Antimatter Research at the CERN Antiproton Decelerator: Legacy of Guido Barbiellini Amidei
Abstract
:1. Introduction
- Future Circular Collider (FCC): A 91 km circular collider proposed at CERN [13], potentially operational by around 2045. It aims to achieve extremely high luminosities, enabling rapid data collection (e.g., Z decays, Higgs bosons), and may accommodate up to four interaction points (IPs) for parallel experiments.
- International Linear Collider (ILC): A mature design based on superconducting niobium RF cavities operating at 1.3 GHz, achieving gradients of approximately 35 MV/m. It features two linacs (for and ) and a single interaction point. The baseline energy is 250 GeV (30 km), upgradeable to 1 TeV. Although a site has been identified in Japan, political approval is still pending.
- Compact Linear Collider (CLIC): Uses normal-conducting RF cavities at 12 GHz, achieving higher gradients of around 100 MV/m. It is planned in stages, that is, 380 GeV (11 km) up to 3 TeV (50 km). The design employs a two-beam acceleration system, where a low-energy, high-current drive beam powers the RF cavities of the main linac. CLIC could be hosted at CERN.
- Circular Electron Positron Collider (CEPC): A circular collider proposed in China, with a design concept similar to the FCC.
2. Physics at the AD at CERN
2.1. AEgIS
2.2. ALPHA
2.3. ASACUSA
2.4. BASE
2.5. GBAR
2.6. PUMA
3. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbiellini, G.; Orito, S.; Tsuru, T.; Visentin, R.; Ceradini, F.; Conversi, M.; d’Angelo, S.; Ferrer, M.L.; Paoluzi, L.; Santonico, R. Muon Pair Production by Photon-Photon Interactions in e+e− Storage Rings. Phys. Rev. Lett. 1974, 32, 385–388. [Google Scholar] [CrossRef]
- Barbiellini, G.; Fedel, G.; Liello, F.; Longo, F.; Pontoni, C.; Prest, M.; Tavani, M.; Vallazza, E. The AGILE silicon tracker: Testbeam results of the prototype silicon detector. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2002, 490, 146–158. [Google Scholar] [CrossRef]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The large area telescope on the Fermi gamma-ray space telescope mission. Astrophys. J. 2009, 697, 1071. [Google Scholar] [CrossRef]
- His friends and colleagues. Guido Barbiellini 1936–2024. A physicist of extraordinary creativity. CERN Courr. 2025, 65, 50. Available online: https://cerncourier.com/a/guido-barbiellini-1936-2024/ (accessed on 28 May 2025).
- Ferragut, R. Remembering Alfredo Dupasquier. AIP Conf. Proc. 2019, 2182, 020002. [Google Scholar] [CrossRef]
- Abreu, P.; Adam, W.; Adye, T.; Agasi, E.; Ajinenko, I.; Aleksan, R.; Alekseev, G.D.; Alemany, R.; Allport, P.P.; Almehed, S.; et al. Performance of the DELPHI detector. Nucl. Instrum. Methods Phys. Res. A 1996, 378, 57–100. [Google Scholar] [CrossRef]
- Phillips, H.T. W Physics Results from Delphi. In High-Energy Physics and Cosmology: Celebrating the Impact of 25 Years of Coral Gables Conferences; Kursunoglu, B.N., Mintz, S.L., Perlmutter, A., Eds.; Springer: Boston, MA, USA, 1997; pp. 223–235. [Google Scholar] [CrossRef]
- Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O.; et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 1–29. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar] [CrossRef]
- ATLAS Collaboration. A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery. Nature 2022, 607, 52–59. [Google Scholar] [CrossRef]
- CMS Collaboration. A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature 2022, 607, 60–68. [Google Scholar] [CrossRef]
- Forty, R. Collider experiments: The LHC and beyond. In Proceedings of the 2023 CERN Latin-American School for High-Energy Physics, San Esteban, Chile, 15–28 March 2023; Volume 2, pp. 197–286. [Google Scholar] [CrossRef]
- Castelvecchi, D. The biggest machine in science: Inside the fight to build the next giant particle collider. Nature 2025, 639, 560–563. [Google Scholar] [CrossRef]
- Caravita, R.; Cridland Mathad, A.; Hangst, J.S.; Hori, M.; Latacz, B.M.; Obertelli, A.; Perez, P.; Ulmer, S.; Widmann, E. CERN AD/ELENA antimatter program. arXiv 2025, arXiv:2503.22471. [Google Scholar] [CrossRef]
- Baur, G.; Boero, G.; Brauksiepe, A.; Buzzo, A.; Eyrich, W.; Geyer, R.; Grzonka, D.; Hauffe, J.; Kilian, K.; LoVetere, M.; et al. Production of antihydrogen. Phys. Lett. B 1996, 368, 251–258. [Google Scholar] [CrossRef]
- Blanford, G.; Christian, D.C.; Gollwitzer, K.; Mandelkern, M.; Munger, C.T.; Schultz, J.; Zioulas, G. Observation of Atomic Antihydrogen. Phys. Rev. Lett. 1998, 80, 3037–3040. [Google Scholar] [CrossRef]
- Amoretti, M.; Amsler, C.; Bonomi, G.; Bouchta, A.; Bowe, P.; Carraro, C.; Cesar, C.L.; Charlton, M.; Collier, M.J.T.; Doser, M.; et al. Production and detection of cold antihydrogen atoms. Nature 2002, 419, 456–459. [Google Scholar] [CrossRef]
- Gabrielse, G.; Estrada, J.; Tan, J.; Yesley, P.; Bowden, N.; Oxley, P.; Roach, T.; Storry, C.; Wessels, M.; Tan, J.; et al. First positron cooling of antiprotons. Phys. Lett. B 2001, 507, 1–6. [Google Scholar] [CrossRef]
- Kellerbauer, A.; Amoretti, M.; Belov, A.S.; Bonomi, G.; Boscolo, I.; Brusa, R.S.; Büchner, M.; Byakov, V.M.; Cabaret, L.; Canali, C.; et al. Proposed antimatter gravity measurement with an antihydrogen beam. Nucl. Instrum. Methods Phys. Res. B 2008, 266, 351–356. [Google Scholar] [CrossRef]
- Ferragut, R.; Belov, A.S.; Bonomi, G.; Boscolo, I.; Brusa, R.S.; Byakov, V.M.; Cabaret, L.; Calloni, A.; Canali, C.; Carraro, C.; et al. Antihydrogen physics: Gravitation and spectroscopy in AEgIS. Can. J. Phys. 2011, 89, 17–24. [Google Scholar] [CrossRef]
- Krasnický, D.; Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Belov, A.S.; Bonomi, G.; Bräunig, P.; Brusa, R.S.; Bremer, J.; et al. AEgIS experiment commissioning at CERN. AIP Conf. Proc. 2013, 1521, 144–153. [Google Scholar] [CrossRef]
- Aghion, S.; Ahlén, O.; Amsler, C.; Ariga, A.; Ariga, T.; Belov, A.S.; Berggren, K.; Bonomi, G.; Bräunig, P.; Bremer, J.; et al. A moiré deflectometer for antimatter. Nat. Commun. 2014, 5, 4538. [Google Scholar] [CrossRef]
- Amsler, C.; Antonello, M.; Belov, A.; Bonomi, G.; Brusa, R.S.; Caccia, M.; Camper, A.; Caravita, R.; Castelli, F.; Cheinet, P.; et al. Pulsed production of antihydrogen. Commun. Phys. 2021, 4, 19. [Google Scholar] [CrossRef]
- Shu, K.; Tajima, Y.; Uozumi, R.; Miyamoto, N.; Shiraishi, S.; Kobayashi, T.; Ishida, A.; Yamada, K.; Gladen, R.W.; Namba, T.; et al. Cooling positronium to ultralow velocities with a chirped laser pulse train. Nature 2024, 633, 793–797. [Google Scholar] [CrossRef]
- Berghold, M.; Orsucci, D.; Guatieri, F.; Alfaro, S.; Auzins, M.; Bergmann, B.; Burian, P.; Brusa, R.S.; Camper, A.; Caravita, R.; et al. Real-time antiproton annihilation vertexing with submicrometer resolution. Sci. Adv. 2025, 11, eads1176. [Google Scholar] [CrossRef]
- Anderson, E.K.; Ahmadi, M.; Alves, B.X.R.; Baker, C.J.; Bason, M.G.; Baumann, T.M.; Bertsche, W.; Capra, A.; Charlton, M.; Errea, B.; et al. Observation of the effect of gravity on the motion of antimatter. Nature 2023, 621, 716–722. [Google Scholar] [CrossRef]
- Andresen, G.B.; Ashkezari, M.D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P.D.; Butler, E.; Cesar, C.L.; Chapman, S.; Charlton, M.; Fajans, J.; et al. Trapped antihydrogen. Nature 2010, 468, 673–676. [Google Scholar] [CrossRef]
- Ahmadi, M.; Alves, B.X.R.; Baker, C.J.; Bertsche, W.; Bowe, P.D.; Butler, E.; Cesar, C.L.; Charlton, M.; Cohen, S.; Eriksson, S.; et al. Observation of the 1S–2S transition in trapped antihydrogen. Nature 2017, 541, 506–510. [Google Scholar] [CrossRef]
- Ahmadi, M.; Alves, B.X.R.; Baker, C.J.; Bertsche, W.; Bowe, P.D.; Butler, E.; Cesar, C.L.; Charlton, M.; Eriksson, S.; Hangst, J.S.; et al. Characterization of the 1S–2S transition in antihydrogen. Nature 2018, 561, 211–215. [Google Scholar] [CrossRef]
- Ahmadi, M.; Alves, B.X.R.; Baker, C.J.; Bertsche, W.; Bowe, P.D.; Butler, E.; Cesar, C.L.; Charlton, M.; Eriksson, S.; Hangst, J.S.; et al. Investigation of the fine structure of antihydrogen. Nature 2020, 578, 375–380. [Google Scholar] [CrossRef]
- Amole, C.; Ashkezari, M.D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P.D.; Butler, E.; Capra, A.; Cesar, C.L.; Charlton, M.; Deller, A.; et al. Resonant quantum transitions in trapped antihydrogen atoms. Nature 2012, 483, 439–443. [Google Scholar] [CrossRef]
- Ahmadi, M.; Alves, B.X.R.; Baker, C.J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C.L.; Charlton, M.; Cohen, S.; et al. Observation of the hyperfine spectrum of antihydrogen. Nature 2017, 548, 66–69. [Google Scholar] [CrossRef]
- Kuroda, N.; Ulmer, S.; Murtagh, D.J.; Van Gorp, S.; Nagata, Y.; Diermaier, M.; Federmann, S.; Leali, M.; Malbrunot, C.; Mascagna, V.; et al. A source of antihydrogen for in-flight hyperfine spectroscopy. Nat. Commun. 2014, 5, 3089. [Google Scholar] [CrossRef]
- Kolbinger, B.; Amsler, C.; Arguedas Cuendis, S.; Breuker, H.; Capon, A.; Costantini, G.; Dupré, P.; Fleck, M.; Gligorova, A.; Higaki, H.; et al. Measurement of the principal quantum number distribution in a beam of antihydrogen atoms. Eur. Phys. J. D 2021, 75, 91. [Google Scholar] [CrossRef]
- Nowak, L.; Malbrunot, C.; Simon, M.C.; Amsler, C.; Arguedas Cuendis, S.; Lahs, S.; Lanz, A.; Nanda, A.; Wiesinger, M.; Wolz, T.; et al. CPT and Lorentz symmetry tests with hydrogen using a novel in-beam hyperfine spectroscopy method applicable to antihydrogen experiments. Phys. Lett. B 2024, 858, 139012. [Google Scholar] [CrossRef]
- Comparat, D.; Malbrunot, C.; Malbrunot-Ettenauer, S.; Widmann, E.; Yzombard, P. Experimental perspectives on the matter–antimatter asymmetry puzzle: Developments in electron EDM and antihydrogen experiments. Philos. Trans. R. Soc. A 2024, 382, 20230089. [Google Scholar] [CrossRef]
- Hori, M.; Aghai-Khozani, H.; Sótér, A.; Barna, D.; Dax, A.; Hayano, R.; Kobayashi, T.; Murakami, Y.; Todoroki, K.; Yamada, H.; et al. Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K for precision laser spectroscopy. Science 2016, 354, 610. [Google Scholar] [CrossRef]
- Hori, M.; Sótér, A.; Barna, D.; Dax, A.; Hayano, R.; Friedreich, S.; Juhász, B.; Pask, T.; Widmann, E.; Horváth, D.; et al. Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio. Nature 2011, 475, 484. [Google Scholar] [CrossRef]
- Hori, M.; Aghai-Khozani, H.; Sótér, A.; Dax, A.; Barna, D. Laser spectroscopy of pionic helium atoms. Nature 2020, 581, 37. [Google Scholar] [CrossRef]
- Sótér, A.; Aghai-Khozani, H.; Barna, D.; Dax, A.; Venturelli, L. High-resolution laser resonances of antiprotonic helium in superfluid 4He. Nature 2022, 603, 411. [Google Scholar] [CrossRef]
- Amsler, C.; Breuker, H.; Bumbar, M.; Cerwenka, M.; Costantini, G.; Ferragut, R.; Fleck, M.; Giammarchi, M.; Gligorova, A.; Gosta, G.; et al. Antiproton annihilation at rest in thin solid targets and comparison with Monte Carlo simulations. Eur. Phys. J. A 2024, 60, 225. [Google Scholar] [CrossRef]
- Aghai-Khozani, H.; Barna, D.; Corradini, M.; De Salvador, D.; Hayano, R.S.; Hori, M.; Leali, M.; Lodi-Rizzini, E.; Mascagna, V.; Prest, M.; et al. Limits on antiproton-nuclei annihilation cross sections at ∼125 keV. Nucl. Phys. A 2021, 1009, 122170. [Google Scholar] [CrossRef]
- Aghai-Khozani, H.; Bianconi, A.; Corradini, M.; Hayano, R.; Hori, M.; Leali, M.; Lodi Rizzini, E.; Mascagna, V.; Murakami, Y.; Prest, M.; et al. Measurement of the antiproton–nucleus annihilation cross-section at low energy. Nucl. Phys. A 2018, 970, 366. [Google Scholar] [CrossRef]
- Venturelli, L. Pontecorvo reactions and antimatter interferometry. Proc. Sci. 2025, 480, 002. [Google Scholar] [CrossRef]
- Sala, S.; Ariga, A.; Ereditato, A.; Ferragut, R.; Giammarchi, M.; Leone, M.; Pistillo, C.; Scampoli, P. First demonstration of antimatter wave interferometry. Sci. Adv. 2019, 5, eaav7610. [Google Scholar] [CrossRef]
- Borchert, M.J.; Devlin, J.A.; Erlewein, S.R.; Fleck, M.; Harrington, J.A.; Higuchi, T.; Latacz, B.M.; Voelksen, F.; Wursten, E.J.; Abbass, F.; et al. A 16-parts-per-trillion measurement of the antiproton-to-proton charge–mass ratio. Nature 2022, 601, 53–57. [Google Scholar] [CrossRef]
- Mooser, A.; Ulmer, S.; Blaum, K.; Franke, K.; Kracke, H.; Leiteritz, C.; Quint, W.; Rodegheri, C.C.; Smorra, C.; Walz, J. Direct high-precision measurement of the magnetic moment of the proton. Nature 2014, 509, 596–599. [Google Scholar] [CrossRef]
- Smorra, C.; Sellner, S.; Borchert, M.J.; Harrington, J.A.; Higuchi, T.; Nagahama, H.; Tanaka, T.; Mooser, A.; Schneider, G.; Bohman, M.; et al. A parts-per-billion measurement of the antiproton magnetic moment. Nature 2017, 550, 371–374. [Google Scholar] [CrossRef]
- Smorra, C.; Stadnik, Y.V.; Blessing, P.E.; Bohman, M.; Borchert, M.J.; Devlin, J.A.; Erlewein, S.; Harrington, J.A.; Higuchi, T.; Mooser, A.; et al. Direct limits on the interaction of antiprotons with axion-like dark matter. Nature 2019, 575, 310–314. [Google Scholar] [CrossRef]
- Smorra, C.; Mooser, A.; Franke, K.; Nagahama, H.; Schneider, G.; Sellner, S.; Ulmer, S.; Blaum, K.; Quint, W.; Walz, J.; et al. A reservoir trap for antiprotons. Int. J. Mass Spectrom. 2015, 389, 10–13. [Google Scholar] [CrossRef]
- Smorra, C.; Abbass, F.; Schweitzer, D.; Bohman, M.; Devine, J.D.; Dutheil, Y.; Hobl, A.; Arndt, B.; Bauer, B.B.; Devlin, J.A.; et al. BASE-STEP: A transportable antiproton reservoir for fundamental interaction studies. Rev. Sci. Instrum. 2023, 94, 113201. [Google Scholar] [CrossRef]
- Bohman, M.; Grunhofer, V.; Smorra, C.; Wiesinger, M.; Will, C.; Ulmer, S. Sympathetic cooling of a trapped proton mediated by an LC circuit. Nature 2021, 596, 514–518. [Google Scholar] [CrossRef]
- Cornejo, J.M.; Lehnert, R.; Niemann, M.; Mielke, J.; Meiners, T.; Bautista-Salvador, A.; Schulte, M.; Nitzschke, D.; Borchert, M.J.; Hammerer, K.; et al. Quantum logic inspired techniques for spacetime-symmetry tests with (anti-)protons. New J. Phys. 2021, 23, 073045. [Google Scholar] [CrossRef]
- Sellner, S.; Besirli, M.; Bohman, M.; Borchert, M.J.; Harrington, J.; Higuchi, T.; Mooser, A.; Nagahama, H.; Schneider, G.; Smorra, C.; et al. Improved limit on the directly measured antiproton lifetime. New J. Phys. 2017, 19, 083023. [Google Scholar] [CrossRef]
- Borchert, M.J.; Blessing, P.E.; Devlin, J.A.; Harrington, J.A.; Higuchi, T.; Morgner, J.; Smorra, C.; Wursten, E.; Bohman, M.; Wiesinger, M.; et al. Measurement of Ultralow Heating Rates of a Single Antiproton in a Cryogenic Penning Trap. Phys. Rev. Lett. 2019, 122, 043201. [Google Scholar] [CrossRef]
- Budker, D.; Graham, P.W.; Ramani, H.; Schmidt-Kaler, F.; Smorra, C.; Ulmer, S. Millicharged Dark Matter Detection with Ion Traps. PRX Quantum 2022, 3, 010330. [Google Scholar] [CrossRef]
- Devlin, J.A.; Wiesinger, M.; Borchert, M.J.; Erlewein, S.; Blessing, P.E.; Harrington, J.A.; Smorra, C.; Mooser, A.; Blaum, K.; Matsuda, Y.; et al. Constraints on the Coupling between Axionlike Dark Matter and Photons Using an Antiproton Superconducting Tuned Detection Circuit in a Cryogenic Penning Trap. Phys. Rev. Lett. 2021, 126, 041301. [Google Scholar] [CrossRef]
- Chardin, G.; Grandemange, P.; Lunney, D.; Manea, V.; Badertscher, A.; Crivelli, P.; Curioni, A.; Marchionni, A.; Rossi, B.; Rubbia, A.; et al. CERN-SPSC-2011-029, SPSC-P-342. CERN Report, 2011. Available online: http://cds.cern.ch/record/1386684/files/ (accessed on 28 May 2025).
- Rousselle, O.; Cladé, P.; Guellati-Khelifa, S.; Guérout, R.; Reynaud, S. Analysis of the timing of freely falling antihydrogen. New J. Phys. 2022, 24, 033045. [Google Scholar] [CrossRef]
- Crivelli, P.; Kolachevsky, N. Recent developments in hyperfine interactions. Hyperfine Interact. 2020, 241, 60. [Google Scholar] [CrossRef]
- Myers, E.G. Precision measurements and their implications. Phys. Rev. A 2018, 98, 010101. [Google Scholar] [CrossRef]
- Adrich, P.; Blumer, P.; Caratsch, G.; Chung, M.; Cladé, P.; Comini, P.; Crivelli, P.; Dalkarov, O.; Debu, P.; Douillet, A.; et al. Recent results in European particle physics. Eur. Phys. J. C 2023, 83, 1004. [Google Scholar] [CrossRef]
- Adrich, P.; Blumer, P.; Caratsch, G.; Chung, M.; Cladé, P.; Comini, P.; Crivelli, P.; Dalkarov, O.; Debu, P.; Douillet, A.; et al. CERN-SPSC-2024-006, SPSC-SR-341. CERN Report, 2024. Available online: http://cds.cern.ch/record/2888058/files/ (accessed on 28 May 2025).
- Crivelli, P.; Cooke, D.; Heiss, M. Search for invisible decays. Phys. Rev. D 2016, 94, 052008. [Google Scholar] [CrossRef]
- Blumer, P.; Ohayon, B.; Crivelli, P. Antimatter interaction studies. Eur. Phys. J. D 2025, 79, 17. [Google Scholar] [CrossRef] [PubMed]
- Wada, M.; Yamazaki, Y. Technical developments toward antiprotonic atoms for nuclear structure studies of radioactive nuclei. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2004, 214, 196–200. [Google Scholar] [CrossRef]
- Aumann, T.; Bartmann, W.; Boine-Frankenheim, O.; Bouvard, A.; Broche, A.; Butin, F.; Calvet, D.; Carbonell, J.; Chiggiato, P.; De Gersem, H.; et al. PUMA, antiProton unstable matter annihilation. Eur. Phys. J. A 2022, 58, 88. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferragut, R. Antimatter Research at the CERN Antiproton Decelerator: Legacy of Guido Barbiellini Amidei. Condens. Matter 2025, 10, 32. https://doi.org/10.3390/condmat10020032
Ferragut R. Antimatter Research at the CERN Antiproton Decelerator: Legacy of Guido Barbiellini Amidei. Condensed Matter. 2025; 10(2):32. https://doi.org/10.3390/condmat10020032
Chicago/Turabian StyleFerragut, Rafael. 2025. "Antimatter Research at the CERN Antiproton Decelerator: Legacy of Guido Barbiellini Amidei" Condensed Matter 10, no. 2: 32. https://doi.org/10.3390/condmat10020032
APA StyleFerragut, R. (2025). Antimatter Research at the CERN Antiproton Decelerator: Legacy of Guido Barbiellini Amidei. Condensed Matter, 10(2), 32. https://doi.org/10.3390/condmat10020032