon Materials Series; Elsevier: Oxford, UK, 2003; Volume 7. [Google Scholar]
- Neuefeind, J.; Feygenson, M.; Carruth, J.; Hoffmann, R.; Chipley, K.K. The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS. Nucl. Instrum. Methods Phys. Res. Sect. B 2012, 287, 68–75. [Google Scholar] [CrossRef]
- Peterson, P.F.; Gutmann, M.; Proffen, T.; Billinge, S.J.L. PDFgetN: A user-friendly program to extract the total scattering structure factor and the pair distribution function from neutron powder diffraction data. J. Appl. Crystallogr. 2000, 33, 1192. [Google Scholar] [CrossRef]
- Farrow, C.L.; Juhas, P.; Liu, J.W.; Bryndin, D.; Božin, E.S.; Bloch, J.; Proffen, T.; Billinge, S.J.L. PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter 2007, 19, 335219. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Lazarević, N.; Abeykoon, M.; Stephens, P.W.; Lei, H.; Bozin, E.S.; Petrovic, C.; Popović, Z.V. Vacancy-induced nanoscale phase separation in KxFe2−ySe2 single crystals evidenced by Raman scattering and powder X-ray diffraction. Phys. Rev. B 2012, 86. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Ikeda, S.; Zhang, X.-W.; Kishimoto, S.; Kikegawa, T.; Hirao, N.; Kawaguchi, S.I.; Ohishi, Y.; Kobayash, H. Pressure-Induced Phase Transition in KxFe2−yS2. J. Phys. Soc. Jpn. 2017, 86. [Google Scholar] [CrossRef]
- Xu, Z.; Schneeloch, J.A.; Wen, J.; Božin, E.S.; Granroth, G.E.; Winn, B.L.; Feygenson, M.; Birgeneau, R.J.; Gu, G.; Zaliznyak, I.A.; et al. Thermal evolution of antiferromagnetic correlations and tetrahedral bond angles in superconducting FeTe1−xSex. Phys. Rev. B 2016, 93, 104517. [Google Scholar] [CrossRef]
- Lai, X.; Zhang, H.; Wang, Y.; Wang, X.; Zhang, X.; Lin, J.; Huang, F. Observation of Superconductivity in Tetragonal FeS. J. Am. Chem. Soc. 2015, 137, 10148–10151. [Google Scholar] [CrossRef] [PubMed]
- Mizuguchi, Y.; Hara, Y.; Deguchi, K.; Tsuda, S.; Yamaguchi, T.; Takeda, K.; Kotegawa, H.; Tou, H.; Takano, Y. Anion height dependence of Tc for the Fe-based superconductor. Supercond. Sci. Technol. 2010, 23, 054013. [Google Scholar] [CrossRef]
- Lee, C.-H.; Iyo, A.; Eisaki, H.; Kito, H.; Fernandez-Diaz, M.T.; Ito, T.; Kihou, K.; Matsuhata, H.; Braden, M.; Yamada, K. Effect of Structural Parameters on Superconductivity in Fluorine-Free LnFeAsO1-y (Ln = La, Nd). J. Phys. Soc. Jpn. 2008, 77, 083704. [Google Scholar] [CrossRef]
I4/m | a = b (Å) | c (Å) | d1 (Å) 1 | d2 (Å) 2 | d3 (Å) 2 | d4 (Å) 2 | hCh (Å) |
---|---|---|---|---|---|---|---|
K2Fe4.27(1)Se5 | 8.683(1) | 14.001(3) | 2.337(8) | 2.446(2) | 2.451(3) | 2.512(5) | 1.396(9) |
K2Fe4.27(1)S5 | 8.395(2) | 13.437(2) | 2.283(5) | 2.321(8) | 2.332(5) | 2.37(1) | 1.282(8) |
Cmma | a (Å) | b (Å) | c (Å) | d (Å) × 4 | - | - | hCh (Å) |
FeSe | 5.3147(5) | 5.3367(5) | 5.4855(3) | 2.383(1) | - | - | 1.461(2) |
P4/nmm | a = b (Å) | c (Å) | d (Å) × 4 | - | - | - | hCh (Å) |
FeS | 3.6802(5) | 5.0307(7) | 2.235(1) | - | - | - | 1.270(1) |
I4/m | Intra-Cluster Fe-Fe (Å) | Inter-Cluster Fe-Fe (Å) | K, Uiso (Å2) | Fe, Uiso (Å2) | Ch, Uiso (Å2) |
---|---|---|---|---|---|
K2Fe4.27(1)Se5 | 2.649(4) | 2.897(5) | 0.0231(7) | 0.0087(1) | 0.0067(1) |
K2Fe4.27(1)S5 | 2.672(1) | 2.746(1) | 0.0236(2) | 0.0093(1) | 0.0032(1) |
Cmma | Fe-Fe(1) (Å) | Fe-Fe(2) (Å) | |||
FeSe | 2.657(1) | 2.667(1) | - | 0.0043(7) | 0.0033(9) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangelis, P.; Lei, H.; McDonnell, M.T.; Feygenson, M.; Petrovic, C.; Bozin, E.S.; Lappas, A. On the Nanoscale Structure of KxFe2−yCh2 (Ch = S, Se): A Neutron Pair Distribution Function View. Condens. Matter 2018, 3, 20. https://doi.org/10.3390/condmat3030020
Mangelis P, Lei H, McDonnell MT, Feygenson M, Petrovic C, Bozin ES, Lappas A. On the Nanoscale Structure of KxFe2−yCh2 (Ch = S, Se): A Neutron Pair Distribution Function View. Condensed Matter. 2018; 3(3):20. https://doi.org/10.3390/condmat3030020
Chicago/Turabian StyleMangelis, Panagiotis, Hechang Lei, Marshall T. McDonnell, Mikhail Feygenson, Cedomir Petrovic, Emil S. Bozin, and Alexandros Lappas. 2018. "On the Nanoscale Structure of KxFe2−yCh2 (Ch = S, Se): A Neutron Pair Distribution Function View" Condensed Matter 3, no. 3: 20. https://doi.org/10.3390/condmat3030020
APA StyleMangelis, P., Lei, H., McDonnell, M. T., Feygenson, M., Petrovic, C., Bozin, E. S., & Lappas, A. (2018). On the Nanoscale Structure of KxFe2−yCh2 (Ch = S, Se): A Neutron Pair Distribution Function View. Condensed Matter, 3(3), 20. https://doi.org/10.3390/condmat3030020