Wetted Ramps Selectively Block Upstream Passage of Adult Sea Lampreys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location and Animals
2.2. Experimental Setup and Procedures
2.2.1. Sea Lamprey
2.2.2. Finfish
2.3. Data Extraction and Analysis
3. Results
3.1. Attempt Rates, Passage Success Rates, and Effect of Channel Width
3.2. Effect of Ramp Angle and Water Flow
3.3. Effect of Ramp Length
4. Discussion
4.1. Attraction, Passage Success Rates, and Effect of Ramp Inclination
4.2. Effect of Channel Width, Water Flow, and Fish Size
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Pohl, M. American dam removal census: Available data and data needs. In Dams and Geomorphology; Beyer, P.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; p. 29. Available online: https://professionnels.ofb.fr/en/node/731 (accessed on 10 July 2024).
- Baudoin, J.; Burgun, V.; Chanseau, M.; Larinier, M.; Ovidio, M.; Sremski, W.; Steinbach, P.; Voegtlé, B. Assessing the Passage of Obstacles by Fish. In Concepts, Design and Application; Onema Publ.: Embrun, France, 2015; pp. 75–150. [Google Scholar]
- Rahel, F.J.; McLaughlin, R.L. Selective fragmentation and the management of fish movement across anthropogenic barriers. Ecol. Appl. 2018, 28, 2066–2081. [Google Scholar] [CrossRef] [PubMed]
- Pratt, T.C.; O’Connor, L.M.; Hallett, A.G.; McLaughlin, R.L.; Katopodis, C.; Hayes, D.B.; Berstedt, R.A. Balancing aquatic habitat fragmentation and control of invasive species: Enhancing selective fish passage at sea lamprey control barriers. Trans. Am. Fish. Soc. 2009, 138, 652–665. [Google Scholar] [CrossRef]
- Lavis, D.S.; Henson, M.P.; Johnson, D.A.; Koon, E.M.; Ollila, D.J. A case history of sea lamprey control in Lake Michigan 1979 to 1999. J. Great Lakes Res. 2003, 29, 584–598. [Google Scholar] [CrossRef]
- Jungwirth, M.; Schmutz, S.; Weiss, S. Fish Migration and Fish Bypasses; Wiley: Oxford, UK, 1998; 448p. [Google Scholar]
- Mills, E.L.; Casselman, J.M.; Dermott, R.; Fitzsimons, J.D.; Gal, G.; Holeck, K.T.; Hoyle, J.A.; Johannsson, O.E.; Lantry, B.F.; Makarewicz, J.C.; et al. Lake Ontario: Food Web Dynamics in a Changing Ecosystem (1970–2000). Can. J. Fish. Aquat. Sci. 2003, 60, 471–490. [Google Scholar] [CrossRef]
- Dawson, H.A.; Bravener, G.; Beaulaurier, J.; Johnson, N.S.; Twohey, M.; McLaughlin, R.L.; Brenden, T.O. Contribution of Manipulable and Non-Manipulable Environmental Factors to Trapping Efficiency of Invasive Sea Lamprey. J. Great Lakes Res. 2017, 43, 172–181. [Google Scholar] [CrossRef]
- Velez-Espino, L.A.; McLaughlin, R.L.; Jones, M.L.; Pratt, T.C. Demographic analysis of trade-offs with deliberate fragmentation of streams: Control of invasive species versus protection of native species. Biol. Conserv. 2011, 144, 1068–1080. [Google Scholar] [CrossRef]
- Zielinski, D.P.; McLaughlin, R.; Castro-Santos, T.; Paudel, B.; Hrodey, P.; Muir, A. Alternative Sea Lamprey Barrier Technologies: History as a Control Tool. Rev. Fish. Sci. Aquac. 2019, 27, 438–457. [Google Scholar] [CrossRef]
- Zielinski, D.P.; McLaughlin, R.; Pratt, T.C.; Goodwin, R.A.; Muir, A.M. Single-Stream Recycling Inspires Selective Fish Passage Solutions for the Connectivity Conundrum in Aquatic Ecosystems. BioScience 2020, 70, 871–886. [Google Scholar] [CrossRef]
- Amaral, S.D.; Branco, P.; Katopodis, C.; Ferreira, M.T.; Pinheiro, A.N.; Santos, J.M. Passage Performance of Potamodromous Cyprinids over an Experimental Low-Head Ramped Weir: The Effect of Ramp Length and Slope. Sustainability 2019, 11, 1456. [Google Scholar] [CrossRef]
- Kivari, L. The Wetted Ramp as a Useful Tool to Service Smaller-Bodied Finfishes at Low-Head Aquatic Barriers. Master’s Thesis, Eastern Michigan University, Ypsilanti, MI, USA, 2016; 68p. [Google Scholar]
- Sherburne, S.; Reinhardt, U.G. First test of a species-selective adult sea lamprey migration barrier. J. Great Lakes Res. 2016, 42, 893–898. [Google Scholar] [CrossRef]
- Baker, C.F.; Boubee, J.A. Upstream passage of inanga Galaxias maculatus and redfin bellies Gobiomorphus huttoni over artificial ramps. J. Fish. Biol. 2006, 69, 668–681. [Google Scholar] [CrossRef]
- Reinhardt, U.G.; Hrodey, P.J.; Miehls, S. Refinement of a New Trapping Tool for Migrating Adult Sea Lamprey; Project Completion Report; Great Lakes Fisheries Commission: Ann Arbor, MI, USA, 2017. [Google Scholar]
- Tytell, E.D.; Lauder, G.V. The hydrodynamics of eel swimming: I. wake structure. J. Exp. Biol. 2004, 207, 1825–1841. [Google Scholar] [CrossRef] [PubMed]
- Corniuk, N. Modified Wetted Ramp Style Fishways as a Selective Fish Passage Device at Low Crest Sea Lamprey Barriers in the Laurentian Great Lakes. Master’s Thesis, Eastern Michigan University, Ypsilanti, MI, USA, 2020. [Google Scholar]
- Castro-Santos, T. Quantifying the Combined Effects of Attempt Rate and Swimming Performance on Passage Through Velocity Barriers. Can. J. Fish. Aquat. Sci. 2004, 61, 1602–1615. [Google Scholar] [CrossRef]
- Bunt, C.; Castro-Santos, T.; Haro, A. Performance of Fish Passage Structures at Upstream Barriers to Migration. River Res. Appl. 2012, 28, 457–478. [Google Scholar] [CrossRef]
- Bunt, C. Fishway Entrance Modifications Enhance Fish Attraction. Fish. Manag. Ecol. 2001, 8, 95–105. [Google Scholar] [CrossRef]
- Farzadkhoo, M.; Kingsford, R.; Suthers, I.; Felder, S. Flow Hydrodynamics Drive Effective Fish Attraction Behaviour into Slotted Fishway Entrances. J. Hydrodyn. 2023, 35, 782–802. [Google Scholar] [CrossRef]
- Noonan, M.J.; Grant, J.W.A.; Jackson, C.D. A quantitative assessment of fish passage efficiency. Fish Fish. 2012, 13, 450–464. [Google Scholar] [CrossRef]
- Haro, A.; Castro-Santos, T.; Noreika, J.; Odeh, M. Swimming performance of upstream migrant fish in open-channel flow: A new approach to predicting passage through velocity barriers. Can. J. Fish. Aquat. Sci. 2004, 61, 1590–1601. [Google Scholar] [CrossRef]
- Pereira, E.; Quintella, B.R.; Mateus, C.; Alexandre, C.M. Performance of a vertical-slot fish pass for the sea lamprey Petromyzon marinus L. and habitat recolonization performance of a fish pass for sea lamprey. River Res. Appl. 2016, 33, 16–26. [Google Scholar] [CrossRef]
- Katopodis, C.; Koon, E.M.; Hanson, L. Sea Lamprey Barriers: New Concepts and Research Needs; Project Completion Report; The Great Lakes Fishery Commission: Ann Arbor, MI, USA, 1994. [Google Scholar]
- Hanson, L.E. Study to Determine the Burst Swimming Speed of Spawning-Run Sea Lampreys (Petromyzon marinus); Project Completion Report; The Great Lakes Fishery Commission: Ann Arbor, MI, USA, 1980. [Google Scholar]
- Webb, P.W. The swimming energetics of trout: II oxygen consumption and swimming efficiency. J. Exp. Biol. 1971, 55, 521–540. [Google Scholar] [CrossRef] [PubMed]
- Hooley-Underwood, Z.; Myrick, C.; Compton, R. Comparative Swimming Performance of Five Catostomus Species and Roundtail Chub. N. Am. J. Fish. Manag. 2014, 34, 753–763. [Google Scholar] [CrossRef]
- Castro-Santos, T. Optimal Swim Speeds for Traversing Velocity Barriers: An Analysis of Volitional High-Speed Swimming Behavior of Migratory Fishes. J. Exp. Biol. 2005, 208, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Lewandoski, S.A.; Hrodey, P.; Miehls, S.; Piszczek, P.P.; Zielinski, D.P. Behavioral responses of sea lamprey (Petromyzon marinus) and white sucker (Catostomus commersonii) to turbulent flow during fishway passage attempts. Can. J. Fish. Aquat. Sci. 2021, 78, 409–421. [Google Scholar] [CrossRef]
- Tritico, H.; Cotel, A. The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus). J. Exp. Biol. 2010, 213, 2284–2293. [Google Scholar] [CrossRef]
- Leavy, T.; Bonner, T. Relationships among Swimming Ability, Current Velocity Association, and Morphology for Freshwater Lotic Fishes. N. Am. J. Fish. Manag. 2009, 29, 72–83. [Google Scholar] [CrossRef]
- Reinhardt, U.G.; Binder, T.; McDonald, D.G. Ability of adult sea lamprey to climb inclined surfaces. In Proceedings of the American Fisheries Society Symposium 72, Bethesda, MD, USA, 4–9 October 2009. [Google Scholar]
- D’Aguiar, M. The Ability of Sea Lamprey (Petromyzon marinus) to Utilize Solid Structural Components to Climb Inclined Surfaces. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2011; 67p. [Google Scholar]
- Reinhardt, U.; Hrodey, P. Trap Happiness and Catch Bias in Sea Lamprey Traps. Fishes 2019, 4, 34. [Google Scholar] [CrossRef]
- Ovidio, M.; Philippart, J.C. The impact of small physical obstacles on upstream movements of six species of fish: Synthesis of a 5-year telemetry study. Hydrobiologia 2002, 483, 55–69. [Google Scholar] [CrossRef]
- Knapp, M.; Montgomery, J.; Whittaker, C.; Franklin, P.; Baker, C.; Friedrich, H. Fish passage hydrodynamics: Insights into overcoming migration challenges for small-bodied fish. J. Ecohydraulics 2019, 4, 43–55. [Google Scholar] [CrossRef]
- Baker, C.F. Effect of ramp length and slope on the efficacy of a baffled fish pass. J. Fish. Biol. 2014, 84, 491–502. [Google Scholar] [CrossRef]
- Doehring, K.; Young, R.G.; McIntosh, A.R. Factors affecting juvenile galaxiid fish passage at culverts. Mar. Freshw. Res. 2011, 62, 38–45. [Google Scholar] [CrossRef]
- Turek, J.; Haro, A.; Towler, B. Federal Interagency Nature-Like Fishway Passage Design Guidelines for Atlantic Coast Diadromous Fishes. 2016. Available online: https://repository.library.noaa.gov/view/noaa/28919 (accessed on 10 July 2024).
- Fish Pass. Available online: https://www.glfc.org/fishpass.php (accessed on 12 June 2024).
Species | Ramp Angle | Channel Width | Ramp Length (m) | Flow Rate (L/s) | Mean Flow (m/s) | Mean Water Depth (mm) |
---|---|---|---|---|---|---|
Lamprey | 5° | 50 mm | 1 | 0.3 | 0.44 | 8.3 |
Lamprey | 5° | 50 mm | 1 | 0.6 | 0.94 | 16.7 |
All species | 10° | 50 mm | 1 | 0.3 | 1.05 | 6.7 |
All species | 10° | 50 mm | 1 | 0.6 | 1.17 | 11.7 |
Lamprey | 5° | 50 mm | 1 | 0.3 | 0.82 | 5 |
Lamprey | 5° | 50 mm | 1 | 0.6 | 1.05 | 16.7 |
All species | 10° | 50 mm | 1 | 0.3 | 1.00 | 4 |
All species | 10° | 50 mm | 1 | 0.6 | 1.15 | 8.4 |
Lamprey | 5° | 50 mm | 1.75 | 0.6 | 0.91 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinhardt, U.; Corniuk, N. Wetted Ramps Selectively Block Upstream Passage of Adult Sea Lampreys. Fishes 2024, 9, 293. https://doi.org/10.3390/fishes9080293
Reinhardt U, Corniuk N. Wetted Ramps Selectively Block Upstream Passage of Adult Sea Lampreys. Fishes. 2024; 9(8):293. https://doi.org/10.3390/fishes9080293
Chicago/Turabian StyleReinhardt, Uli, and Nicholas Corniuk. 2024. "Wetted Ramps Selectively Block Upstream Passage of Adult Sea Lampreys" Fishes 9, no. 8: 293. https://doi.org/10.3390/fishes9080293
APA StyleReinhardt, U., & Corniuk, N. (2024). Wetted Ramps Selectively Block Upstream Passage of Adult Sea Lampreys. Fishes, 9(8), 293. https://doi.org/10.3390/fishes9080293